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QCD

‣ Theory of strong interactions!

‣ Field theory with Lagrangian  
 

‣ Fields: gluons and quarks!

‣ But particles: hadrons 
             p, n, 𝝅, K,…   confinement!!

‣ Definition of coupling is not straight forward  
(we do e.g. not want the 𝝅-𝝅 coupling)
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I in the following: u, d quarks mass-degenerate
s-quark quenched

3 parameters
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QCD coupling

↵MS(µ)‣ Theorists:  
 
take                     dimensions 
subtract poles in          …   <—  no physics!

‣ for QED: 
charged particle scattering at small energy  
 
 
physics!  
 
same coupling as  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1/✏

Fpe(r) = ↵em
1

r2

1

� = kinematics⇥ ↵2
em



QCD coupling

Analogous to!

quark as test charge  !

force in PT: !

define: 
 
 
                                        no corrections !
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QCD coupling

↵qq(µ) ⌘
3r2

4
FQQ̄(r) , µ =

1

r Q
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MS
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then

always 
(non-perturbatively)!

defined!
physics!

perturbatively defined  
by such relations!

!
makes sense for ↵ ⌧ 1
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QCD coupling, energy dependence

alpha1

Running and Renormalization Group Invariants

RGE: µ @ḡ

@µ = �(ḡ) ḡ(µ)2 = 4⇡↵(µ) .
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2

exp

⇢
�
Z

ḡ
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scheme$ definition of ḡ, m
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= integration constant of RGE
!

Asymptotic freedom 
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QCD coupling, energy dependence

ḡ = ḡMS ! ⇤ = ⇤MS , ḡ = ḡqq ! ⇤ = ⇤qq

⇤MS/⇤qq = exp (c1/(2b0))
↵qq(µ) = ↵MS(µ) + c1↵

2
MS

(µ) + . . .

= integration constant of RGE

singular behavior convergent for g -> 0

is the goal, relative uncertainty:          for n+1 - loop ⇤ k↵n �(g)

ḡ ⌘ ḡ(µ)

g2

log(𝜇)



QCD coupling, comparison perturbative / non-pert.
alpha1

Lattice determination of ↵qq
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(
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=
r2

F
(
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/C
F

� = 5.3,  = 0.13638

� = 5.5,  = 0.13671

3-loop Nf = 2

4-loop Nf = 2

Nf = 0, continuum

3-loop Nf = 0

4-loop Nf = 0

graph from [Leder & Knechtli, 2011 ]

Nf = 0, continuum limit
[Necco & S., 2001 ]

Nf = 2, small lattice spacing
[Leder & Knechtli, 2011 ]
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‣ non-perturbative = lattice QCD!

‣ let us see how this works!

‣ remember for later: we need small r, large 𝜇 

1/µ

↵qq(µ)



Lattice gauge theory

‣ discrete space-time, spacing 𝑎, 
hypercubic lattice!

‣ Quantization by 
Feynman path integral !

‣ Euclidean time: 
 

‣ numerical treatment by MC  
    “simulation”

a

a

eitH ! e�tH ; eitEn ! e�tEn



“Simulation” of quantum  theory (quantum mechanics)“Simulating” Quantum Mechanics

Euclidean Green functions of QM

Gf (t2, t1) = h0|f(q̂(t2)) f(q̂(t1))|0i

with

q̂(t) = e
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2m
, Ĥ|0i = 0
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in QCD: m𝝅, mprot,…

in QCD: f𝝅, …



“Simulation” of quantum  theory (quantum mechanics)
“Simulating” Quantum Mechanics
Feynman’s (Euclidean) path integral representation (discretised):

Gf (t2, t1) = lim
N!1
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For finite N = T/a:

Monte Carlo integration called Simulation:
• Importance sampling of {qi} with weight W [q] / e�S[q].
• Essentially no restriction on V (q).
• Arbitrarily non-linear.
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“Simulation” of QCDSimulating Q C D

lattice: xµ = anµ, nµ 2 ZZ , µ = 0, 1, 2, 3

quarks:  (x) on lattice points

gluons: U(x, µ) = P exp
n

a
R

1

0

dtAµ(x+ a(1� t)µ̂)
o

2 SU(3) on links

Euclidean action: S = S
G

+ S
F

S
G

=
1

g2

0

X

p

tr {1 � U(p)} ,

S
F

= a
4

X

x

 (x)(D(U) + m) (x)

D(U) : discretized Dirac operator

MC-evaluation of the Path Integral ! statistical errors / 1p
computer time
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The logics of lattice computations

Numerical first principle “solution” of QCD

experiments, hadrons

m
p

= 938.272MeV

m
⇡

= 139.570MeV

m
K

= 493.7MeV

m
D

= 1896MeV

m
B

= 5279MeV

• The Lagrangian
• Non-perturbative formulation:

lattice with spacing a

• Technology
T

time

0

space

continuum limit a ! 0

fundamental parameters
& hadronic matrix elements

↵(µ)

m
u

(µ) , m
s

(µ)

m
c

(µ) , m
b

(µ)

F
B

, F
B

s

, ⇠ . . .

Non-perturbative in the coupling

So far only achievable by numerical simulation
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The logics of lattice QCD computations

fix parameters 
in Lagrangian 

g0, m0f

our focus 
today

form factors for 
Bs—> K, B—> 𝜋



Example: QCD with mass-degenerate quarks

amhad = Fhad(g0, am0,
L

a
) all dimensionless

= F1
had(g0, am0) + O(e�m⇡L)

e�m⇡a⇥L
a

output  number 

input  numbers 

non-degenerate masses 
R⇡,prot

RK,prot

RD,prot

. . .

determine

such that 

we then have the physical quark mass 

am0 = Mphys(g0)
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⇡ (g
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(g
0

))

F1
prot

(g
0

,M
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(g
0
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=: Rphys
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then, on the physical quark mass trajectory am0 = Mphys(g0)

↵
qq̄

(µa = ⇢⇥m
prot

a) = ↵cont

qq̄

(µ = ⇢⇥m
prot

) (1 + O(am
prot

)2)

am
prot

⇠ e�1/(2b0g
2
0)

a ! 0 $ g
0

! 0

One gets $$$  (L/a >>1) 
↵cont

qq̄

(µ)

but: one wants large 𝜇  because then!
one has a small uncertainty  
 
 
this is not easy, we come back to it later 

�⇤

⇤
⇠ {↵(µ)}n

log(𝜇)

𝝰



Summary of the principle

R⇡,prot

RK,prot

RD,prot

. . .

Exp. 

Pert. Theory 
↵MS(µ) or ⇤MS

Lattice 
↵cont

qq̄

(µ) , µ = ⇢m
prot

Phenomenology!
 (e.g. LHC) 

Important to control!
perturbative errors!
!

by high orders in PT!
and large 𝜇



FLAG-2 review

‣ review and summary 
of lattice results  
relevant for  
phenomenology!

‣ averages, ranges!

‣ somewhat critical!

‣ here just a summary 
of the  
 
 
part

↵s



The most important internal FLAG rules are the following:

• members of the AB have a 4-year mandate (to avoid a simultaneous change of all mem-
bers, some of the current members of the AB will have a shorter mandate);

• the composition of the AB reflects the main geographical areas in which lattice collab-
orations are active: one member comes from America, one from Asia/Oceania and one
from Europe ;

• the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

• whenever a replacement becomes necessary this has to keep, and possibly improve, the
balance in FLAG;

• in all working groups the three members must belong to three different lattice collabo-
rations;2

• a paper is in general not reviewed (nor colour-coded, as described in the next section)
by one of its authors;

• lattice collaborations not represented in FLAG will be asked to check whether the colour
coding of their calculation is correct.

The current list of FLAG members and their Working Group assignments is:

• Advisory Board (AB): S. Aoki, C. Bernard, C. Sachrajda

• Editorial Board (EB): G. Colangelo, H. Leutwyler, A. Vladikas, U. Wenger

• Working Groups (WG)
(each WG coordinator is listed first):

– Quark masses L. Lellouch, T. Blum, V. Lubicz

– Vus, Vud A. Jüttner, T. Kaneko, S. Simula

– LEC S. Dürr, H. Fukaya, S. Necco

– BK H. Wittig, J. Laiho, S. Sharpe

– fB(s)
, fD(s)

, BB A. El Khadra, Y. Aoki, M. Della Morte

– B(s), D semileptonic and radiative decays R. Van de Water, E. Lunghi, C. Pena
J. Shigemitsu

– αs R. Sommer, R. Horsley, T. Onogi

1.2 General issues and summary of the main results

The present review aims at two distinct goals:

a. offer a description of the work done on the lattice concerning low energy particle physics;

b. draw conclusions on the basis of that work, which summarize the results obtained for
the various quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form of
tables, which not only list the various results, but also describe the quality of the data that
underlie them. We consider it important that this part of the review represents a generally
accepted description of the work done. For this reason, we explicitly specify the quality

2The WG on semileptonic D and B decays has currently four members, but only three of them belong to
lattice collaborations.

9

apologies: for references please see the report



Limitations of lattice computations

L � hadron size ⇠ ⇤

�1
QCD and 1/a � µ

L/a o µ/⇤QCD

1� 3GeV

O(µ) ⌘ lim

a!0
Olat(a, µ) with µ fixed

µ

µ n L/a⇥ ⇤QCD ⇠ 5� 20GeV

at most, in conflict with 

‣ Observable with energy/momentum scale  

‣ avoid finite size and discretization effects  
 
 
or:  
 

�⇤

⇤
⇠ {↵(µ)}n



Reliability of perturbation theory

O ⇠
X

in

ci↵
i
s

k ↵n+1
s

‣ Observable with perturbative expansion  
 

‣ truncation errors: 
 
 
             perturbative          and non-perturbative

O(exp(��/↵s))



Quality criteria 

• Renormalisation scale

⋆ all points relevant in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least one αeff ≤ 0.25

! otherwise

• Perturbative behaviour

⋆ verified over a range of a factor 2 in αeff (without power corrections)

◦ agreement with perturbation theory over a range of a factor 1.5 in αeff (possibly
fitting with power corrections)

! otherwise

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 1.5 reaching down to µa = 1 and full O(a) improve-
ment
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

! otherwise

We here assume that the two-loop relation between the used coupling and αMS is always
known such that the three-loop beta-function is known in the scheme considered. Therefore we
will have no separate criterion for the order of perturbation theory. Similarly we assume that
quark mass effects of light quarks (including strange) are negligible in the effective coupling
itself where large, perturbative, µ is considered.

We also need to specify what is meant by µ. For SF we mean µ = 1/L, for qq it is µ = 2/r,
for schemes with observables in momentum space we take the magnitude of the momentum.
Finally, for moments of heavy quark currents with quark masses mh we use µ = 2mh. We
note again that the above criteria cannot be applied when regularisation dependent quantities
Wlat(a) are used instead of O(µ). These cases are specifically discussed in sect. 9.6.

The usual criterion for the chiral extrapolation and the control over finite volume effects
is missing here for the following reason. These criteria would apply only to the setting of the
scale. Usually it has been determined in preceeding papers of the collaboration determining
the coupling constant (or indeed by another collaboration). However, the determination of
the scale does not need to be very precise, since using the lowest order β-function shows that
a 3% error in the scale determination corresponds to a ∼ 0.5% error in αs(MZ). So as long
as systematic errors from chiral extrapolation and finite volume effects are below 3% we do
not need to be concerned about those. This covers practically all cases. When, exceptionally,
it matters we include the precision of the scale setting into our discussion.

A popular scale choice is the intermediate r0 scale, although one should also bear in
mind that its determination from physical observables has also to be taken into account.
The phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through po-
tential models describing quarkonia [65]. Recent determinations from 2-flavour QCD are
r0 = 0.420(14) − 0.450(14) fm by the ETM collaboration [163, 236], using as input fπ and
fK and carrying out various continuum extrapolations. On the other hand, the ALPHA

147

try to make sure  
the observable is at 

sufficiently short distance

try to make sure  
the μ-dependence is as predicted  

by perturbation theory

try to make sure  
the continuum limit can be taken 



Current 2-point functions of heavy quarks

R4 ⌘ G4/G
(0)
4 = 1 + r4,1↵s + r4,2↵

2
s + r4,3↵

3
s + . . . , ↵s = ↵s(µ = 2mh)

‣ consider a pair of heavy quarks, h,h’                [HPQCD 08b, HPQCD 10]  
— mass of charm or heavier 
— 2-point function (Euclidean space)

‣ moments

‣ have a perturbative expansion, e.g.

J(x) = imh h(x)�5 h0(x)G(x0) = a

3
X

~x

hJ†(x)J(0)i

Gn = a

T/2�aX

t=�(T/2�a)

tn G(t) ⇡
Z T/2

�T/2
tn G(t) dt

↵s = ↵s(µ = 2mh)

dominated by 
t=O(mh-1)



‣ define effective coupling of THIS process

↵e↵ ⌘ (R4 � 1)/r4,1 = ↵MS +O(↵2
MS

)

Current 2-point functions of heavy quarks



Relevance of discretization errors

‣ Continuum limit: universal curves!

‣ Vertical displacements are discretization effects!

‣ green circles: pass criteria!

‣ a very good understanding of discretization errors is 
needed to extract precise continuum numbers

↵e↵ ↵e↵R4 R6/R8

criteria are relevant

𝜇 [physical units] 𝜇 [physical units]



Requirements in a nut-shell

‣ two tricks are possible  
 
- Observables in finite volume  
 
- Observables at the cutoff 
   (skip because of time)  

L/a o µ/⇤QCD

L/a � 1



Observables in finite volume

‣   
 

‣ iteratively connect  L and L/2 needs  L/a ≫ 1, not more  
step scaling function: 
 
 
⟹  L=2-10 fm  perturbative region, running of coupling !

‣ idea: Lüscher, Weisz, Wolff: 2-d, O(3) sigma-model!

‣ development and application for QCD:

O(L, a) = c1↵s(1/L) + c2↵
2
s(1/L) + . . .

⌘ c1↵L(1/L)
L4

torus or cylinder

T

time

0

space

L=

LPHAA
Collaboration

�(u) = ḡ2(2L) when ḡ2(L) = u



Step Scaling: Connecting L ⟹ 2L

same a

same  
but  

smaller a’

Σ(u,a/L)= 
g2(2L,a/L) = 
g2(2L,1/4)

Σ(u,a/L)= 
g2(2L,a’/L) = 
g2(2L,1/6) 
  ⇩ extrapolate    

g2(2L,0)=σ(u) 
cont. limit

same L 
⇕ 

same u=g2(L)

‣ needs L/a ≫ 1, not more:

LPHAA
Collaboration



(a/L)2

σ
(u

)/
u

−
1

u = 1.108910

u = 1.184460

u = 1.265690

u = 1.362700

u = 1.480800

u = 1.617300

u = 1.794300
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Continuum extrapolation
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+ s1u
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+ c1u
4
+ c2u

5

+ (⇢1u
2
+ ⇢2u

3
)[a/L]2

c1, c2, ⇢1, ⇢2 fit parameters

�2/d.o.f. = 1.03

Nf=3

LPHAA
Collaboration

then solve

�(un+1) = un

u0 ! u1, . . . un

ḡ2(L0) ! ḡ2(2�1L0), . . . , ḡ
2
(2

�nL0)



LPHAA
Collaboration
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Running from Observables in finite volume
Non-perturbative running of ↵

[ LPHAA
Collaboration, 2005 ] [ LPHAA

Collaboration, 2001 ]
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Non-perturbative running of ↵

[ LPHAA
Collaboration, 2005 ] [ LPHAA

Collaboration, 2001 ]
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Observables in finite volume

‣               without compromises !

‣ unfortunately no high precision 
result for Nf=3 yet 
(many simulations + analysis 
are needed)!

‣ Nf=3, precision computations 
are in progress

↵s(MZ)

12/ 15

Precision compared to earlier results for Nf = 0, 2, 3, 4

u
[σ

(u
)−

u]
 / 

[2
 ln

(2
) u

2 ]
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Various fits (3-5 parameters,
perturbatively improved &
unimproved data), find
stability after n = 2, 3
step-scaling steps

) Lswi⇤
Nf=3

MS
= 0.0802(16)

(preliminary)
ḡ2(L)

ḡ2(2L)� ḡ2(L)

2 log(2)ḡ4(L)
= b0 +O(ḡ2(L))

non-perturbative  
Nf, g2 -dependence of !
the  -function

[ ALPHA-collaboration; CP-PACS]

b



Back to the Review of 𝜶s



Methods used on the lattice  and  main challenges

‣ finite L, step scaling !

‣ observables at the lattice spacing 
scale  

‣ potential !

‣ vacuum polarisation !

‣ current two-point functions !

‣ QCD vertices 

➡ statistical errors !

➡ perturbative order, 
behavior of (non-
universal) PT 
 
 
  !

➡ compromise between  
discretisation errors 
         vs.  
 perturbative error



Detailed tables, e.g. 𝜶 from Wilson loops 

Collaboration Ref. Nf pu
bl
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at
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e

pe
rt

ur
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ti
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ic
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gs

scale ΛMS[ MeV] r0ΛMS

HPQCD 10Aa § [73] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)
HPQCD 08Aa [505] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)
Maltman 08a [508] 2+1 A ◦ ◦ ◦ r1 = 0.318 fm 352(17)† 0.841(40)
HPQCD 05Aa [504] 2+1 A ◦ ◦ ◦ r1

†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[509] 2 A ⋆ ! ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [510] 2 A ◦ ! ! cc̄(1S-1P)
Wingate 95d [511] 2 A ⋆ ! ! cc̄(1S-1P)
Davies 94e [512] 2 A ⋆ ! ! Υ
Aoki 94f [513] 2 A ⋆ ! ! cc̄(1S-1P)

QCDSF/UKQCD 05[509] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [510] 0 A ⋆ ! ! cc̄(1S-1P)
Wingate 95d [511] 0 A ⋆ ! ! cc̄(1S-1P)
Davies 94e [512] 0 A ⋆ ! ! Υ
El-Khadra 92 [514] 0 A ⋆ ◦ ! cc̄(1S-1P) 234(10) 0.593(25)g

a The numbers for Λ have been converted from the values for α(5)
s (MZ).

§ α(3)

MS
(5 GeV) = 0.2034(21), α(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c, b quark masses,

supersedes HPQCD 08A and Maltman 08.
† α(5)

MS
(MZ) = 0.1192(11).

⋆ α(3)
V (7.5 GeV) = 0.2120(28), α(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion to
r0ΛMS, r0 is taken to be 0.472 fm.
⋆⋆ α(3)

V (7.5 GeV) = 0.2082(40), α(5)

MS
(MZ) = 0.1170(12).

b This supersedes [515–517]. α(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values for r0/a

which have later been found to be too small [59]. The effect will be of the order of 10–15%, presumably an
increase in Λr0.
c α(5)

MS
(MZ) = 0.1118(17).

d α(3)
V (6.48 GeV) = 0.194(7) extrapolated from Nf = 0, 2. α(5)

MS
(MZ) = 0.107(5).

e α(3)
P (8.2 GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α(5)

MS
(MZ) = 0.115(2).

f Estimated α(5)

MS
(MZ) = 0.108(5)(4).

g Used r0 = 0.5fm to convert to r0ΛMS. Λ(4)

MS
= 160(+47

−37)MeV, α(4)

MS
(5GeV) = 0.174(12). We converted this

number to give α(5)

MS
(MZ) = 0.106(4).

Table 35: Wilson loop results.
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   -parameter for various Nf⇤

enter !
ranges /averages

do not enter !
(e.g. superseded by 
new computation)

do not enter !
(does not satify  
quality criteria)

reference scale  
computed in most  
computations

r0 ⇡ 0.5 fm



Range of the strong coupling at MZ

‣ Dominated by few  
computations!

‣ Almost identical to PDG  
non-lattice average  
(note that there averages are formed purely by looking at numbers and 
compatibility) 
 
 
 
 

‣ Strong mutual confirmation  
     perturbative QCD = non-pert. QCD = QCD



Vub from exclusive B-decays

‣ another very interesting application of lattice QCD!

‣ a personal view, not FLAG
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We discuss the computation of form factors for semi-leptonic decays of B-, Bs- mesons
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puzzle 

Motivation

Determination of |Vub|
⇠ 3s discrepancy [PDG] :

Inclusive B! Xu`n :
Vub = (4.41±0.15+0.15

�0.17)⇥10�3

Exclusive B! p`n : Vub = (3.23±0.31)⇥10�3

from B! tn via fB: Vub = (5.10±0.47)⇥10�3

theoretical and experimental input needed
This talk: Non-perturbative determination of form
factors for Bs ! K`n decay

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 2

Motivation

Determination of |Vub|
⇠ 3s discrepancy [PDG] :

Inclusive B! Xu`n :
Vub = (4.41±0.15+0.15

�0.17)⇥10�3

Exclusive B! p`n : Vub = (3.28±0.29)⇥10�3

from B! tn via fB: Vub = (4.22±0.42)⇥10�3

theoretical and experimental input needed
This talk: Non-perturbative determination of form
factors for Bs ! K`n decay

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 2

Based on a lot of complicated theory (assumptions)!
   e.g. HMrstCh PT 
   e.g. 

5

FIG. 3: (color online) (top) Heat map of the correlation
matrix for ensemble C1. (bottom) Distribution of

correlations among the form factors for Bs ! K and
Bs ! ⌘s for all ensembles.

V. CHIRAL, CONTINUUM, AND KINEMATIC
EXTRAPOLATION

The results of HPChPT [4, 5] suggest a factorization,
to at least one-loop order, of the soft physics of logarith-
mic chiral corrections and the physics associated with
kinematics in the form factors describing semileptonic
decays of heavy mesons,

fk,?(E) = (1 + [logs]) Kk,?(E). (19)

The logarithmic chiral corrections, calculated in Ref. [5]
for several B(s) decays, are independent of E. An un-
specified function K characterizes the kinematics.

To obtain results over the full kinematic range one
must include lattice simulation data over a range of en-
ergies. However, for any relevant physical scale ⇤ (e.g.
⇤QCD, 1/r1, ⇤ChPT, . . . ), E >⇠ ⇤ at nominal lattice
momenta and there is no convergent expansion of the
unknown function K(E) in powers of E/⇤. This is an
inherent limitation of characterizing the kinematics in
terms of energy. The energy of the daughter meson is a
poor variable with which to describe the kinematics.
In contrast, the z-expansion [15–17] provides a con-

vergent, model-independent characterization of the kine-
matics over the entire kinematically accessible range.
Combining a z-expansion on each ensemble2 with the
HPChPT inspired factorization of Eq. (19) allows a si-
multaneous chiral, continuum, and kinematic extrapola-
tion of lattice data at arbitrary energies. Because the chi-
ral logs are the same for fk and f?, linear combinations
(i.e. f0 and f+) factorize in the same way and have the
same chiral logs. Motivated by these observations, we
construct a HPChPT-motivated modified z-expansion,
which we call the “HPChPT z-expansion”, and fit the
lattice data of Tables II and IX, with accompanying co-
variance matrix, to fit functions of the form

P0,+(q
2)f0,+(q

2) = (1 + [logs])

⇥
KX

k=0

a
(0,+)
k D

(0,+)
k z(q2)k, (20)

where [logs] are the continuum HPChPT logs of Ref. [5],
and generic analytic chiral and discretization e↵ects are
accounted for by Dk. Resonances above q2max but below
the BsK production threshold, i.e. those in the range
q2max < q2 < (MBs + MK)2, are accounted for via the
Blaschke factor, P = 1� q2/M2

res. Though not observed,
we allow for the possibility of a JP = 0+ state in P0, with
choice of mass guided by Ref. [13]. Our fit results are in-
sensitive to the presence of this state. The factorization
suggested by HPChPT may not hold at higher order [18]
so we allow chiral analytic terms, which help parameter-
ize e↵ects from omitted higher order chiral logs, to have
energy dependence (i.e. to vary with k).
We note that Eq. (20) is the modified z-expansion in-

troduced in Refs. [2, 3], with the coe�cients of the chiral
logarithmic corrections fixed by the results of HPChPT.
In the chiral and continuum limits

lim
m!m

physical

a!0

(1 + [logs]) akDk = bk of Ref. [17], (21)

and Eq. (20) is equivalent to the BCL parametriza-
tion [17] of the form factors.

2 This assumes the general arguments on which the z-expansion is
based hold for heavier than physical quark masses and at finite
lattice spacing.



Semi-leptonic decays B! p`n , Bs! K`n

ub

d, s

B, Bs p, K

W�
`�

n̄`

Bs! K:
no experimental data yet – predictions
easier on the lattice (valence mK = mphys

K computationally less expensive
than for the p)
not far from B! p

⌦
K(pµ

K)
��V µ ��Bs(p

µ
Bs

)
↵

= f+(q2)


pµ

Bs
+pµ

K�
m2

Bs
�m2

K

q2 qµ
�
+ f0(q2)

m2
Bs
�m2

K

q2 qµ

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 3



Experimental decay rates

d�

dq2 =
G2

F|Vub|2
192p3m3

Bs

l 3/2(q2)
��f+(q2)

��2

l(q2) =
�
m2

Bs +m2
K�q2�2�4m2

Bs m2
K

experimentally measured decay rate
form factor f+(q2) computed in LQCD
) determine Vub

Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 4



The essential steps                   status

‣ obtain ground state ME’s  

‣ Renormalize currents and  
match to QCD !

‣ Take the continuum limit  
(at each q2)!

‣ Map out q2 dependence  
(to make more use of 
experimental data)!

‣ physical light+strange quark 
masses

hK|V µ(0)|Bsi
‣ satisfactory but 

improvable!

‣ unsatisfactory 
(“mostly non-perturbative” or  
1-loop perturbative)!

‣ unsatisfactory 

‣ good, but a bit  
in conflict with the 
above!

‣ quite good  



The essential steps              our contribution

‣ obtain ground state ME’s  

‣ Renormalize currents and  
match to QCD !

‣ Take the continuum limit  
(at each q2)!

‣ Map out q2 dependence  
(to make more use of 
experimental data) !

‣ physical light+strange quark 
masses

hK|V µ(0)|Bsi
‣ improved methods  

- but not tested in praxis!

‣ solution in HQET 
(but no 1/m terms yet)!

‣ solution in HQET 
(but no 1/m terms yet)!

‣ single q2!

!

‣ “soon”



Obtaining the form factor

C{B,K} ⇠
b,u
s

t{B,K}

C3 ⇠ ub
s

tB tK

Ratio – plateaux

hK(pq
K)|V µ |Bs(0)i= lim

T ,tB,tK!•

C3
µ(tK, tB)

p
CK(tK)CB(tB)

eEKtK/2 eEBtB/2 ⌘ lim
T ,tB,tK!•

f ratio
µ (q2)

Factorising Fit

Combined fit to ground and first excited state of C3,CB

8
>><

>>:

C3
µ i(tB, tK) = Ân,m bi

(n)j(n,m)
µ k(m) e�E (n)

B tB e�E (m)
K tK , j(1,1)

µ ⇠ f+(q2)

CB
ij (tB) = Ân bi

(n)bj
(n) e�E (n)

B tB

CK(tK) = Âm(k(m))2 e�E (m)
K tK

Gaussian smearing, ysm
l (x) = (1+kD)Nityl(x), Nit $ wavefunctions

random noise sources, full time dilution
Felix Bahr (NIC, DESY) Form factors for Bs ! K`n decays in Lattice QCD Page 10



HQET expansion !
expansion  in Λ/mb, |p|/mb

f+ = f stat
+ ⇥ [1 + O(1/mb)] ,

f stat
+ =

p
mBs/2

✓
(1� EK

mBs

)CVk h
stat,RGI
? (EK) +

1

mBs

CV0 h
stat,RGI
k (EK)

◆
,

step scaling->!
fully non-perturbative

perturbative, 3-loop

To be replaced by all-non-perturbative, with 1/m terms
L1 L1 L2 L2 L∞

SSF

S1 S2 S3 S4 S5

HQETQCD

match

a

ωω̃

(because mb > 1/a)



Continuum extrapolation
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Comparison

f+(21.22GeV2) =1.63(8)(6)± 0.24 ALPHA

f+(21.22GeV2) ⇡1.65(10) Flynn et al. (RBC/UKQCD)

f+(21.22GeV2) ⇡1.80(20) Bouchard et al. (HPQCD)

f0(21.22GeV2) =0.66(3)(1) ALPHA

f0(21.22GeV2) ⇡0.62(5) Flynn et al. (RBC/UKQCD)

f0(21.22GeV2) ⇡0.66(5) Bouchard et al. (HPQCD)

Very different systematics, mutual confirmation!
Vub puzzle remains

L1 L1 L2 L2 L∞

SSF

S1 S2 S3 S4 S5

HQETQCD

match

a

ωω̃

——-—-
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Summary

‣           is only a perturbative concept, ok for large 𝜇,  
e.g. !

‣ lattice determinations confirm phenomenological 
determinations 
  perturbative QCD = non-pert. QCD = QCD!

‣ Form factors for B-decays are challenging, but!

• overall agreement between different determinations!

• HQET approach promising!

• Vub “puzzle” remains 

↵MS

↵MS(mZ)

theory for inclusive decays?!
new physics?



History ‣ Lattice QCD has come a long way!

‣ example of the history: 

HQET: first steps

A look back: 1995 2010 [ LPHAA
Collaboration ]
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transition amplitude for B ! `⌫

b to u transitions
(High intensity frontier)

Less tested interactions: rare quark-flavour changing interactions

Lint = . . . gweak Vub W
+
µ ū�µ(1� �5)b . . .

I “clean” transitions: B = bū ! W ! l⌫

1. leptonic: B ! l⌫

LQCD: decay constant

2. semileptonic: B ! ⇡l⌫

LQCD: three-body, form factor

3. inclusive: B ! X
u

l⌫
optical theorem + heavy quark expansion
! perturbatively calculable: (accuracy?)
double expansion in ↵

s

(m

b

) ⇡ 0.2, ⇤
QCD

/m

b

⇡ 0.1
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continuum limit 
taken
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