The strong coupling and $V_{u b}$ from lattice QCD

Rainer Sommer
John von Neumann Institute for Computing, DESY \&

Humboldt University, Berlin

Saclay, 18 January 2016

- Theory of strong interactions
- Field theory with Lagrangian

$$
\mathcal{L}_{\mathrm{QCD}}=-\frac{1}{2 g_{0}^{2}} \operatorname{tr}\left\{F_{\mu \nu} F_{\mu \nu}\right\}+\sum_{f=1}^{N_{f}} \bar{\psi}_{f}\left\{D+m_{0 f}\right\} \psi_{f}
$$

- Fields: gluons and quarks
- But particles: hadrons

$$
\mathrm{p}, \mathrm{n}, \pi, \mathrm{~K}, \ldots \text { confinement! }
$$

- Definition of coupling is not straight forward (we do e.g. not want the $\pi-\pi$ coupling)

QCD coupling

- Theorists: $\alpha_{\overline{\mathrm{MS}}}(\mu)$
take $D=4-2 \epsilon$ dimensions
subtract poles in $1 / \epsilon \ldots<-$ no physics
- for QED:
charged particle scattering at small energy

$$
\sigma=\text { kinematics } \times \alpha_{\mathrm{em}}^{2}
$$

physics!
same coupling as $\quad F_{p e}(r)=\alpha_{\mathrm{em}} \frac{1}{r^{2}}$

QCD coupling

Analogous to $\quad F_{p e}(r)=\alpha_{\mathrm{em}} \frac{1}{r^{2}}$
quark as test charge
Q with $m_{Q} \rightarrow \infty$

$$
r=|\mathbf{x}-\mathbf{y}|
$$

force in PT: $\quad F_{Q \bar{Q}}(r)=\alpha_{\overline{\mathrm{MS}}}(\mu) \frac{4}{3} \frac{1}{r^{2}}+\mathrm{O}\left(\alpha_{\overline{\mathrm{MS}}}^{2}\right)$
 define:

$$
\begin{gathered}
\alpha_{\mathrm{qq}}(\mu) \equiv \frac{3 r^{2}}{4} F_{Q \bar{Q}}(r), \quad \mu=\frac{1}{r} \\
\text { no corrections }
\end{gathered}
$$

$$
\begin{aligned}
& \alpha_{\mathrm{qq}}(\mu)=\alpha_{\overline{\mathrm{MS}}}(\mu)+c_{1} \alpha_{\overline{\mathrm{MS}}}^{2}(\mu)+\ldots \\
& c_{1}=\frac{1}{(4 \pi)^{2}}\left\{\frac{35}{3}-22 \gamma_{E}-\left(\frac{2}{9}-\frac{4}{3} \gamma_{E}\right) N_{\mathrm{f}}\right\}=\mathrm{O}(1)
\end{aligned}
$$

QCD coupling

$$
\alpha_{\mathrm{qq}}(\mu) \equiv \frac{3 r^{2}}{4} F_{Q \bar{Q}}(r), \quad \mu=\frac{1}{r}
$$

then

$$
\alpha_{\mathrm{qq}}(\mu)=\alpha_{\overline{\mathrm{MS}}}(\mu)+c_{1} \alpha_{\overline{\mathrm{MS}}}^{2}(\mu)+\ldots
$$

$$
r=|\mathbf{x}-\mathbf{y}|
$$

QCD coupling, energy dependence

RGE: $\mu \frac{\partial \bar{g}}{\partial \mu}=\beta(\bar{g}) \quad \bar{g}(\mu)^{2}=4 \pi \alpha(\mu)$

$$
\begin{aligned}
\beta(\bar{g}) & \stackrel{\bar{g} \rightarrow 0}{\sim} \\
b_{0} & -\bar{g}^{3}\left\{b_{0}+b_{1} \bar{g}^{2}+b_{2} \bar{g}^{4}+\ldots\right\} \\
(4 \pi)^{2} & \left(11-\frac{2}{3} N_{\mathrm{f}}\right)
\end{aligned}
$$

Asymptotic freedom

QCD coupling, energy dependence

RGE: $\mu \frac{\partial \bar{g}}{\partial \mu}=\beta(\bar{g}) \quad \bar{g}(\mu)^{2}=4 \pi \alpha(\mu)$

$$
\begin{aligned}
\beta(\bar{g}) & \stackrel{\bar{g} \rightarrow 0}{\sim} \\
b_{0} & -\bar{g}^{3}\left\{b_{0}+b_{1} \bar{g}^{2}+b_{2} \bar{g}^{4}+\ldots\right\} \\
(4 \pi)^{2} & =\frac{1}{\left(11-\frac{2}{3} N_{\mathrm{f}}\right)}
\end{aligned}
$$

Λ-parameter $(\bar{g} \equiv \bar{g}(\mu))=$ Renormalization Group Invariant
$=$ intrinsic scale of QCD $=$ integration constant of RGE

$$
\Lambda=\underset{\substack{\text { singular bet avior }}}{\mu\left(b_{0} \bar{g}^{2}\right)^{-b_{1} / 2 b_{0}^{2}} \mathrm{e}^{-1 / 2 b_{0} \bar{g}^{2}} \exp \left\{-\int_{0}^{\bar{g}} \frac{\mathrm{~d} g\left[\frac{1}{\beta(g)}+\frac{1}{b_{0} g^{3}}-\frac{b_{1}}{b_{0}^{2} g}\right]}{\text { convergent for } \mathrm{g}->0} 0\right\}}
$$

$$
\bar{g}=\bar{g}_{\overline{\mathrm{MS}}} \rightarrow \Lambda=\Lambda_{\overline{\mathrm{MS}}}, \quad \bar{g}=\bar{g}_{\mathrm{qq}} \rightarrow \Lambda=\Lambda_{\mathrm{qq}}
$$

$$
\Lambda_{\overline{\mathrm{MS}}} / \Lambda_{\mathrm{qq}}=\exp \left(c_{1} /\left(2 b_{0}\right)\right)
$$

$$
\alpha_{\mathrm{qq}}(\mu)=\alpha_{\overline{\mathrm{MS}}}(\mu)+c_{1} \alpha_{\overline{\mathrm{MS}}}^{2}(\mu)+\ldots
$$

Λ is the goal, relative uncertainty: $k \alpha^{n}$ for $\mathrm{n}+1$ - loop $\beta(g)$

QCD coupling, comparison perturbative / non-pert.

* non-perturbative = lattice QCD
- let us see how this works
- remember for later: we need small r, large μ

Lattice gauge theory

- discrete space-time, spacing a, hypercubic lattice
- Quantization by Feynman path integral

- Euclidean time:

$$
\mathrm{e}^{i t \mathbb{H}} \rightarrow \mathrm{e}^{-t \mathbb{H}} ; \quad \mathrm{e}^{i t E_{n}} \rightarrow \mathrm{e}^{-t E_{n}}
$$

- numerical treatment by MC
"simulation"

"Simulation" of quantum theory (quantum mechanics)

Euclidean Green functions of QM

$$
G_{f}\left(t_{2}, t_{1}\right)=\langle 0| f\left(\hat{q}\left(t_{2}\right)\right) f\left(\hat{q}\left(t_{1}\right)\right)|0\rangle
$$

with

$$
\hat{q}(t)=\mathrm{e}^{\hat{H} t} \hat{q} \mathrm{e}^{-\hat{H} t}, \quad \hat{H}=V(\hat{q})+\frac{\hat{p}^{2}}{2 m}, \quad \hat{H}|0\rangle=0
$$

Information on low-lying spectrum and matrix elements from

"Simulation" of quantum theory (quantum mechanics)

Feynman's (Euclidean) path integral representation (discretised):

$$
G_{f}\left(t_{2}, t_{1}\right)=\lim _{N \rightarrow \infty} \frac{\int\left[\prod_{i=-N / 2}^{N / 2} \mathrm{~d} q_{i}\right] \mathrm{e}^{-S[q]} f\left(q\left(n_{2} a\right)\right) f\left(q\left(n_{1} a\right)\right)}{\int\left[\prod_{i} \mathrm{~d} q_{i}\right] \mathrm{e}^{-S[q]}}+\mathrm{O}\left(a^{2}\right)
$$

with

$$
\begin{aligned}
S[q] & =\sum_{i} V\left(q_{i}\right)+\frac{m}{2}\left(\frac{q_{i+1}-q_{i}}{a}\right)^{2} \\
& =\int \mathrm{d} t\left[V(q(t))+\frac{m}{2} \dot{q}(t)^{2}\right]+\mathrm{O}\left(a^{2}\right)
\end{aligned}
$$

For finite $N=T / a$:
Monte Carlo integration called Simulation:

- Importance sampling of $\left\{q_{i}\right\}$ with weight $W[q] \propto \mathrm{e}^{-S[q]}$.
- Essentially no restriction on $V(q)$.
- Arbitrarily non-linear.

"Simulation" of QCD

lattice: $\quad x_{\mu}=a n_{\mu}, n_{\mu} \in \mathbb{Z}, \mu=0,1,2,3$
quarks: $\quad \psi(x)$ on lattice points
gluons: $\quad U(x, \mu)=\mathcal{P} \exp \left\{a \int_{0}^{1} \mathrm{~d} t A_{\mu}(x+a(1-t) \hat{\mu})\right\}$ $\in \mathrm{SU}(3)$ on links

Euclidean action: $\quad S=S_{\mathrm{G}}+S_{\mathrm{F}}$

$S_{\mathrm{G}}=\frac{1}{g_{0}^{2}} \sum_{p} \operatorname{tr}\{1-U(p)\}$,
$S_{\mathrm{F}}=a^{4} \sum_{x} \bar{\psi}(x)(D(U)+m) \psi(x)$

$$
D(U): \text { discretized Dirac operator }
$$

MC-evaluation of the Path Integral \rightarrow statistical errors $\propto \frac{1}{\sqrt{\text { computer time }}}$

The logics of lattice QCD computations

- The Lagrangian
experiments, hadrons

$$
\begin{aligned}
m_{p} & =938.272 \mathrm{MeV} \\
m_{\pi} & =139.570 \mathrm{MeV} \\
m_{\mathrm{K}} & =493.7 \mathrm{MeV} \\
m_{\mathrm{D}} & =1896 \mathrm{MeV} \\
m_{\mathrm{B}} & =5279 \mathrm{MeV}
\end{aligned}
$$

- Non-perturbative formulation: lattice with spacing a
- Technology

continuum limit $\quad a \rightarrow 0$
fundamental parameters \& hadronic matrix elements

Non-perturbative in the coupling
So far only achievable by numerical simulation

```
\alpha(\mu)
n
our focus today
```

form factors for
$\mathrm{B}_{\mathrm{s}} \longrightarrow \mathrm{K}, \mathrm{B} \longrightarrow \pi$

Example: QCD with mass-degenerate quarks

input numbers

$a m_{\text {had }}=F_{\text {had }}\left(g_{0}, a m_{0}, \frac{L}{a}\right)$ all dimensionless
$\varlimsup_{\text {utput number }}^{4}=F_{\text {had }}^{\infty}\left(g_{0}\right.$,
non-degenerate masses
determine

$$
a m_{0}=M_{\mathrm{phys}}\left(g_{0}\right)
$$

such that

$$
\frac{F_{\pi}^{\infty}\left(g_{0}, M_{\text {phys }}\left(g_{0}\right)\right)}{F_{\text {prot }}^{\infty}\left(g_{0}, M_{\text {phys }}\left(g_{0}\right)\right)}=: R_{\pi, \text { prot }}^{\text {phys }}\left(g_{0}\right)=\frac{134}{938}
$$

we then have the physical quark mass

then, on the physical quark mass trajectory $a m_{0}=M_{\text {phys }}\left(g_{0}\right)$

$$
\begin{array}{r}
\alpha_{\mathrm{q} \overline{\mathrm{q}}}\left(\mu a=\rho \times m_{\mathrm{prot}} a\right)=\alpha_{\mathrm{q} \overline{\mathrm{q}}}^{\mathrm{cont}}\left(\mu=\rho \times m_{\mathrm{prot}}\right)\left(1+\mathrm{O}\left(a m_{\mathrm{prot}}\right)^{2}\right) \\
\begin{array}{l}
a m_{\mathrm{prot}} \sim \mathrm{e}^{-1 /\left(2 b_{0} g_{0}^{2}\right)} \\
a \rightarrow 0 \leftrightarrow g_{0} \rightarrow 0
\end{array}
\end{array}
$$

One gets $\quad \alpha_{\mathrm{q} \overline{\mathrm{q}}}^{\text {cont }}(\mu)$
\$\$\$ (L/a >>1)
but: one wants large μ because then one has a small uncertainty

$$
\frac{\Delta \Lambda}{\Lambda} \sim\{\alpha(\mu)\}^{n}
$$

this is not easy, we come back to it later

Summary of the principle

Important to control perturbative errors
by high orders in PT and large μ

Phenomenology (e.g. LHC)

FLAG-2 review

- review and summary of lattice results relevant for phenomenology
- averages, ranges
- somewhat critical
- here just a summary of the

$$
\alpha_{s}
$$

part

Particles and Fields

Summary and averages of the constants of the B - and B_{s}-mesons.
From FLAG Working Group: S. Aoki et al: Review of lattice
results concerning low-energy particle physics.

FLAGG2013

- Advisory Board (AB):
S. Aoki, C. Bernard, C. Sachrajda
- Editorial Board (EB):
G. Colangelo, H. Leutwyler, A. Vladikas, U. Wenger
- Working Groups (WG) (each WG coordinator is listed first):
- Quark masses
- $V_{u s}, V_{u d}$
- LEC
- B_{K}
$-f_{B_{(s)}}, f_{D_{(s)}}, B_{B}$
- $B_{(s)}, D$ semileptonic and radiative decays
$-\alpha_{s}$
L. Lellouch, T. Blum, V. Lubicz
A. Jüttner, T. Kaneko, S. Simula
S. Dürr, H. Fukaya, S. Necco
H. Wittig, J. Laiho, S. Sharpe A. El Khadra, Y. Aoki, M. Della Morte
R. Van de Water, E. Lunghi, C. Pena
J. Shigemitsu
R. Sommer, R. Horsley, T. Onogi

Limitations of lattice computations

- Observable with energy/momentum scale μ

$$
\mathcal{O}(\mu) \equiv \lim _{a \rightarrow 0} \mathcal{O}_{\text {lat }}(a, \mu) \text { with } \mu \text { fixed }
$$

- avoid finite size and discretization effects

$$
L \gg \text { hadron size } \sim \Lambda_{\mathrm{QCD}}^{-1} \quad \text { and } \quad 1 / a \gg \mu
$$

or:

$$
L / a \ggg \mu / \Lambda_{\mathrm{QCD}}
$$

$$
\mu \lll L / a \times \Lambda_{\mathrm{QCD}} \sim 5-20 \mathrm{GeV}
$$

\rangle

L
$1-3 \mathrm{GeV}$ at most, in conflict with $\frac{\Delta \Lambda}{\Lambda} \sim\{\alpha(\mu)\}^{n}$

Reliability of perturbation theory

- Observable with perturbative expansion

$$
\mathcal{O} \sim \sum_{i \leq n} c_{i} \alpha_{s}^{i}
$$

- truncation errors:

$$
k \alpha_{s}^{n+1}
$$

$$
\mathrm{O}\left(\exp \left(-\gamma / \alpha_{s}\right)\right)
$$

perturbative
and non-perturbative

Quality criteria

FLAG2013

- Renormalisation scale
\star all points relevant in the analysis have $\alpha_{\text {eff }}<0.2$
- all points have $\alpha_{\text {eff }}<0.4$ an
- otherwise
- Perturbative behaviour

try to make sure the μ-dependence is as predicted by perturbation theory

* verified over a range of a factor 2 in $\alpha_{\text {eff }}$ (without power corrections)
- agreement with perturbation theory over a range of a factor 1.5 in $\alpha_{\text {eff }}$ (possibly fitting with power corrections)
- otherwise
- Continuum extrapolation

try to make sure

 the continuum limit can be takenAt a reference point of $\alpha_{\text {eff }}=0.3$ (or less) we require
\star three lattice spacings with $\mu a<1 / 2$ and full $O(a)$ improvement or three lattice spacings with $\mu a \leq 1 / 4$ and 2-loop $O(a)$ improvement or $\mu a \leq 1 / 8$ and 1-loop $O(a)$ improvement

- three lattice spacings with $\mu a<1.5$ reaching down to $\mu a=1$ and full $O(a)$ improvement
or three lattice spacings with $\mu a \leq 1 / 4$ and 1-loop $\mathrm{O}(a)$ improvement
- otherwise

Current 2-point functions of heavy quarks नaxanis

- consider a pair of heavy quarks, h,h'
- mass of charm or heavier
- 2-point function (Euclidean space)

$$
G\left(x_{0}\right)=a^{3} \sum_{\vec{x}}\left\langle J^{\dagger}(x) J(0)\right\rangle
$$

$$
J(x)=i m_{h} \bar{\psi}_{h}(x) \gamma_{5} \psi_{h^{\prime}}(x)
$$

- moments

$$
G_{n}=a \sum_{t=-(T / 2-a)}^{T / 2-a} t^{n} G(t) \approx \int_{-T / 2}^{T / 2} t^{n} G(t) \mathrm{d} t
$$

- have a perturbative expansion, e.g.

$$
\begin{array}{r}
R_{4} \equiv G_{4} / G_{4}^{(0)}=1+r_{4,1} \alpha_{s}+r_{4,2} q_{s}^{2} \\
\alpha_{s}=\alpha_{s}\left(\mu=2 m_{h}\right)
\end{array}
$$

Current 2-point functions of heavy quarks

- define effective coupling of THIS process

$$
\alpha_{\mathrm{eff}} \equiv\left(R_{4}-1\right) / r_{4,1}=\alpha_{\overline{\mathrm{MS}}}+\mathrm{O}\left(\alpha_{\overline{\mathrm{MS}}}^{2}\right)
$$

Relevance of discretization errors

- Continuum limit: universal curves
- Vertical displacements are discretization effects
- green circles: pass criteria
- a very good understanding of discretization errors is needed to extract precise continuum numbers

Requirements in a nut-shell

- Observables in finite volume $L / a \gg 1$
- Observables at the cutoff
(skip because of time)

Observables in finite volume

$$
\begin{aligned}
\mathcal{O}(L, a) & =c_{1} \alpha_{s}(1 / L)+c_{2} \alpha_{s}^{2}(1 / L)+\ldots \\
& \equiv c_{1} \alpha_{\mathrm{L}}(1 / L) \quad L^{4} \text { torus or cylinder }
\end{aligned}
$$

- iteratively connect L and $L / 2$ needs $L / a \gg 1$, not more step scaling function:

$$
\sigma(u)=\bar{g}^{2}(2 L) \text { when } \bar{g}^{2}(L)=u
$$

$\Rightarrow \mathrm{L}=2^{-10} \mathrm{fm}$ perturbative region, running of coupling

- idea: Lüscher, Weisz, Wolff: 2-d, O(3) sigma-model
- development and application for QCD: $\overline{\#}_{\text {collabroraion }}^{L P H A}$

Step Scaling: Connecting $L \Rightarrow 2 L$

$$
\frac{\bar{g}^{2}(2 L)-\bar{g}^{2}(L)}{\bar{g}^{2}(L)}\left(=2 \ln 2 b_{0}+\ldots=\text { discrete } \beta \text {-function }\right)
$$

$$
\begin{aligned}
L_{0} \Lambda= & 2^{n}\left(b_{0} \bar{g}^{2}\left(L_{n}\right)\right)^{-b_{1} /\left(2 b_{0}^{2}\right)} e^{-1 /\left(2 b_{0} \bar{g}^{2}\left(L_{n}\right)\right)} \\
& \times \exp \left\{-\int_{0}^{\bar{g}\left(L_{n}\right)} d x\left[\frac{1}{\beta(x)}+\frac{1}{b_{0} x^{3}}-\frac{b_{1}}{b_{0}^{2} x}\right]\right\}
\end{aligned}
$$

Running from Observables in finite volume

$\left[\bar{Z}_{\text {Collaboration, }}^{\text {LPHA }}, 2005\right]$

Observables in finite volume

- $\alpha_{s}\left(M_{Z}\right)$ without compromises
- unfortunately no high precision result for $\mathrm{N}_{\mathrm{f}}=3$ yet (many simulations + analysis are needed)
- $\mathrm{N}_{\mathrm{f}}=3$, precision computations are in progress

non-perturbative
$\mathrm{N}_{\mathrm{f}}, \mathrm{g}^{2}$-dependence of the β-function

Back to the Review of $\boldsymbol{\alpha}_{\mathrm{s}}$

Methods used on the lattice and main challenges

- finite L, step scaling
- observables at the lattice spacing scale
- statistical errors
- perturbative order, behavior of (nonuniversal) PT
- potential
- vacuum polarisation
- current two-point functions
- QCD vertices

compromise between discretisation errors VS.
perturbative error

Detailed tables，e．g．α from Wilson loops

Collaboration	Ref．	N_{f}		영		进	scale	$\Lambda_{\overline{\mathrm{MS}}}[\mathrm{MeV}]$	$r_{0} \Lambda_{\overline{\text { MS }}}$
HPQCD 10A ${ }^{\text {§ }}$	［73］	$2+1$	A	\bigcirc	\star	＊	$r_{1}=0.3133(23) \mathrm{fm}$	340（9）	0．812（22）
HPQCD 08A ${ }^{a}$	［505］	$2+1$	A	\bigcirc	\star	\star	$r_{1}=0.321(5) \mathrm{fm}^{\dagger \dagger}$	338（12）＊	0．809（29）
Maltman 08^{a}	［508］	$2+1$	A	\bigcirc	0	0	$r_{1}=0.318 \mathrm{fm}$	$352(17)^{\dagger}$	0．841（40）
HPQCD 05A ${ }^{a}$	［504］	$2+1$	A	\bigcirc	\bigcirc	\bigcirc	$r_{1}{ }^{\dagger \dagger}$	$319(17)^{\star \star}$	0．763（42）
QCDSF／UKQCD SESAM 99^{c} Wingate 95^{d} Davies 94^{e} Aoki 94^{f}	［509］	2	A	＊	\square	＊	$r_{0}=0.467(33) \mathrm{fm}$	261（17）（26）	$0.617(40)(21)^{b}$
	［510］	2	A	\bigcirc	\square	\square	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$		
	［511］	2	A	\star	\square	\square	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$		
	［512］	2	A	\star	\square	\square	Υ		
	［513］	2	A	\star	\square	\square	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$		
QCDSF／UKQCD $05[509]$		0	A	\star	\bigcirc	＊	$r_{0}=0.467(33) \mathrm{fm}$	259（1）（20）	$0.614(2)(5)^{b}$
SESAM $99^{\text {c }}$	［510］	0	A	\star	\square	－	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$		
Wingate $95{ }^{\text {d }}$	［511］	0	A	＊	－	－	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$		
Davies $94{ }^{e}$	［512］	0	A	＊	\square	\square	Υ		
El－Khadra 92	［514］	0	A	＊	\bigcirc	\square	$c \bar{c}(1 \mathrm{~S}-1 \mathrm{P})$	234（10）	$0.593(25)^{g}$

${ }^{a}$ The numbers for Λ have been converted from the values for $\alpha_{s}^{(5)}\left(M_{Z}\right)$ ．
$\S \alpha^{(3)}(5 \mathrm{GeV})=0.2034(21), \alpha \frac{(5)}{\mathrm{MS}}\left(M_{Z}\right)=0.1184(6)$ ，only update of intermediate scale and c, b quark masses， supersedes HPQCD 08A and Maltman 08.
$\dagger \alpha \frac{(5)}{\mathrm{MS}}\left(M_{Z}\right)=0.1192(11)$ ．
${ }^{\star} \alpha_{V}^{(3)}(7.5 \mathrm{GeV})=0.2120(28), \alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.1183(8)$ ，supersedes HPQCD 05.
${ }^{\dagger \dagger}$ Scale is originally determined from Υ mass splitting．r_{1} is used as an intermediate scale．In conversion to $r_{0} \Lambda_{\overline{\mathrm{MS}}}, r_{0}$ is taken to be 0.472 fm ．
${ }^{\star \star} \alpha_{V}^{(3)}(7.5 \mathrm{GeV})=0.2082(40), \alpha_{\overline{\mathrm{MS}}}^{(5)}\left(M_{Z}\right)=0.1170(12)$ ．
${ }^{b}$ This supersedes［515－517］．$\alpha \frac{(5)}{\mathrm{MS}}\left(M_{Z}\right)=0.112(1)(2)$ ．The $N_{f}=2$ results were based on values for r_{0} / a which have later been found to be too small［59］．The effect will be of the order of $10-15 \%$ ，presumably an increase in Λr_{0} ．
${ }^{c} \alpha_{\frac{(5)}{(5)}}\left(M_{Z}\right)=0.1118(17)$ ．
${ }^{d} \alpha_{V}^{(3)}(6.48 \mathrm{GeV})=0.194(7)$ extrapolated from $N_{f}=0,2 . \alpha_{\overline{\mathrm{MS}}\left(\frac{1}{(5)}\right.}^{\left(M_{Z}\right)}=0.107(5)$ ．

Λ-parameter for various N_{f}

- enter ranges /averages

- do not enter (e.g. superseded by new computation)
- do not enter (does not satify quality criteria)

$$
r_{0} \approx 0.5 \mathrm{fm}
$$

reference scale computed in most computations

Range of the strong coupling at Mz

- Dominated by few computations
- Almost identical to PDG non-lattice average
(note that there averages are formed purel) compatibility)
Purel)
- Strong mutual confirmation perturbative QCD = non-pert. QCD = QCD

Vub from exclusive B-decays

- another very interesting application of lattice QCD
- a personal view, not FLAG

Felix Bahr a, Debasish Banerjee ${ }^{a}$, Fabio Bernardoni ${ }^{a, b}$, Anosh Joseph ${ }^{c}$, Mateusz Koren ${ }^{a}$, Hubert Simma ${ }^{a}$, Rainer Sommer ${ }^{a}$

$V_{\text {ub }}$ puzzle

- Determination of $\left|V_{\mathrm{ub}}\right|$
- $\sim 3 \sigma$ discrepancy [PDG] :
- Inclusive B $\rightarrow X_{u} \ell$:

$$
V_{\mathrm{ub}}=\left(4.41 \pm 0.15_{-0.17}^{+0.15}\right) \times 10^{-3}
$$

- Exclusive $B \rightarrow \pi \ell v: V_{\mathrm{ub}}=(3.28 \pm 0.29) \times 10^{-3}$
- from $B \rightarrow \tau \nu$ via $f_{B}: V_{\text {ub }}=(4.22 \pm 0.42) \times 10^{-3}$
- theoretical and experinental input needed
- This talk: Non-perturbative determination of form
factors for $\mathrm{B}_{\mathrm{g}} \rightarrow \mathrm{K} \ell v$ decay

Based on a lot of complicated theory (assumptions)
e.g. HMrstCh PT
e.g.

HPChPT inspired factorization of Eq. (19) allows a simultaneous chiral, continuum, and kinematic extrapolation of lattice data at arbitrary energies. Because the chi-

Semi-leptonic decays $\mathrm{B} \rightarrow \pi \ell v, \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{K} \ell v$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}$:

- no experimental data yet-predictions
- easier on the lattice (valence $m_{\mathrm{K}}=m_{\mathrm{K}}^{\text {phys }}$ computationally less expensive than for the π)
- not far from B $\rightarrow \pi$

$$
\left\langle\mathrm{K}\left(p_{\mathrm{K}}^{\mu}\right)\right| V^{\mu}\left|\mathrm{B}_{\mathrm{s}}\left(p_{\mathrm{B}_{\mathrm{s}}}^{\mu}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[p_{\mathrm{B}_{\mathrm{s}}}^{\mu}+p_{\mathrm{K}}^{\mu}-\frac{m_{\mathrm{B}_{\mathrm{s}}}^{2}-m_{\mathrm{K}}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{\mathrm{B}_{\mathrm{s}}}^{2}-m_{\mathrm{K}}^{2}}{q^{2}} q^{\mu}
$$

Experimental decay rates

$$
\begin{gathered}
\frac{d \Gamma}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{s}}}^{3}} \lambda^{3 / 2}\left(q^{2}\right)\left|f_{+}\left(q^{2}\right)\right|^{2} \\
\lambda\left(q^{2}\right)=\left(m_{\mathrm{B}_{\mathrm{s}}}^{2}+m_{\mathrm{K}}^{2}-q^{2}\right)^{2}-4 m_{\mathrm{B}_{\mathrm{s}}}^{2} m_{\mathrm{K}}^{2}
\end{gathered}
$$

- experimentally measured decay rate
- form factor $f_{+}\left(q^{2}\right)$ computed in LQCD
- \Rightarrow determine V_{ub}

The essential steps

status

- obtain ground state ME’s

$$
\langle K| V^{\mu}(0)\left|B_{s}\right\rangle
$$

- Renormalize currents and match to QCD
- Take the continuum limit (at each q^{2})
- Map out q^{2} dependence (to make more use of experimental data)
- physical light+strange quark masses
- satisfactory but improvable
- unsatisfactory
("mostly non-perturbative" or
1-loop perturbative)
- unsatisfactory
- good, but a bit in conflict with the above
- quite good

The essential steps

our contribution

- obtain ground state ME’s

$$
\langle K| V^{\mu}(0)\left|B_{s}\right\rangle
$$

- Renormalize currents and match to QCD
- Take the continuum limit (at each q^{2})
- Map out q^{2} dependence (to make more use of experimental data)
- physical light+strange quark masses
- improved methods
- but not tested in praxis
- solution in HQET (but no 1/m terms yet)
- solution in HQET
(but no 1/m terms yet)
- single q^{2}
-"soon"

Obtaining the form factor

Ratio - plateaux

$\left\langle\mathrm{K}\left(p_{\mathrm{K}}^{\theta}\right)\right| V^{\mu}\left|\mathrm{B}_{\mathrm{s}}(0)\right\rangle=\lim _{T, t_{\mathrm{B}}, t_{\mathrm{K}} \rightarrow \infty} \frac{\mathcal{C}_{\mu}^{3}\left(t_{\mathrm{K}}, t_{\mathrm{B}}\right)}{\sqrt{\mathcal{C}^{\mathrm{K}}\left(t_{\mathrm{K}}\right) \mathcal{C}^{\mathrm{B}}\left(t_{\mathrm{B}}\right)}} \mathrm{e}^{E_{\mathrm{K}} t_{\mathrm{K}} / 2} \mathrm{e}^{E_{\mathrm{B}} t_{\mathrm{B}} / 2} \equiv \lim _{T, t_{\mathrm{B}}, t_{\mathrm{K}} \rightarrow \infty} f_{\mu}^{\text {ratio }}\left(q^{2}\right)$

Factorising Fit

Combined fit to ground and first excited state of $\mathcal{C}^{3}, \mathcal{C}^{B}$

$$
\begin{cases}\mathcal{C}_{\mu}^{3}\left(t_{\mathrm{B}}, t_{\mathrm{K}}\right) & =\sum_{n, m} \beta_{i}^{(n)} \varphi_{\mu}^{(n, m)} \kappa^{(m)} \mathrm{e}^{-E_{B}^{(n)} t_{\mathrm{B}}} \mathrm{e}^{-E_{K}^{(m)} t_{\kappa},} \quad \varphi_{\mu}^{(1,1)} \sim f_{+}\left(q^{2}\right) \\ \mathcal{C}_{j}^{\mathrm{B}}\left(t_{\mathrm{B}}\right) & =\sum_{n} \beta_{i}^{(n)} \boldsymbol{\beta}_{j}^{(n)} \mathrm{e}^{-E_{\mathrm{B}}^{(n)} t_{\mathrm{B}}} \\ \mathcal{C}_{\mathrm{K}}\left(t_{\mathrm{K}}\right) & =\sum_{m}\left(\kappa^{(m)}\right)^{2} \mathrm{e}^{-E_{\mathrm{K}}^{(m)} t_{k}}\end{cases}
$$

- Gaussian smearing, $\psi_{\mathrm{I}}^{\mathrm{sm}}(x)=(1+\kappa \Delta)^{N_{\mathrm{it}}} \psi_{\mathrm{I}}(x), N_{\mathrm{it}} \leftrightarrow$ wavefunctions
- random noise sources, full time dilution

HQET expansion (because $m_{b}>1 / a$) expansion in $\Lambda / \mathrm{m}_{\mathrm{b}}, \mid \mathrm{lp} / \mathrm{m}_{\mathrm{b}}$

$$
\begin{aligned}
f_{+} & =f_{+}^{\text {stat }} \times\left[1+\mathrm{O}\left(1 / m_{\mathrm{b}}\right)\right], \\
f_{+}^{\text {stat }} & =\sqrt{m_{\mathrm{B}_{\mathrm{s}}} / 2}\left(\left(1-\frac{E_{\mathrm{K}}}{m_{\mathrm{B}_{\mathrm{s}}}}\right) C_{\text {perturbative, 3-loop }} C_{\mathrm{V}_{\mathrm{k}}}^{\left.h_{\perp}^{\text {stat,RGII }}\left(E_{\mathrm{K}}\right)+\frac{1}{m_{\mathrm{B}}} C_{\mathrm{V}_{0}} h_{\|}^{\text {stat,RGI }}\left(E_{\mathrm{K}}\right)\right)}\right. \text { fully non-perturbative }
\end{aligned}
$$

To be replaced by all-non-perturbative, with $1 / \mathrm{m}$ terms

Continuum extrapolation

Felix Bahr ${ }^{a}$, Debasish Banerjee ${ }^{a}$, Fabio Bernardonia ${ }^{a, b}$, Anosh Joseph ${ }^{c}$, Mateusz Koren ${ }^{a}$, Hubert Simma ${ }^{a}$, Rainer Sommer ${ }^{a}$

Report-no: DESY 16-009, arxiv: Jan 18, 2016

Comparison

$$
\begin{aligned}
& f_{+}\left(21.22 \mathrm{GeV}^{2}\right)=1.63(8)(6) \pm 424 \text { ALPHA } \\
& f_{+}\left(21.22 \mathrm{GeV}^{2}\right) \approx 1.65(10) \quad \text { Flynn et al. (RBC/UKQCD) } \\
& f_{+}\left(21.22 \mathrm{GeV}^{2}\right) \approx 1.80(20) \quad \text { Bouchard et al. (HPQCD) } \\
& \\
& f_{0}\left(21.22 \mathrm{GeV}^{2}\right)=0.66(3)(1) \\
& f_{0}\left(21.22 \mathrm{GeV}^{2}\right) \approx 0.62(5) \\
& f_{0}\left(21.22 \mathrm{GeV}^{2}\right) \approx 0.66(5) \\
& \text { Flynn et al. }(\mathrm{RBC} / \mathrm{UKQCD}) \\
& \text { Bouchard et al. }(\mathrm{HPQCD})
\end{aligned}
$$

Very different systematics, mutual confirmation Vub puzzle remains

Felix Bahr a, Debasish Banerjee ${ }^{a}$, Fabio Bernardoni ${ }^{a, b}$, Anosh Joseph^{c}, Mateusz Koren ${ }^{a}$, Hubert Simma ${ }^{a}$, Rainer Sommer ${ }^{a}$

Summary

- $\alpha_{\overline{\text { MS }}}$ is only a perturbative concept, ok for large μ, e.g. $\quad \alpha_{\overline{\mathrm{MS}}}\left(m_{\mathrm{Z}}\right)$
- lattice determinations confirm phenomenological determinations
perturbative QCD = non-pert. QCD = QCD
- Form factors for B-decays are challenging, but
- overall agreement between different determinations
- HQET approach promising
$\cdot \mathrm{V}_{\text {ub }}$ "puzzle" remains \longrightarrow theory for inclusive decays?

History

- Lattice QCD has come a long way
- example of the history:

2010

continuum limit taken
transition amplitude forices $\mathrm{B} \rightarrow \ell \nu$

