

Loop Quantum Gravity & Spinfoams: an Overview

Etera Livine

Laboratoire de Physique LP ENSL & CNRS

CEA Saclay - March '17

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology

1. What is Quantum Gravity about?

1. What is Quantum Gravity about?

- Why Quantum Gravity?
- The Basic Ingredients: what to expect?
- Loop Quantum Gravity in a Nutshell
- A Panorama of QG Approaches

1. What is Quantum Gravity about?

2. Loop Quantum Gravity 1.0.1

1. What is Quantum Gravity about?

2. Loop Quantum Gravity 1.0.1

- General Relativity as a Gauge Field Theory
- Spin Network States for Quantum Geometry
- Discreteness of Space-Time ?!?
- Implementing the Dynamics

1. What is Quantum Gravity about?

- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
 - Evolving Histories of Spin Networks
 - QG Transition Amplitudes
 - Discretized Path Integral from TQFT
 - Group Field Theory and Tensor Models

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology
 - Loop Quantum Cosmology
 - Quantum Black Holes
 - Particle Physics: Non-Commutative Geometry

1. What is Quantum Gravity about?

- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology
 - Why Quantum Gravity?
 - The Basic Ingredients: what to expect?
 - Loop Quantum Gravity in a Nutshell
 - A Panorama of QG Approaches

Why Quantum Gravity?

Why Quantum Gravity?

Consistent universal theory with c, G_N, \hbar

No infinite resolution; the BH argument
Non-renormalisability of GR as QFT
Equivalence Matter ↔ Geometry
Solve GR singularities ?

Why Quantum Gravity?

Consistent universal theory with c, G_N, \hbar

No infinite resolution; the BH argument
Non-renormalisability of GR as QFT
Equivalence Matter ↔ Geometry
Solve GR singularities ?

But also: how fundamental is QM? thermodynamics origin of GR? ...

Understand better the Structure of Space-Time!

What to expect from Quantum Gravity?

fundamental principles

VS.

effective perturbative

formalism

What to expect from Quantum Gravity?

• Define observables, measurables

- New meaning of « Geometry »
- A new relativity principle and definition of observers
- Revisiting foundations of QM
- Universal « UV » completion of QFTs

What to expect from Quantum Gravity?

- New meaning of « Geometry »
- A new relativity principle and definition of observers
- Revisiting foundations of QM
- Universal « UV » completion of QFTs

Better understanding of length and energy and renormalization

fundamental principles

VS.

effective perturbative

formalism

What is Loop Quantum Gravity?

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

Background independent and Diffeo invariant

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

- Background independent and Diffeo invariant
- Quantum states of Geometry as Spin Networks
- Id non-local excitations of geometry, along loops

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

- Background independent and Diffeo invariant
- Quantum states of Geometry as Spin Networks
- Id non-local excitations of geometry, along loops
- Discrete Spectra of Areas and Volumes

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

- Background independent and Diffeo invariant
- Quantum states of Geometry as Spin Networks
- Id non-local excitations of geometry, along loops
- Discrete Spectra of Areas and Volumes
- Transition Amplitudes given by Spinfoam path integral for GR as almost-Topological Field Theory

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

- Background independent and Diffeo invariant
- Quantum states of Geometry as Spin Networks
- Id non-local excitations of geometry, along loops
- Discrete Spectra of Areas and Volumes
- Transition Amplitudes given by Spinfoam path integral for GR as almost-Topological Field Theory

Framework ready to discuss:

- quantum black hole dynamics, Planck scale phenomenology
- bulk reconstruction for boundary data, gravity/CFT dualities, ...

What is Loop Quantum Gravity?

a non-perturbative quantization of GR

- Background independent and Diffeo invariant
- Quantum states of Geometry as Spin Networks
- Id non-local excitations of geometry, along loops
- Discrete Spectra of Areas and Volumes
- Transition Amplitudes given by Spinfoam path integral for GR as almost-Topological Field Theory

Framework ready to discuss:

- quantum black hole dynamics, Planck scale phenomenology
- bulk reconstruction for boundary data, gravity/CFT dualities, ...

But... hard to connect to perturbative QFT

& compute effective QG corrections

LQG on the Map (without phenomenology)

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology
 - General Relativity as a Gauge Field Theory
 - Spin Network States for Quantum Geometry
 - Discreteness of Space-Time ?!?
 - Implementing the Dynamics

The metric is not a fundamental field, it will emerge from other degrees of freedom describing the (quantum) geometry

Start with Palatini action with tetrad and Lorentz connection:

 $S[e^{I}_{\mu}, \omega^{IJ}_{\mu}] = \int_{\mathcal{M}} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge F^{KL}[\omega]$

The metric is not a fundamental field, it will emerge from other degrees of freedom describing the (quantum) geometry

Start with Palatini action with tetrad and Lorentz connection:

$$S[e^{I}_{\mu}, \omega^{IJ}_{\mu}] = \int_{\mathcal{M}} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge F^{KL}[\omega]$$

• Metric reconstructed from tetrad $g_{\mu
u}=e^I_\mu e_{I
u}$

Equations of motion are Einstein equations

The metric is not a fundamental field, it will emerge from other degrees of freedom describing the (quantum) geometry

Start with Palatini action with tetrad and Lorentz connection:

$$S[e^{I}_{\mu}, \omega^{IJ}_{\mu}] = \int_{\mathcal{M}} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge F^{KL}[\omega]$$

• Metric reconstructed from tetrad $g_{\mu\nu}=e^I_\mu e_{I\nu}$

Equations of motion are Einstein equations

Now proceed to 3+1 splitting and canonical analysis

GR as constrained Hamiltonian system, with action:

$$S[E, A] = \int dt \int_{\Sigma} d^3x \, A^i_a \partial_t E^i_a - H$$

$$H = \Lambda_i \mathcal{G}^i + N^a \mathcal{H}_a + N \mathcal{H}$$

Canonical pair of Ashtekar variables living on space hypersurface:

- Triad field E_a^i giving 3d metric $h_{ab} = E_a^i E_{ib}$
- Ashtekar-Barbero SU(2) connection $A_a^i = \Gamma[E]_a^i + \gamma K_a^i$

Phase Space:
$$\{K, E\} = \delta^{(3)}$$
 $\{A, E\} = \gamma \delta^{(3)}$

GR as constrained Hamiltonian system, with action:

$$S[E, A] = \int dt \int_{\Sigma} d^3x \, A^i_a \partial_t E^i_a - H$$

$$H = \Lambda_i \mathcal{G}^i + N^a \mathcal{H}_a + N \mathcal{H}$$

First-class Constraints:

- ullet « Gauss law » constraints \mathcal{G}^i generating SU(2) Gauge invariance
- ullet Vector and Scalar constraints $\mathcal{H}_a,\mathcal{H}$
 - generating space-time diffeomorphisms

GR as constrained Hamiltonian system, with action:

$$S[E, A] = \int dt \int_{\Sigma} d^3x \, A^i_a \partial_t E^i_a - H$$

$$H = \Lambda_i \mathcal{G}^i + N^a \mathcal{H}_a + N \mathcal{H}$$

First-class Constraints:

- ullet « Gauss law » constraints \mathcal{G}^i generating SU(2) Gauge invariance
- ullet Vector and Scalar constraints $\mathcal{H}_a,\mathcal{H}$

generating space-time diffeomorphisms

Einstein eqns

No torsion

GR as constrained Hamiltonian system, with action:

$$S[E, A] = \int dt \int_{\Sigma} d^3x \, A^i_a \partial_t E^i_a - H$$

$$H = \Lambda_i \mathcal{G}^i + N^a \mathcal{H}_a + N \mathcal{H}$$

First-class Constraints:

- ullet « Gauss law » constraints \mathcal{G}^i generating SU(2) Gauge invariance
- ullet Vector and Scalar constraints $\mathcal{H}_a, \mathcal{H}$ generating diffeo's

Counting of d.o.f.s: $2 \times (3 \times 3) - 2 \times (3 + 4)$

GR as constrained Hamiltonian system, with action:

$$S[E, A] = \int dt \int_{\Sigma} d^3x \, A^i_a \partial_t E^i_a - H$$

$$H = \Lambda_i \mathcal{G}^i + N^a \mathcal{H}_a + N \mathcal{H}$$

First-class Constraints:

ullet « Gauss law » constraints \mathcal{G}^i generating SU(2) Gauge invariance

Gravitational Waves

ullet Vector and Scalar constraints $\mathcal{H}_a, \mathcal{H}$ generating diffeo's

Counting of d.o.f.s: $2 \times (3 \times 3) - 2 \times (3 + 4) = 2 \times 2$

GR with the same phase space that SU(2) Yang-Mills!

GR with the same phase space that SU(2) Yang-Mills ...

But diffeo constraint instead of $E^2 + F^2$ as Hamiltonian

GR with the same phase space that SU(2) Yang-Mills ...

But diffeo constraint instead of $E^2 + F^2$ as Hamiltonian

And Immirzi parameter γ

- canonical transformation
- similar to θ parameter in QCD (Nieh-Yan invariant)
- as coupling for torsion if we include fermions
- controls CP violations in LQG
- $\gamma=\pm i$ is (anti-)self dual Lorentz connection

Loop Quantization

- ullet Choose polarization: wave-functions $\Psi[A]$
- Choose algebra of observables to promote to operators
 - **Holonomies** $U_c[A] = \mathcal{P}e^{\int_c ds A_a^i \tau_i \dot{c}^a} \in \mathrm{SU}(2)$

and Flux

 $\int_{\mathcal{S}} \epsilon^{abc} E_a^i \, dx_b \wedge dx_c$

 $\in \mathfrak{su}(2)$

Loop Quantization

- ullet Choose polarization: wave-functions $\Psi[A]$
- Choose algebra of observables to promote to operators
 - **Holonomies** $U_c[A] = \mathcal{P}e^{\int_c ds A_a^i \tau_i \dot{c}^a} \in \mathrm{SU}(2)$

and Flux

 $\int_{\mathcal{S}} \epsilon^{abc} E_a^i \, dx_b \wedge dx_c$

 $\in \mathfrak{su}(2)$

Impose SU(2) Gauge-Invariance
Impose Spatial Diffeomorphisms

Loop Quantization

- ullet Choose polarization: wave-functions $\Psi[A]$
- Choose algebra of observables to promote to operators
 - **Holonomies** $U_c[A] = \mathcal{P}e^{\int_c ds A_a^i \tau_i \dot{c}^a} \in \mathrm{SU}(2)$

and Flux

 $\int_{\mathcal{C}} \epsilon^{abc} E_a^i \, dx_b \wedge dx_c$

 $\in \mathfrak{su}(2)$

• Impose SU(2) Gauge-Invariance

- Impose Spatial Diffeomorphisms
- Study Dynamics given by Time Diffeomorphisms

Define Wave-functions of Holonomies along edge of Graph Γ

$$\Psi_{\Gamma}\big(\{U_e[A]\}_{e\in\Gamma}\big)$$

Define Wave-functions of Holonomies along edge of Graph Γ

& Impose SU(2) Gauge Invariance at graph vertices:

$$\Psi_{\Gamma}\big(\{U_e[A]\}_{e\in\Gamma}\big) = \Psi_{\Gamma}\big(\{g_{t(e)}^{-1}U_e[A]g_{s(e)}\}_{e\in\Gamma}\big)$$

Define Wave-functions of Holonomies along edge of Graph Γ

& Impose SU(2) Gauge Invariance at graph vertices:

$$\Psi_{\Gamma}\big(\{U_e[A]\}_{e\in\Gamma}\big) = \Psi_{\Gamma}\big(\{g_{t(e)}^{-1}U_e[A]g_{s(e)}\}_{e\in\Gamma}\big)$$

Then consider equivalence class of graphs under Diffeos
Sum over all possible graphs by projective limit

Define Wave-functions of Holonomies along edge of Graph Γ

& Impose SU(2) Gauge Invariance at graph vertices:

$$\Psi_{\Gamma}\big(\{U_e[A]\}_{e\in\Gamma}\big) = \Psi_{\Gamma}\big(\{g_{t(e)}^{-1}U_e[A]g_{s(e)}\}_{e\in\Gamma}\big)$$

Basis given by Spin network states

- SU(2) representation on edges $\, j_e \in \mathbb{N}/2 \,$
- Intertwiners around vertices
 - (Singlet state in tensor product)

Define Wave-functions of Holonomies along edge of Graph Γ

& Impose SU(2) Gauge Invariance at graph vertices:

$$\Psi_{\Gamma}\big(\{U_e[A]\}_{e\in\Gamma}\big) = \Psi_{\Gamma}\big(\{g_{t(e)}^{-1}U_e[A]g_{s(e)}\}_{e\in\Gamma}\big)$$

Basis given by Spin network states

Area and Volume becomes Quantum Operators

- Area given by spin on edges
- Volume determined by intertwiner at vertices

Area and Volume becomes Quantum Operators

- Area given by spin on edges
- Volume determined by intertwiner at vertices

Spin network states as Quantum Discrete Geometries

Area and Volume becomes Quantum Operators

- Area given by spin on edges
- Volume determined by intertwiner at vertices

Spin network states as Quantum Discrete Geometries

- Twisted Geometries, extending Regge geometries
- Torsion of connection comes from Extrinsic Curvature !

Chunks of volume glued without face matching (only area matching)

So we have a discreteness of space(-time) ...

Discrete geometry at Planck scale is expected in QG

So we have a discreteness of space(-time) ...

Discrete geometry at Planck scale is expected in QG

Two sources of discreteness:

States built on Graphs

but evolution and superposition of graphs

Discrete area spectrum

perfect to account for black hole entropy

So we have a discreteness of space(-time) ...

Discrete geometry at Planck scale is expected in QG

Two sources of discreteness:

States built on Graphs

but evolution and superposition of graphs

• Discrete area spectrum

perfect to account for black hole entropy

But compatible with known physics? with Lorentz invariance?

but also area, length,.. are operators. No problem with rotations or boosts. Hints to wards non-commutative geometry with deformed Poincaré symmetry

(Loop) Quantum Gravity

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology
 - Evolving Histories of Spin Networks
 - QG Transition Amplitudes
 - Discretized Path Integral from TQFT
 - Group Field Theory and Tensor Models

Spinfoams as Histories of Spin Networks

Spin on graph links
Intertwiner on nodes

Spinfoams as Histories of Spin Networks

Spinfoams as Histories of Spin Networks

Spinfoams as Histories of Spin Networks

State-Sum Models

Local Ansatz for Spinfoam Amplitude:

 $\mathcal{A}_{\Delta}[j_{\partial}, \mathcal{I}_{\partial}] = \sum_{\{j_f, \mathcal{I}\}} \prod_{f} d_{j_f}^{\nu} \prod_{e} \mathcal{A}_e[j_{f \ni e}, \mathcal{I}_e] \prod_{v} \mathcal{W}_v[j_{f \ni v}, \mathcal{I}_{e \ni v}]$

- Face and edge amplitudes are measure factors
- Vertex amplitude contain all the dynamics
- Defines transition amplitude between initial and final states
- But also allows for arbitrary boundary/bulk topology

State-Sum Models

Local Ansatz for Spinfoam Amplitude:

 $\mathcal{A}_{\Delta}[j_{\partial}, \mathcal{I}_{\partial}] = \sum_{\{j_f, \mathcal{I}\}} \prod_{f} d_{j_f}^{\nu} \prod_{e} \mathcal{A}_e[j_{f \ni e}, \mathcal{I}_e] \prod_{v} \mathcal{W}_v[j_{f \ni v}, \mathcal{I}_{e \ni v}]$

• Face and edge amplitudes are measure factors

- Vertex amplitude contain all the dynamics
- Defines transition amplitude between initial and final states
- But also allows for arbitrary boundary/bulk topology

Can derive \mathcal{W}_v from Hamiltonian constraint, but better to define it from TQFT discretized path integral

Topological field theory has no local d.o.f. : path integral can be discretized with no information loss

3d gravity is exactly topological

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} e \wedge F[A] + \Lambda e \wedge e \wedge e$$

Topological field theory has no local d.o.f. : path integral can be discretized with no information loss

3d gravity is exactly topological

Ponzano-Regge model
Turaev-Viro model

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} e \wedge F[A] + \Lambda e \wedge e \wedge e$$

Topological field theory has no local d.o.f. : path integral can be discretized with no information loss

3d gravity is exactly topological

Ponzano-Regge model
Turaev-Viro model

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} e \wedge F[A] + \Lambda e \wedge e \wedge e$$

4d gravity is « almost-topological »

 $S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} \, * \, (e \wedge e) \wedge F[A] + \Lambda e \wedge e \wedge e \wedge e$

Topological field theory has no local d.o.f. : path integral can be discretized with no information loss

3d gravity is exactly topological

Ponzano-Regge model
Turaev-Viro model

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} e \wedge F[A] + \Lambda e \wedge e \wedge e$$

4d gravity is « almost-topological »

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} * (e \wedge e) \wedge F[A] + \Lambda e \wedge e \wedge e \wedge e$$

$$S[A, B, \phi] = \int_{\mathcal{M}} \operatorname{Tr} B \wedge F[A] + \phi B \wedge B$$

$$simplicity$$

$$constraints$$

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

ts.

Topological field theory has no local d.o.f. : path integral can be discretized with no information loss

3d gravity is exactly topological

Ponzano-Regge model
Turaev-Viro model

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} e \wedge F[A] + \Lambda e \wedge e \wedge e$$

4d gravity is « almost-topological »

simplicity

constraints

$$S[A, e] = \int_{\mathcal{M}} \operatorname{Tr} \, \ast \, (e \wedge e) \wedge F[A] + \Lambda e \wedge e \wedge e \wedge e$$

$$S[A, B, \phi] = \int_{\mathcal{M}} \operatorname{Tr} B \wedge F[A] + \phi B \wedge B$$

Spinfoam Path integral for QG as Constrained BF Theory

- Path integral of discretized Lagrangian for discretized fields
- Large Spin asymptotics lead back to Regge calculus
- « Graviton propagator » as spin-spin correlation gives back $1/r^2$ Newton law (plus corrections)

Spinfoam Path integral for QG as Constrained BF Theory

- Path integral of discretized Lagrangian for discretized fields
- Large Spin asymptotics lead back to Regge calculus
- « Graviton propagator » as spin-spin correlation gives back $1/r^2$ Newton law (plus corrections)

Should define projector onto Hamiltonian constraints
Should lead back to GR in coarse-grained large scale limit

Spinfoam Models: The Ponzano-Regge model

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_e (2j_e + 1) \prod_T \{6j\}$$

Spinfoam Models: The Ponzano-Regge model

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_e (2j_e + 1) \prod_T \{6j\}$$

Large spin asymptotic of 6j-symbol given by Regge action

Spinfoam Models: The Ponzano-Regge model

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$4_{\Delta} = \sum_{\{j_e\}} \prod_e (2j_e + 1) \prod_T \{6j\}$$

Large spin asymptotic of 6j-symbol given by Regge action

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized

Regge calculus
3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_{e} (2j_e + 1) \prod_{T} \{6j\}$$

- Large spin asymptotic of 6j-symbol given by Regge action
- Derived as path integral over discretized A and e fields

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized Regge calculus

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_{e} (2j_e + 1) \prod_{T} \{6j$$

- Large spin asymptotic of 6j-symbol given by Regge action
- Derived as path integral over discretized A and e fields
- Invariant under Pachner moves

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized

Regge calculus

3d quantum gravity given by Ponzano-Regge path integral:

- 3d bulk triangulations or dual 2-complex •
- Spins on edges j_e
- Amplitude as product of 6j-symbols •

$$A_{\Delta} = \sum_{\{j_e\}} \prod_{e} (2j_e + 1) \prod_{T} \{6j\}$$
Quantized
Regge calculus

- Large spin asymptotic of 6j-symbol given by Regge action
- **Derived as path integral over discretized A and e fields**
- Invariant under Pachner moves

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized

Topological

Invariance

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_{e} (2j_e + 1) \prod_{T} \{6j\}$$

- Large spin asymptotic of 6j-symbol given by Regge action
- Derived as path integral over discretized A and e fields
- Invariant under Pachner moves
- Projects on physical states (flat connections) for cylindrical topology

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized

Regge calculus

Topological

Invariance

3d quantum gravity given by Ponzano-Regge path integral :

- 3d bulk triangulations or dual 2-complex
- Spins on edges j_e
- Amplitude as product of 6j-symbols

$$A_{\Delta} = \sum_{\{j_e\}} \prod_{e} (2j_e + 1) \prod_{T} \{6j\}$$

- Large spin asymptotic of 6j-symbol given by Regge action
- Derived as path integral over discretized A and e fields
- Invariant under Pachner moves
- Projects on physical states (flat connections) for cylindrical topology

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

Quantized

Regge calculus

Topological

Invariance

solve Hamiltonian

constraints

Spinfoam Amplitudes as Feynman Diagrams

Back to Matrix Models: consider matrices of size N

$$S[M] = \frac{1}{2} \operatorname{Tr} M^2 - \lambda \operatorname{Tr} M^3$$

We expand the path integral in Feynman diagrams:

$$Z = \int [dM]e^{-S[M]} = \sum_{n} \frac{\lambda^{n}}{n!} \int [dM] \left(\operatorname{Tr} M^{3}\right)^{n} e^{\frac{1}{2}\operatorname{Tr} M^{2}}$$

 $= \sum_{g \in \mathbb{N}} \sum_{V} \lambda^{V} N^{2-2g} \mathcal{N}_{g}(V)$

It expands as a sum over 2d triangulations !

Large N expansion, double scaling limit, continuum limit, can include all polygon interactions, mapping to CFTs ...

Spinfoam Amplitudes as Feynman Diagrams

Back to Matrix Models: consider matrices of size N

$$S[M] = \frac{1}{2} \operatorname{Tr} M^2 - \lambda \operatorname{Tr} M^3$$

We expand the path integral in Feynman diagrams:

$$Z = \int [dM]e^{-S[M]} = \sum_{n} \frac{\lambda^{n}}{n!} \int [dM] \left(\operatorname{Tr} M^{3}\right)^{n} e^{\frac{1}{2}\operatorname{Tr} M^{2}}$$

Identify field theory that generate spinfoam amplitudes as Feynman diagrams

Spinfoam Amplitudes as Feynman Diagrams

Back to Matrix Models: consider matrices of size N

$$S[M] = \frac{1}{2} \operatorname{Tr} M^2 - \lambda \operatorname{Tr} M^3$$

We expand the path integral in Feynman diagrams:

$$Z = \int [dM]e^{-S[M]} = \sum_{n} \frac{\lambda^{n}}{n!} \int [dM] \left(\operatorname{Tr} M^{3}\right)^{n} e^{\frac{1}{2}\operatorname{Tr} M^{2}}$$

Identify field theory that generate spinfoam amplitudes as Feynman diagrams

Partition function defines Sum over all Spinfoams !

Consider spin foams as dual to 4d triangulations

SF vertex \leftrightarrow 4-simplex SF edge \leftrightarrow tetrahedron SF face \leftrightarrow triangle

Consider spin foams as dual to 4d triangulations
Generate 4d triangulations as Feynman diagrams

SF vertex \leftrightarrow 4-simplex SF edge \leftrightarrow tetrahedron SF face \leftrightarrow triangle

- Consider spin foams as dual to 4d triangulations
- Generate 4d triangulations as Feynman diagrams
- Introduce field that represents quantum tetrahedron

SF vertex \leftrightarrow 4-simplex SF edge \leftrightarrow tetrahedron SF face \leftrightarrow triangle

$$\phi(g_1, g_2, g_3, g_4) \in L^2(\mathrm{SU}(2)^{\times 4}/\mathrm{SU}(2))$$

- Consider spin foams as dual to 4d triangulations
- Generate 4d triangulations as Feynman diagrams
- Introduce field that represents quantum tetrahedron
- Define « Group Field Theory » such that Feyn diag evaluations reproduce SF amplitudes

SF vertex \leftrightarrow 4-simplex SF edge \leftrightarrow tetrahedron SF face \leftrightarrow triangle

 $\phi(g_1, g_2, g_3, g_4) \in L^2(\mathrm{SU}(2)^{\times 4}/\mathrm{SU}(2))$

Group Field Theory is the Non-Perturbative Definition of Spinfoams

But do they make sense non-perturbatively ??

Group Field Theory is the Non-Perturbative Definition of Spinfoams

But do they make sense non-perturbatively ??

Recent Progress (breakthrough !) :

- Large N limit for tensor models Gurau, Bonzom
- Controlling 4d topologies and taming sum through coloring/ decoloring tensor models
- Renormalisable GFTs Rivasseau, Carrozza
- Application to Condensed Matter:
 Tensor Networks
 SYK models

Group Field Theory is the Non-Perturbative Definition of Spinfoams

But do they make sense non-perturbatively ??

Recent Progress (breakthrough !) :

- Large N limit for tensor models Gurau, Bonzom
- Controlling 4d topologies and taming sum through coloring/ decoloring tensor models
- Renormalisable GFTs Rivasseau, Carrozza

We want a whole class of Spinfoam models, with a renormalization/coarse-graining flow

Group Field Theory is the Non-Perturbative Definition of Spinfoams

But do they make sense non-perturbatively ??

Recent Progress (breakthrough !) :

- Large N limit for tensor models Gurau, Bonzom
- Controlling 4d topologies and taming sum through coloring/ decoloring tensor models
- Renormalisable GFTs Rivasseau, Carrozza

Still a lot of work to do on spinfoams!

(Loop) Quantum Gravity

- 1. What is Quantum Gravity about?
- 2. Loop Quantum Gravity 1.0.1
- 3. Spinfoam Path Integrals
- 4. Applications and Phenomenology

- Loop Quantum Cosmology
- Quantum Black Holes
- Particle Physics: Non-Commutative Geometry

Quantum Cosmology for LQG

Loop Quantum Cosmology Ashtekar...

- Classical symmetry reduction
 Explicit & Predictive
- Full Cosmology with inflation & inhomogeneities

GFT Cosmological Condensate Oriti

- Gross-Pitaevski eqn from GFT perturbations
 Given offective Friedman
- Gives effective Friedman eqn

Quantum Cosmology for LQG

Loop Quantum Cosmology Ashtekar....

- Classical symmetry reduction
 Explicit & Predictive
- Full Cosmology with inflation & inhomogeneities

Modified Friedman eqn

$$H^2 = \frac{8\pi G}{3} \rho \left(1 - \frac{\rho}{\rho_c} \right)$$

Loop Quantum Gravity & Spinfoams - Livine - CEA Saclay '17

GFT Cosmological Condensate Oriti

- Gross-Pitaevski eqn from GFT perturbations
- Gives effective Friedman eqn

Quantum Cosmology for LQG

Loop Quantum Cosmology Ashtekar, ...

- Classical symmetry reduction
 Explicit & Predictive
- Full Cosmology with inflation & inhomogeneities

GFT Cosmological Condensate Oriti

- Gross-Pitaevski eqn from GFT perturbations
 Given offective Friedman
- Gives effective Friedman eqn

Modified Friedman eqn

Regularized singularity with Big Bounce

 $H^2 = \frac{8\pi G}{3} \rho \left(1 - \frac{\rho}{\rho_c} \right)$

Black Holes and Horizons in LQG

Perez, Noui, ...

Effective QFT for matter: NC Geometry

Integrating out Quantum Gravity effects :

J

$$e^{iS_{eff}[\phi]} = \int [dg] e^{iS_{grav}[g] + iS_{matter}[\phi,g]}$$

Program can be carried out explicitly for 3d QG: Freidel, L

- Particles as defects in Spinfoam
- Particle properties in terms of geometrical observables (LQG holonomy-flux)
- Interpret spinfoam amplitudes with particles as deformed Feynman diagrams for matter field
- Emergent non-commutative Geometry

Effective QFT for matter: NC Geometry

Integrating out Quantum Gravity effects :

$$e^{iS_{eff}[\phi]} = \int [dg] e^{iS_{grav}[g] + iS_{matter}[\phi,g]}$$

Program can be carried out explicitly for 3d QG : Freidel, L

- Emergent non-commutative Geometry
- Can be seen directly at GFT level

Effective QFT for matter: NC Geometry

Integrating out Quantum Gravity effects :

J

$$e^{iS_{eff}[\phi]} = \int [dg] e^{iS_{grav}[g] + iS_{matter}[\phi,g]}$$

Similar Expectation for 4d spinfoam QG :

Effective deformed special relativity with kappa-deformed Poincaré symmetry Amelino-Camelia

Relative locality Freidel & al.

Towards explicit Holography in LQG

Geometry from Entanglement on Spin Network

Towards explicit Holography in LQG

QG from QI?

Geometry from Entanglement on Spin Network

Identify Holographic States

Towards explicit Holography in LQG

QG from QI?

Geometry from Entanglement on Spin Network

Identify Holographic States

Bulk-Boundary Dualities

QG from QI?

Geometry from Entanglement on Spin Network

Identify Holographic States

Operational QFT pt of view: bulk from boundary data ?

Bulk-Boundary Dualities

Towards explicit Holography in LQG

QG from QI?

Geometry from Entanglement on Spin Network

Identify Holographic States

Operational QFT pt of view: bulk from boundary data ?

Bulk-Boundary Dualities

e.g. Duality between 3d Spinfoam QG & 2d Ising on boundary Bonzom, L

LQG as Evolving Network of Surfaces (Bubbles)

Freidel, Pranzetti

(Loop) Quantum Gravity

3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory \longrightarrow Can be discretized exactly

- 1. Choose a 3d triangulation (cellular decomposition works too)
- 2. Define dual 2-complex, the spinfoam
- 3. Discretize connection along dual edges $g_{e^*} \in \mathrm{SU}(2)$
- 4. Discretize triad along edges $X_e \in \mathfrak{su}(2)$

3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

Topological field theory -> Can be discretized exactly

Connection along dual edges $g_{e^*} \in \mathrm{SU}(2)$ Triad along edges $X_e \in \mathfrak{su}(2)$

X's are Lagrange multipliers imposing flatness of connection around dual faces (i.e around edges)

$$G_e = G_{f^*} = \prod_{e^* \in \partial f^*} g_{e^*}$$

$$Z = \int \mathrm{d}e \mathrm{d}A \, e^{iS[e,A]} = \int \mathrm{d}A \, \delta(F[A]) = \int \prod_{e^*} \mathrm{d}g_{e^*} \, \prod_e \delta(G_e)$$

3d Quantum Gravity: Spinfoams & Spin Networks 3d gravity as a TQFT can be exactly spinfoam quantized: Topological field theory -> Can be discretized exactly $Z = \int \mathrm{d}e \mathrm{d}A \, e^{iS[e,A]} = \int \mathrm{d}A \, \delta(F[A]) = \int \prod_{e^*} \mathrm{d}g_{e^*} \, \prod_e \delta(G_e)$ We decompose onto irreps of SU(2) i.e spins : $Z = \int \prod_{e^*} \mathrm{d}g_{e^*} \sum_{\{j_e \in \frac{\mathbb{N}}{2}\}} \prod_e (2j_e + 1)\chi_{j_e}(G_e)$ and we integrate over all group elements, leaving us with spin recoupling symbols

3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

- 3d bulk triangulations or dual 2-complex
- Spins on edges $\, j_e \,$
- Amplitude as product of 6j-symbols

- Boundary 2d triangulated surface or dual 3-valent graph
- Spins on boundary edges or dual links: boundary spin network

Duality between Ising & Spin Networks - Livine - ICJ '15

3d Quantum Gravity: Spinfoams & Spin Networks

3d gravity as a TQFT can be exactly spinfoam quantized:

- Assume trivial spherical topology
- Use topological invariance to gauge fix bulk
- PR amplitude becomes projector on flat connection

$$\mathcal{A}_{\Delta} = \mathcal{A}_{\partial \Delta} = \langle \mathbb{1} | \psi \rangle = \psi(\mathbb{1})$$

For a trivial topology, amplitude expressed explicitly in terms of boundary data:

evaluation of boundary spin network

