The Physics Program of the High Luminosity LHC

Brian Petersen CERN

18 September 2017 CEA Saclay Seminar

Outline

- Brief LHC introduction
- The High Luminosity LHC upgrade
- The physics case for High Luminosity LHC
 - Understanding Electro-weak Symmetry Breaking
 - Search for Beyond the Standard Model physics
- Summary and Outlook

The Large Hadron Collider

Large Hadron Collider

CERN Prévessin

ATLAS

ALICE

27 km proton-proton collider at CERN

CMS

Large Hadron Collider Goals Electroweak Symmetry Breaking Beyond SM Physics Searches Matter-antimatter Asymmetry New States of Matter

CERN Prévessin

ALICE

Collision Energy and Luminosity

- Particle production in LHC driven by two parameters
 - Center-of-mass energy (√s)
 - sets the cross-section (σ)
 (probability of interaction)
 - Luminosity (L)
 - measure of collision rate
- Instantaneous production rate: Rate = $\sigma(\sqrt{s}) \times L$ [10³⁴ cm⁻²s⁻¹]

 $[barn = 100 \text{ fm}^2 = 10^{-24} \text{ cm}^2]$ [femtobarn = 10⁻³⁹ cm²]

• Integrated rate most important: Events = $\sigma(\sqrt{s}) \times \int L dt$

Collision Energy

- Center-of-mass energy is limited by bending power in main dipole magnets
 - Superconducting magnets
 - Need to be "trained" by having controlled quenches as current is ramped up
 - Limited by time and safety

- Started at √s=7 TeV
- Now at √s=13 TeV after safety upgrade in 2013/14
- Design is $\sqrt{s}=14$ TeV, while ultimate could be $\sqrt{s}=15.4$ TeV

Luminosity

Luminosity is a function of the LHC beam parameters

Ν	number of particles per bunch
n _b	number of bunches / beam
f	revolution frequency
σ*	beam size at interaction point
F	reduction factor due to crossing angle
ε	emittance
ε _n	normalized emittance = $\epsilon \gamma \beta$
β*	beta function at IP

LHC Performance so far

2016/17 a record breaking period for LHC p-p collisions

- Peak luminosity: ~1.74x10³⁴ cm⁻²s⁻¹ (design: 10³⁴ cm⁻²s⁻¹)
- ~65 fb⁻¹ data at \sqrt{s} =13 TeV delivered to ATLAS and CMS each

>90% of delivered luminosity is recorded and is good for physics analysis

Pile-up Interactions

Down-side to high luminosity: multiple simultaneous interactions per crossing (pile-up) as crossing rate is limited to ~31.5 MHz

Introduces potential confusion and performance degradation as not all particles are coming from collision of interest

LHC Physics Output

- Full set of physics results here:
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/
- Will later show a small selection of current Run-1/2 results
 - Primarily to highlight where higher luminosity is needed
- Many more results from 2016 data to come in next months

The High Luminosity LHC Upgrade

HL-LHC Upgrade Plans

- LHC to deliver 300 fb⁻¹ by 2023 (end of Run-3)
- HL-LHC goal is deliver 3000 fb⁻¹ in 10 years
 - Implies integrated luminosity of 250-300 fb⁻¹ per year
 - Requires peak luminosities of 5-7x10³⁴ cm⁻²s⁻¹ while using luminosity leveling (3-5 hours at peak luminosity)
- Design for "ultimate" performance 7.5x10³⁴ cm⁻²s⁻¹ and 4000 fb⁻¹

HL-LHC Upgrade Project Major intervention on more than 1.2 km of the LHC

 New IR-quads Nb₃Sn (more focusing in inner triplet magnets)

- Crab Cavities

 (compensate crossing angle by tilting beams)
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Cold powering
- Machine protection

Machine upgrade approved by CERN council in June 2016

- Major experimental upgrades needed to:
 - Improve radiation hardness and replace detectors at end-of-life
 - Provide handles for mitigating pile-up (high granularity, fast timing)
 - Allow higher event rates to maintain/improve trigger acceptance
- Goal is to maintain or improve over current performance

Detector Upgrades – CMS

Endcap Calorimeter

- High-granularity calorimeter based on Si sensors
- Radiation-tolerant scintillator
- 3D capability and timing

Barrel Calorimeter

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator
- Possibly precision timing layer

Tracker

- Radiation tolerant, high granularity
- Low material budget
- Coverage up to |η|=4
- Trigger capability at L1

Trigger and DAQ

- Track-trigger at L1 (latency up to 12.5 µs)
- L1 rate at ~ 750 kHz
- HLT output ~7.5 kHz

Muon System

- New Be/FE electronics
- GEM/RPC coverage in 1.5<|η|<2.4</p>
- Muon-tagging in 2.4<|η|<3.0</p>

Detector Upgrade – ATLAS

- New BE/FE electronics
- New HV power supplies
- Lower LAr temperature

Ilorimeter Liquid Argon Cald

Tracker

- All silicon tracker (strip and pixel)
- Radiation tolerant, high granularity
- Low material budget
- Coverage up to |η|=4

Muon System

- New BE/FE electronics
- New RPC layer in inner barrel
- Muon-tagging in 2.7<|η|<4.0 (under study)

proid Magnets Solenoid Mag

Solenoid Magnet SCT Tracke

Trigger and DAQ

(Timing detector)

High granularity timing detector

Coverage: 2.5<|n|<4.2

- L0 rate at ~ 1 MHz (latency up to 10 µs)
- Possible hardware L1 track trigger
- HLT output ~10 kHz

17

Extended Silicon-based Tracker

The HL-LHC Physics case

Understanding EW Symmetry Breaking

Standard Model

20

The Brout-Englert-Higgs Mechanism²¹

- In electro-weak gauge theory, gauge symmetry implies all bosons are massless
 - But W and Z bosons massive
- Brout-Englert-Higgs mechanism introduces mass by spontaneous symmetry breaking of Higgs field

 $V(\phi) = \mu_{<0}^{2} \left|\phi\right|^{2} + \lambda \left|\phi\right|^{4} + Y^{ij} \psi_{L}^{i} \psi_{R}^{j} \phi$

- Results in one new scalar boson (Higgs boson)
 - Only fundamental scalar particle in SM
 - Couples to other particles in proportion to their mass
 - Mass of boson itself not predicted

Higgs Boson Discovery

- In 2012 (Run-1) ATLAS and CMS both saw new 125 GeV particle at >5σ significance
- Consistent with Higgs Boson
- Nobel Prize to François Englert Peter Higgs

Standard Model Complete?

Leptons

Higgs Boson Production at the LHC²⁴

- At LHC, Higgs dominantly produced in gluon fusion
- Other production channels important too
 - Helps identify Higgs production
 - More precise predictions

Total cross section at \sqrt{s} =14 TeV: 57 pb $\rightarrow \sim 0.5$ Hz of Higgs at L=10³⁴cm⁻²s⁻¹

The Higgs Boson Properties

- Higgs boson couples to mass of decays particles
 - Will decay mostly to heaviest particles allowed
- The Higgs does not couple directly to photons
 and gluons
 Decays to these "
 - Decays to these through loops with heavy particles (top quarks, W bosons)

Higgs Boson Properties from Run-1

Couplings consistent Mass measured to 0.2% precision with SM at 2.5σ M_u=125.09±0.24 GeV ArXiv: 1606.02266 - Observed $\pm 1\sigma$ ATLAS and CMS Th. uncert. LHC Run 1 ArXiv: 1503.07589 ATLAS and CMS γγ Syst. H-Total Stat. LHC Run 1 Total Stat. Syst. ட ZZ ggl ATLAS $H \rightarrow \gamma \gamma$ 126.02 ± 0.51 ($\pm 0.43 \pm 0.27$) GeV WW CMS $H \rightarrow \gamma \gamma$ 124.70 ± 0.34 (± 0.31 ± 0.15) GeV ATLAS H→ZZ→4l ττ 124.51 ± 0.52 (± 0.52 ± 0.04) GeV **CMS** $H \rightarrow ZZ \rightarrow 4l$ 125.59 ± 0.45 (± 0.42 ± 0.17) GeV γγ ATLAS+CMS YY 125.07 ± 0.29 (± 0.25 ± 0.14) GeV /B 77 ATLAS+CMS 41 125.15 ± 0.40 ($\pm 0.37 \pm 0.15$) GeV WW ATLAS+CMS yy+4l 125.09 ± 0.24 (± 0.21 ± 0.11) GeV ττ 123 124 125 126 127 129 128 γγ *m_H* [GeV] MΗ WW Angular distributions consistent ττ bb with spin-0 and even parity ArXiv: 1506.05669 γγ WW $p_{\rm obs}^{\rm SM}$ Obs. CL_s (%) Tested Hypothesis $p_{\exp,\mu=1}^{\text{alt}}$ $p_{\exp,\mu=\hat{\mu}}^{\text{alt}}$ $p_{\rm obs}^{\rm alt}$ T $4.7 \cdot 10^{-2}$ 0_{h}^{+} $4.7 \cdot 10^{-3}$ N $2.5 \cdot 10^{-2}$ 0.85 $7.1 \cdot 10^{-5}$ ττ $< 2.6 \cdot 10^{-2}$ 0^{-} $1.8 \cdot 10^{-3}$ $1.3 \cdot 10^{-4}$ 0.88 $< 3.1 \cdot 10^{-5}$ $4.3 \cdot 10^{-3}$ $2.9 \cdot 10^{-4}$ 0.61 $1.1 \cdot 10^{-2}$ $2^+(\kappa_a = \kappa_a)$ $4.3 \cdot 10^{-5}$ bb $2^+(\kappa_a = 0; p_{\rm T} < 300 GeV)$ $< 3.1\cdot 10^{-5}$ $< 3.1 \cdot 10^{-5}$ $< 3.1 \cdot 10^{-5}$ $< 6.5 \cdot 10^{-3}$ 0.52γγ $2^+(\kappa_a = 0; p_{\rm T} < 125 GeV)$ $1.5 \cdot 10^{-2}$ $3.4 \cdot 10^{-3}$ $3.9 \cdot 10^{-4}$ $4.3 \cdot 10^{-5}$ 0.71 $<4.3\cdot10^{-3}$ $2^+(\kappa_q = 2\kappa_q; p_{\rm T} < 300 GeV)$ $< 3.1 \cdot 10^{-5}$ $< 3.1 \cdot 10^{-5}$ $< 3.1 \cdot 10^{-5}$ 0.28WW Ŧ $2^+(\kappa_q = 2\kappa_q; p_{\rm T} < 125 GeV)$ $7.8 \cdot 10^{-3}$ $1.2 \cdot 10^{-3}$ $7.3 \cdot 10^{-5}$ $3.7 \cdot 10^{-2}$ 0.80ττ bb Still room for much more detailed -22 6 8 10 0 4 -6 $\sigma \cdot B$ norm. to SM prediction

studies with more luminosity

Higgs Boson Production at 13 TeV

Clear observation of Higgs Boson at 13 TeV in bosonic decays Decays to 3rd generations fermions now also established

Search for ttH Production at 13 TeV

g 100000000

Expected: 1.80

<u>≻</u> Н°

- ttH directly probes the top-Higgs Yukawa coupling instead of loop in ggH g 200000000
 - Benefits from higher x-section at 13 TeV
- Saw slight excess in many channels
 - Also seen in some Run-1 results
 - Less so in recent CMS results

Observed significance: Multi-leptons: 3.3σ (Expected: 2.5σ)

Higgs Boson Cross Sections

- With the new data have started detailed studies of Higgs Boson production
 - Dependence on center-of-mass energy
 - Differential cross sections
 - Productions channels

ArXiv: 1706.09936

Higgs program at HL-LHC

- Higgs boson studies are a major component of HL-LHC physics program
- Main Higgs measurements at HL-LHC:
 - Higgs couplings
 - Rare Higgs decays
 - Higgs differential distributions
 - Higgs self-coupling
 - Heavy Higgs searches

Higgs Decay Channels

Projections for Higgs Couplings

- Full set of HL-LHC coupling projections are based on Run-1 analyses
 - Assumes µ=140 in case of ATLAS
 - Same as Run-1 performance for CMS
- Higgs coupling precision (per experiment):
 - 3-5% for W, Z and γ
 - 5-10% for t, b and т
 - ~7% for μ
- Do not include improved detector designs or improvements in analysis techniques

Projections based on Run-2 Analysis CMS-PAS-FTR-16-002

- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ projections updated to 13 TeV (12.9 fb⁻¹) based Run-2 analyses
- $H \rightarrow ZZ$ added expected degradation at μ =200
 - **Reduced lepton efficiency** Increased misidentification
- Can make precise differential $p_{T}(H)$ dơ_{fid} /dp_r(H) [fb/GeV] cross section measurements

0.8

GeV

σ(p_T(H)>200

21-

ł

Projections based on Run-2 Analysis

- H→γγ and H→ZZ projections updated to 13 TeV (12.9 fb⁻¹) based Run-2 analyses
- H→γγ added expected degradation at μ=200
 - Beamspot ~5cm
 - Vertex identification reduced from 80% to 40%
 - Photon ID efficiency decreased by 2.3% (10%) in EB (EE)
- Theory uncertainties can become dominant at HL-LHC
- Decouple by measuring fiducial cross section
 - Can achieve ~4% precision

 \pm 0.02 (stat.) \pm 0.09 (exp.) \pm 0.02 (stat.) \pm 0.03 (exp.)

6

relative expected uncertainty (%)

8

10

12

 $\sigma_{fid}^{(3000~\text{fb}^{\text{-1}})}$

-2

0

2

4

-4

Advantage of Vector-Boson-Fusion

- Possible to reduce theoretical uncertainties by measuring Higgs decays in Vector-Boson-Fusion production
 - Total cross section uncertainty reduced by factor ~4 (however less/no reduction after selection cuts currently)
 - Factor 10 less statistics
 - Better signal/background from requiring two forward jets from
 VBE scattering

Pile-up Jet Suppression

- At 200 pile-up, every events has ~5 pile-up jets (p_T>30 GeV)
- Can suppress these by using tracking to associate them to either pile-up or hard-scatter vertex
- For VBF Higgs production need to use jets out to η~4
 - Extended tracker enables this

VBF H→WW→evµv Analysis

Physics gain of forward tracker studied in VBF H→WW analysis

- VBF selection with forward tracker:
 - ~200 signal events

~400 background events from tt and non Higgs WW

Signal precision and significance

Tracker	Δ_{μ}			Significance (σ)		
coverage	Full	1/2	None	Full	1/2	None
η <4.0	0.20	0.16	0.14	5.7	7.1	8.0
 η <3.2	0.25	0.21	0.20	4.4	5.2	5.4
η <2.7	0.39	0.32	0.30	2.7	3.3	3.5

Different levels of background uncertainties with respect to Run-1 H→WW analysis

Factor two gain in precision from extended tracker coverage
Rare decays: $H \rightarrow \mu^+ \mu^-$ and $H \rightarrow J/\psi \gamma^{37}$

Probes Higgs coupling to 2nd generation quarks/leptons

 $H \rightarrow \mu^+ \mu^-$

- BR(H→µ+µ-)=2.2x10-4 in SM
 - Combined Run-1 and Run-2 limit is 2.8xSM
- Expect significance of ~2σ with 300 fb⁻¹ and ~7σ with 3000 fb⁻¹ in inclusive channel
 - Improved tracker resolution not accounted for (~30% improvement on mass resolution)
 - Also specific channels like ttH, $H \rightarrow \mu^+ \mu^-$

- $H \rightarrow J/\psi\gamma$ (coupling to charm quark)
- BR(H→J/ψγ)=2.9x10⁻⁶ in SM
 - ATLAS Run-1 limit at 95% CL: BR(H \rightarrow J/ $\psi\gamma$)<1.5x10⁻³
 - Multivariate analysis for HL-LHC projection
 - With 3000 fb⁻¹ will have just 3 signal events and 1700 background events
 - Expected limit at 95% CL: BR(H \rightarrow J/ $\psi\gamma$)<(44⁺¹⁹₋₁₂)x10⁻⁶

Higgs Self Coupling

- Measurement of Higgs pair production major goal of HL-LHC program
 - Requires full HL-LHC luminosity to reach SM sensitivity
- Allows for a measurement of self coupling λ

$$Y(\phi) = \mu_{<0}^{2} |\phi|^{2} + \lambda |\phi|^{4} + Y^{ij} \psi_{L}^{i} \psi_{R}^{j} \phi$$

Extremely challenging due to low cross section (SM: 40 fb)

HH→bbyy Analysis

- Low statistics, but high purity channel
- After selections expect 9.5 signal events and 91 background events
- Corresponds to signal significance of 1.05σ

95% CL limits on self-coupling (ignoring systematics): -0.8< λ/λ_{sm} <7.7

Higgs Self Coupling Projections

CMS extrapolations from Run-2 analyses:

	Median expected		Z-value		Uncertainty	
CMS-PAS-FTR-16-002	limits in μ_r				as fraction of $\mu_r = 1$	
Channel	ECFA16 S2	Stat. Only	ECFA16 S2	Stat. Only	ECFA16 S2	Stat. Only
$ m gg ightarrow m HH ightarrow \gamma \gamma m bb~(S2+)$	1.44	1.37	1.43	1.47	0.72	0.71
m gg ightarrow m HH ightarrow au au m bb	5.2	3.9	0.39	0.53	2.6	1.9
m gg ightarrow m HH ightarrow VV m bb	4.8	4.6	0.45	0.47	2.4	2.3
$gg \rightarrow HH \rightarrow bbbb$	7.0	2.9	0.39	0.67	2.5	1.5

ATLAS simulations (HH \rightarrow bbbb is Run-2 extrapolation):

Channel	Expected limit in μ		Significance		Limits on λ/λ _{sм} at 95% CL		
	Full Syst.	Stat. only	Full Syst.	Stat. only	Full Syst.	Stat. only	
gg→HH→γγbb <mark>PUB</mark>	-PHYS- 2017-001		1.05σ			-0.8<λ/λ _{sm} <7.7	
$gg \rightarrow HH \rightarrow TTbb$	-PHYS- 2015-046 4.3		0.6σ		-4<λ/λ _{sm} <12		
$gg \rightarrow HH \rightarrow bbbb PUB$	-PHYS- 2016-024 5.2	1.5			-3.5<λ/λ _{sm} <11	0.2<λ/λ _{sm} <7	
ttHH → t _{had} t _{lep} bbbb <mark>P</mark>	ATL-PHYS- JB-2016-023			0.35σ			

Higgs Self Coupling Projections

41

CMS extrapolations from Run-2 analyses:

		Median expected			Z-value		Uncertainty		
<u>CMS-PAS-FTR-16-00</u>	JZ	limits in μ_r					as fraction of $\mu_r = 1$		
Channel	ECFA	16 S2 S	tat. Only	ECF	FA16 S2	Stat. Only	ECF	A16 S2	Stat. Only
$gg ightarrow HH ightarrow \gamma \gamma bb (SZ)$	2+) 1.4	4	1.37		1.43	1.47	0).72	0.71
gg ightarrow HH ightarrow au au bb	5.	2	3.9	· (0.39	0.53		2.6	1.9
$\mathrm{gg} ightarrow \mathrm{HH} ightarrow VV\mathrm{bb}$	4.	8	4.6	(0.45	0.47		2	2.3
$gg \to HH \to bbbb$	7.	0	2.9	(0.39				.5
	<u> </u>					Even w	ith H	IL-LHO	
					>	will need	l to c	combir	<mark>ne <</mark>
ATLAS simul	lations	(HH-	→bbbb) is	🕨 m	nultiple cha	anne	els and	dexp <
Channel	Exported	limit in u	Siar			to be sens	sitive	e to Sl	Νλ
Channel	Expected	μπιτ μι μ	Sigi	IIIICai					
	Full	Stat.	Full		Stat.				
	Syst.	only	Syst		only	Full oysi	[. 🗸	Stat	. ONIY
gg→HH→γγbb ATL-	-PHYS- 2017-001		1.050	σ				-0.8<λ	/λ _{sm} <7.7
$gg \rightarrow HH \rightarrow TTbb$	PHYS- 2015-046 4.3		0.60	5		-4<λ/λ _{sm} <	12		
$aa \rightarrow HH \rightarrow hhhh$	-PHYS- 52	15				-3 5<λ/λ ∢	<11	0 2<1	/λ <7
gg (ini) bbbb p0B-2	2016-024 J.Z	1.0				S.S WASM		0.2 \/	SM 1
ttHH → t _{had} t _{lep} bbbb PU	TL-PHYS- IB-2016-023				0.35σ				

The HL-LHC Physics case

Beyond the Standard Model

Standard Model Complete?

Leptons

Motivation for Beyond SM Physics

Nature of Dark Matter?

Unification of forces?

Origin of mass hierarchy and flavor?

Very wide range of BSM models to address open questions

- Some already (partly) excluded by LHC results
- Some need HL-LHC data or cannot be excluded

Supersymmetry

- Well-motivated SM extension
 - Solution to hierarchy problem
 - Provides DM candidate
 - Unifies gaugecouplings

To be "Natural" SUSY has to have some new particles at TeV-scale

 Light stop and gluino to regularize light Higgs boson

Light higgsinos

Status of Gluino Searches

- LHC highly sensitive to TeV-scale colored sparticles
 - Wide set of searches for gluinos in different decay modes

Gluino limits for light neutralino at 1.7-2.0 TeV At the high end of "Natural SUSY" expectation

Search for Gluino Pairs at HL-LHC

HL-LHC would significantly extend sensitivity to higher mass gluinos

Stop Quark Searches

Multiple Run-1 and Run-2 searches dedicated to stop searches

Specialized search regions to fill in low-mass stop "holes"

Chargino/Neutralino Searches

Electroweakinos primarily searched for in leptonic channels

Higgsino production cross section is lower Mass degenerate states require specialized searches

Chargino/Neutralino HL-LHC Searches

Projection for chargino-neutralino production in two channels:

Discovery reach up to ~800 GeV Very limited reach without HL-LHC

Search for Dark Matter at the LHC

 LHC can complement direct and indirect searches for dark matter by directly produce dark matter

Mono-Jet Search at HL-LHC

- Mono-jet search typically most sensitive to DM production
- Has been projected to full HL-LHC based on Run-2 analysis

Mono-Jet Search at HL-LHC

- Mono-jet search typically most sensitive to DM production
- Has been projected to full HL-LHC based on Run-2 analysis

- Fit for excess in E_T^{miss} bins
 - Extend to 2.4 TeV for HL-LHC ³
- Main backgrounds assumed to be real E_T^{miss} from
 - Z(→vv)+jet(s)
 W(→vℓ)+jet(s)
- Backgrounds will be estimated using data-driven techniques
 - Projection depends strongly on how well systematics can be controlled

Sensitivity to axial-vector mediator driven by high E_{τ}^{miss} bins

Mono-Jet Search at HL-LHC

- Mono-jet search typically most sensitive to DM production
- Has been projected to full HL-LHC based on Run-2 analysis

- Fit for excess in E_{τ}^{miss} bins
- Fit for excess in E_T^{miss} bins
 Extend to 2.4 TeV for HL-LHC
 Main backgrounds assumed
- Main backgrounds assumed to be real E_{T}^{miss} from
 - $Z(\rightarrow vv)$ +jet(s) • $W(\rightarrow v\ell)$ +jet(s)
- Backgrounds will be estimated using data-driven techniques
 - Projection depends strongly on how well systematics can be controlled

LHC has unique sensitivity to pseudo-scalar mediator Driven by lower E_{τ}^{miss} bins

Comparison to non-LHC Searches

- For vector and scalar mediators, only competitive with direct detection searches for very light DM
- For axial-vector and pseudoscalar mediators competitive
 - No comparison plot for projection
 - Cross section scales as (m_{med})⁻⁴

Vast set of other BSM Searches

T → bW

Y→ tH

*model-independent

Vast set of other BSM Searches

[♦]model-independent

Heavy Z'→tt̄ Search

- At HL-LHC search mass reach in multi-TeV range for BSM particles
- Decay products can be very boosted
 - Requires ability to separate closely produced particles such a boosted top
 - High-granularity trackers, such as 5-layer pixel detectors help improve performance over current detector

Summary and Outlook

Summary and Outlook

- High-Luminosity LHC is a very challenging environment, but maximizes the physics output of the LHC project
- Major detector upgrades planned for optimal performance
 - Should be as good or better than now in most areas
- Precision Higgs measurements are the main physics driver for HL-LHC and detector upgrades
 - The Higgs Boson will be studied in great detail at HL-LHC
- HL-LHC also extends sensitivity to Beyond SM Physics
 - New TeV-scale physics could be discovered or be very strongly disfavored after HL-LHC
- Technical Design Reports are now in preparation and will come over the next 6 months
 - First one (ATLAS tracker) now public https://cds.cern.ch/record/2257755

Much more information in presentations at HL-LHC Experiments workshop https://indico.cern.ch/event/524795/timetable/

Systematics Treatment

- With large statistics at HL-LHC, systematics can be dominating in measurement precision
 - Hard to predict how these will evolve with luminosity/time
- Both experiments start from current systematics with a slightly different approach
- ATLAS approach:
 - Experimental systematics scaled to best guess for HL-LHC
 - Results provided with current theory systematics and without theory systematics
- CMS approach:
 - Provide results in two scenarios:
 - Scenario 1: Current experimental and theory systematics
 - Scenario 2: Experimental scaled with luminosity (1/√L) until a certain best achievable uncertainty level The current theory systematics is halved
- Both approach aim to bracket the achievable precision

Wanted Reduction in Theory Uncertainties

AIL-PHYS-PUB-2014-016 64

Scenario	Status	Deduced size of uncertainty to increase total uncertainty					inty		
	2014	by ≲	10% for	300 fb^{-1}	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10–12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}
$gg \to H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13–28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6–19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12–38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

Table 6: Estimation of the deduced size of theory uncertainties, in percent (%), for different Higgs coupling measurements in the generic Model 15 from Table 5, requiring that each source of theory systematic uncertainty affects the measurement by less than 30% of the total experimental uncertainty and hence increase the total uncertainty by less than 10%. A dash "-" indicates that the theory uncertainty from existing calculations [10–12] is already sufficiently small to fulfill the condition above for some measurements. The same applies to theory uncertainties not mentioned in the table for any measurement. The impact of the jet-bin and p_T related uncertainties in $gg \rightarrow H$ depends on analysis selections and hence no single number can be quoted. Therefore the range of uncertainty values used in the different analysis is shown.

CERN is Studying Next Collider

- Conceptual design studies of colliders in ~100 km ring
- pp collider (FCC-hh)
 - Primary motivation for FCC studies
 - √s~100 TeV, L~2x10³⁵ cm⁻²s⁻¹
 4 IPs and 20 ab⁻¹/expt
 - Also studying FCC-hh dipoles (16T) in LHC tunnel (HE-LHC with √s~30 TeV)
- e+e- collider (FCC-ee)
 - √s~90-350 GeV, L~200-2x10³⁴cm⁻²s⁻¹
 - 2 IPs and 20 ab-1/expt
- pe collider (FCC-he):
 - √s~3.5 TeV, L~10³⁴ cm⁻²s⁻¹

65

Goal: CDR for next European Strategy Decision (2019-2020)

Machine studies are site-neutral, but FCC at CERN would greatly benefit from existing laboratory infrastructure and accelerators

Physics Program for FCC-hh

- Main physics goals of FCC-hh
 - Directly explore energy range up to 50 TeV for New Physics
 - Conclusive exploration of EWSB dynamics
 - Give final verdict on heavy WIMP dark matter

Expected precision for di- and tri-Higgs production and Higgs self-couplings:

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH ightarrow b \overline{b} \gamma \gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH ightarrow b \overline{b} b \overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$
$HH ightarrow b \overline{b} 4\ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$
$HH \to b \bar{b} \ell^+ \ell^- \gamma$	—	-
$HHH ightarrow b ar{b} b ar{b} \gamma \gamma$	O(100%)	$\lambda_4 \in [-4,+16]$

Physics Program for FCC-ee

- High-precision Higgs couplings
- Indirect sensitivity to energy-scale of O(100 TeV) through precision EW parameter measurements

Possible Higgs coupling precision

Current EW precision

Quantity	Theory error	Exp. error
$M_{\rm W} [{\rm MeV}]$	4	15
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	4.5	16
$\Gamma_{\rm Z} [{\rm MeV}]$	0.5	2.3
$R_b \ [10^{-5}]$	15	66

Future	FW	precision?
i uturc		

Quantity	ILC	FCC-ee	CEPC	Projected theory
$M_{\rm W} \; [{\rm MeV}]$	3 - 4	1	3	1
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	1	0.6	2.3	1.5
$\Gamma_{\mathbf{Z}} \ [\text{MeV}]$	0.8	0.1	0.5	0.2
$R_b \ [10^{-5}]$	14	6	17	5 - 10

Also m_{top} measured to ~10 MeV precision from threshold scan

	ILC	FCC-ee	CEPC	CLIC
σ(ZH)	0.7%	0.4%	0.51%	1.65%
Э ьь	0.7%	0.42%	0.57%	0.9%
G cc	1.2%	0.71%	2.3%	1.9%
g gg	1.0%	0.80%	1.7%	1.4%
gww	0.42%	0.19%	1.6%	0.9%
gπ	0.9%	0.54%	1.3%	1.4%
<mark>.</mark> 9μμ	9.2%	6.2%	17%	7.8%
ginv	<0.29%	<0.45%	<0.28%	<0.97%

Anomalous HZZ Coupling

Generic decay amplitude of $H \rightarrow ZZ$ for spin-0 particle:

$$A(H \to VV) \sim \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{V1} + q_{V2})^2}{\Lambda_Q^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2}\right] m_V^2 \epsilon_1^* \epsilon_2^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

Test for anomalous HZZ couplings a_i:

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j}, \phi_{ai} = \tan^{-1}(a_i/a_1)$$

 Interference contribution becomes more dominant at smaller values of f_{ai} x cos(φ_{ai})

Higgs to Invisible

- Main backgrounds:
 - Z(ll)+jets
 - W(lv)+jets
 - QCD multijet
- Current BR(H \rightarrow inv) limit (expected):
 - BR<0.30 @ 95% CL (CMS)</p>
 - BR<0.31 @ 95% CL (ATLAS)</p>
- Projected upper limit (CMS) as as function of luminosity:

	ECFA16 S1	ECFA16 S2	$1/\sqrt{L}$ scaling
$300 fb^{-1}$	0.210	0.092	0.084
$3000 f b^{-1}$	0.200	0.056	0.028

Summary of Recent ATLAS Higgs Results

70

Channel	Result	HH Channel	Result
$\mathbf{VBF} H \rightarrow W^+ W^-$	$\Delta\mu/\mu \simeq 14$ to 20%	HH→bbττ	0.6 σ
$VBF H \rightarrow ZZ \rightarrow 4\ell$	$\Delta\mu/\mu \simeq 15$ to 18%	(FULL uncertainties)	$-4 < \lambda_{HHH} / \lambda_{SM} < 12$
ttH, $H \rightarrow \gamma \gamma$	$\Delta\mu/\mu \simeq 17$ to 20%	HH→bbbb	
$VH, H \rightarrow \gamma \gamma$	$\Delta\mu/\mu \simeq 25$ to 35%	(<i>p</i> _T (jet)> 75 GeV, FULL uncertainties)	$-3.4 < \lambda_{HHH} / \lambda_{SM} < 12$
off-shell $H \rightarrow ZZ \rightarrow 4\ell$	$\Delta \mu / \mu \approx 50\%$ $\Gamma_{\rm H} = 4.2^{+1.5} - 2.1 {\rm MeV}$	<i>HH</i> → <i>bb</i> γγ (stat. uncertainties only)	1.3 σ - 1.3 < λ_{HHH} / λ_{SM} < 8.7
$H { ightarrow} Z \gamma$	Δμ/μ ≃ 30% 3.9 σ	<i>ttHH, HH→bbbb</i> (stat. uncertainties	0.35 σ
$H { ightarrow} J/\psi \gamma$	$BR < 44 \times 10^{-6}$ @95% CL	only)	
t→Hq	BR ≈ 10 ⁻⁴ @95% CL		

$\mathsf{VBF}\ \mathsf{H}{\rightarrow}\mathsf{ZZ}^*{\rightarrow}\ell\ell\ell\ell$

- Initial selection:
 - 2 jets with m(jj)>130 GeV
 - 4 leptons consistent with H→ZZ*→ℓℓℓℓ
- Use BDR to separate ggF and VBF
 Large pile-up contribution in ggF
- 190 signal events and 330 background events

BDTG response

 Results with full systematics (signal QCD scale) and statistics only:

	<µ _{PU} > = 200 FULL	$\langle \mu_{PU} \rangle = 200$ NONE	<µ _{PU} > = 140 FULL	$<\mu_{PU}> = 140$ NONE
Δμ	0.18	0.15	0.17	0.13
Significance	7.2 σ	10.2 σ	7.7 σ	11.1 σ

Search for Heavy Higgs→TT

- One of the most sensitive channels for constraining extended Higgs
- Cross section limits:
 - ggφ (→ττ)
 bbφ (→ττ)

- Model dependent limits:
 - m^{mod+} benchmark
- Sensitivity at high m_A is still dominated by statistics
CMS Tracker Changes

	Phase-1		Phase-2
	~200 m²	Silicon surface	~200 m²
ker (9.3 M	Strips	43.7 M
rac	-	MacroPixels	164 M
er T	15 148	Modules	13 556
Out	100 kHz	readout rate	750 kHz /40 MHz
Ext	~1 m ²	Silicon surface	4.7 m ²
+ >	66 M	Pixels	1870 M
ي ب ب	1440	Modules	4136
Pix6 Bar	100 kHz	readout rate	750 kHz

CMS Tracker Comparison

74

ATLAS Tracker Hits and Material

CMS Tracker Performance

ATLAS Tracker Performance

B-tagging for HH→bbbb

- Efficient and highly rejecting b-tagging also critical for HH→bbbb measurement
 - Current projections assume performance as in Run-2
- Both experiments have demonstrated ability to match current performance at pile-up of 140 events
- Both pixel detectors still being optimized
 - Aim to achieve Run-2 performance at pile-up of 200

CMS Precision Timing for Charged Particles

- Assume sufficient timing performance for charged hadrons, e.g. from dedicated LYSO+SiPM layer in the central region, and from HGCAL or dedicated layer in the forward region
- Traditional three-dimensional vertex fit can be upgraded to a four-dimensional fit, with vertices reconstructed both in position along the beamline and in time within the bunch crossing
- Provides further suppression of charged particles from pile-up for jets, missing energy, lepton isolation etc

20 ps resolution assumed for charged particles with p_{T} >1 GeV

Pile-up vs Pile-up Density

- So far mostly considered effects due to overall pile-up
- Find that many quantities depend more on pile-up density – how many in pile-up collisions per mm in z
- This can be mitigated by changing beam-profile
 - I.e. spreading vertices out better in z

14 TeV

B-tagging efficiency

Simulation Preliminary

CMS

LAr Calorimeter Upgrades

- Upgrade of all readout electronics
 - To remove trigger constraints and improved radiation hardness
- Possibly add new high-granularity precision timing detector in front of endcap calorimeters
 - Primarily to reduce effect of pile-up on jets
- Replacement of FCal evaluated, but found risky and unnecessary

High Granularity Timing Detector

- Additional pile-up rejection can be achieved using precise timing
 - Different time of flight and different collisions times in event
- ATLAS considering thin timing device
 - Four layers silicon sensors
 - Coverage for 2.4<|η|<4.2</p>
 - Possible Tungsten absorber for $|\eta| < 3.2$
 - Timing target: 30-50 ps per MIP
- Provide additional sensitivity to VBF
 - Possibly also enhance the jet trigger

Minimum bias High-granularity scintillators timing detector

New CMS Endcap Calorimeter

System Divided into three separate parts:

Construction:

- Hexagonal Si-sensors built into modules.
- Modules with a W/Cu backing plate and PCB readout board.
- Modules mounted on copper cooling plates to make wedge-shaped cassettes.
- Cassettes inserted into absorber structures at integration site (CERN)

Key parameters:

- 593 m² of silicon
- 6M ch, 0.5 or 1 cm² cell-size
- 21,660 modules (8" or 2x6" sensors)
- 92,000 front-end ASICS.
- Power at end of life 115 kW.
- EE Silicon with tungsten absorber 28 sampling layers 25 X_o (~1.3 λ)
- FH Silicon with brass (now stainless steel) absorber 12 sampling layers 3.5λ
- BH Scintillator with brass absorber 11 layers 5.5 λ

EE and FH are maintained at – 30°C. BH is at room temperature.

83

Timing Detectors in CMS

(su)

- Endcap calorimeter (1.5<|η|<3) replaced by multi-layer silicon-based calorimeter
 - Current calorimeter not rad-hard enough
- Use of silicon allows intrinsic time resolution down to 50 ps for large signal
- Barrel calorimeter electronics upgraded to also provide precision timing (30 ps)
- Additional timing layer for charged particles in front of calorimeter under consideration

$H \rightarrow \gamma \gamma$ with Timing Detector

- Vertex selection efficiency drops with increase in pileup
 - ~80% now \rightarrow ~40% at 200 pileup
- Results in large degradation of mass resolution
- Impact on fiducial cross section measurement investigated

With full use of calorimeter and charged particle timing information vertexing efficiency can be almost full recovered

Corresponds to effectively 30% more luminosity

Muon System Upgrades

Readout electronics to be replaced everywhere to support higher trigger rate and MDT hardware trigger Power system to be replaced (maintenance and radiation issues) RPCs added to inner station to increase acceptance/robustness

Muon Barrel Upgrade

- To survive HL-LHC, gains on existing RPCs will need to be lowered
 - Reduces muon trigger efficiency
 - Also existing acceptance only 78%
- Will add new inner RPC station
 - Allows for 3 out of 4 layer coincidence or even inner and outer RPC only
 - Increases efficiency to 92-96%
- RPC chosen over MicroMegas
 - Also add RPCs at 1<|η|<1.3 in Phase-I</p>

Acceptance without BI upgrade

Acceptance with BI upgrade

87

ATLAS Trigger Schemes

Level-0 + Level-1 hardware trigger

Level-0 only hardware trigger

Rates and Latencies

 Level 0:
 1 MHz, 10 μs

 Level 1:
 400 kHz, 60 μs

 EF output:
 10 kHz

Level 0: 1 MHz, 10 μs

EF output: 10 kHz

CMS Trigger System

- Current Level-1 trigger uses only calorimeter and muon information
- Phase-II upgrades
 - Replace calorimeter electronics
 - Increase latency and Level-1 accept rate
 - Use tracking at Level-1 based on doublet seeds
 - Global track-trigger correlator

TDAQ Upgrades

- Level-0 trigger use Phase-I upgrades
 - Advanced algos with finer-granularity calo data: Incl. longitudinal segmentation for e/γ/τ 0.1x0.1 towers for jets/E_{T,miss}
 - Use NSW hits to confirm endcap muons
- MDT information added to muon trigger
 - Sharpens turn-on curve and thus rejection power
 - Also allows looser RPC trigger selection, increasing acceptance
 - Multiple options for MDT track finding under consideration

Level-1 mainly adds tracking

- Also plan to have full granularity calorimeter data available
- Track-trigger builds on FTK design
 - Pattern recognition with custom-made Associate-Memory chips
 - Track fitting in FPGAs
- FTK currently under installation
 - Expected to be commissioned in 2017

ATLAS Example Trigger Menu

- For most trigger channels, expect to maintain same or even lower trigger threshold as in Run-1
 - Hadronic triggers challenging due to pile-up

Description	Run 1	HL-LHC	L0 Rate	EF Rate					
	Threshold	Threshold			Description	Run 1	HL-LHC	L0 Rate	EF I
isolated e	20-25	22	200	2.20		Ihreshold	Inreshold	(0)	
di-electron	17, 17	15, 15	90	0.08	single jet	200	180 375	60 35	0.6 0.35
forward e	-	35	40	0.23	four jet	55	4 x 75	50	0.50
single v	40-60	120	66	0.27	forward jets	-	180	30	0.30
			0	0.10	HT	-	500	60	0.60
di-photon	25, 25	25, 25	8	0.18	MET	120	200	50	0.50
single µ	25	20	40	2.20	JET + MET	150, 120	140, 125	60	0.30
di-muon	12, 12	11, 11	20	0.25	Total hadron	ic L0 Rate: ~250) kHz, EF Rat	e: 3.15 kHz	Z
e-µ	17, 6	15, 15	65	0.08	750 kHz (lep	otonic) + 250 kH	z (hadronic) :	= 1000 kHz	Ľ
τ	100	150	20	0.13					
di-tau	40,30	40, 30	200	0.08					

Total non-hadronic L0 rate: ~750 kHz, EF rate: 5.7 kHz

EF Rate*

CMS Example Trigger Menu

- Menu without track-trigger has 1.5 MHz rate µ=140
 - Track-trigger gives factor 5.5 reduction: 260 kHz
 - Use 1.5 safety factor: 390 kHz
- Menu with track-trigger has 500 kHz rate µ=200
 - With 1.5 safety factor: 750 kHz
 - Without track-trigger: ~4 MHz

L1 Menu with L1 Track		Rates w/o		
$L = 5.6 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ Level-1 Trigger				L1 Track
$\langle PU \rangle = 140$	with L1 Tracks			Trigger
		Offline		
Trigger	Rate	Threshold(s)		Rate
Algorithm	[kHz]	[GeV]		[kHz]
Single Mu (tk)	14	18	j :	139
Double Mu (tk)	1.1	14 10	-	177
ele (iso tk) + Mu (tk)	0.7	19 10.5	-	160
Single Ele (tk)	16	31	-	78
Single iso Ele (tk)	13	27	.	20
Single γ (tk isol)	31	31	.	89
ele (iso tk) + e/γ	11	22 16	.	70
Double γ (tk isol)	17	22 16	1	88
Single Tau (tk)	13	88	1	53
Tau (tk) + Tau	32	56 56		34
ele (iso tk) + Tau	7.4	19 50	-	55
Tau (tk) + Mu (tk)	5.4	45 14	-	42
Single Jet	42	173	-	52
Double Jet (tk)	26	2@136	-	185
Quad Jet (tk)	12	4@72	.	144
Single ele (tk) + Jet (tk)	15	23 66	.	175
Single Mu (tk) + Jet (tk)	8.8	16 66	.	1/5
Single ele (tk) + $H_{\rm T}^{\rm miss}$ (tk)	10	23 95	.	60
Single Mu (tk) + $H_{\rm T}^{\rm miss}$ (tk)	2.7	16 95		64
$H_{\rm T}$ (tk)	13	350		73
Rate for above Triggers	180			1000
Est. Total Level-1 Menu Rate	260			1500

Triggering on $H \rightarrow \tau \tau$

- H→TT channel critical for understanding fermionic coupling and measuring Higgs CP properties
- Difficult to trigger on efficiently
 - Two narrow, fairly soft jets with 1-3 charged tracks
- Existing calorimeter-only L1 triggers not sufficient
 - Acceptance drops quickly as thresholds are raised
- Adding fast track trigger can give large rate reduction
- CMS estimate: 50 kHz L1 rate for 45% eff. for VBF $H \rightarrow \tau \tau$
 - Same triggers also useful for HH→bbtt

CERN-LHCC-2015-010

HH→bbt⁺t⁻ Analysis

Consider all combinations of leptonic/hadronic TT final states:

Event yields for 3000 fb-1 using a cut-based analysis strategy:

Signal significance for SM coupling:

s = 14 TeV

100

u channel

Events / 10 GeV 10⁶ 10⁵

10⁴

10³

10²

10

1

-4<λ/λ_{sm}<12 95% CL limits on self-coupling:

Triggering on HH→bbbb

- $HH \rightarrow b\overline{b}b\overline{b}$ channel also difficult to trigger on at L1
 - Very large rate of multi-jets and pile-up jets
- Plan to also use track trigger to suppress pile-up jets in 4-jet trigger
- Still likely to only be efficient at 70-75 GeV
- ATLAS estimate this will reduce sensitivity by ~30% compared to current 30 GeV
 - Better trigger strategy is under investigation

Jet Threshold [GeV]	Background Systematics	$\left \begin{array}{c} \sigma/\sigma_{SM} \\ 95\% \text{ Exclusion} \end{array}\right.$	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Lower Limit	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Upper Limit	
$30 { m GeV}$	Negligible	1.5	0.2	7	
$30 {\rm GeV}$	Current	5.2	-3.5	11	
$75 {\rm GeV}$	Negligible	2.0	-3.4	12	
$75 {\rm GeV}$	Current	11.5	-7.4	14	

Search for ttHH Production

• $\sigma(t\bar{t}HH)$ only ~1fb, but more handles to suppress backgrounds

- Use $HH \rightarrow b\overline{b}b\overline{b}$ final state and semi-leptonic tt decay
- Signature: 6 b-jets, 2 light jets, lepton and missing energy
- Simple cut-based analysis
 - No cuts on Higgs candidate mass due to combinatorics

- Selection with ≥5 b-tags:
 - 25 signal events, 7100 background events
 - Background dominated by c-jets from W mis-tagged as b
- Significance for ttHH production without systematics: 0.35σ

HH→bbbb Analysis

- HH→bbbb analysis dominated by large Run-2 m_{4j} extrapolated to 3000 fb⁻¹, 14 TeV multi-jet background
 - Very difficult to simulate
 - Instead extrapolate from Run-2 assuming unchanged performance
- Multijet background is estimated from control regions (CRs)
 - Systematics uncertainty assigned from CR differences
 - These will decrease with luminosity

- Neglecting systematics expect 0.2<λ/λ_{SM}<7 at 95% CL</p>
 - Best of the measurements
- If assuming todays systematics:
 - -3.5< $\lambda/\lambda_{\text{SM}}$ <11 at 95% CL
 - Similar to HH→bbt+t-

SM Measurements

Vast effort on precision SM measurements with comparisons to the latest (N)NLO predictions

SM Measurements

EW Vector-Boson-Scattering

Unitarity: if only Z and W are exchanged, the amplitude of (longitudinal) $W_L W_L$ scattering violates unitarity

$$A_{Z,\gamma}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto \frac{1}{\nu^{2}}(s+t)$$

Higgs boson restores unitarity of total amplitude:

$$A_{H}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto -\frac{m_{H}^{2}}{\upsilon^{2}}\left(\frac{s}{s-m_{H}^{2}}+\frac{t}{t-m_{H}^{2}}\right)$$

Same-sign WW selection greatly reduces strong production. Removes s-channel Higgs process:

EW VBS production

Strong production

W

Look for VBS scattering in high dijet invariant mass distributions

ATLAS finds 3.6σ evidence for EW production (2.3σ expected)

100

Vector Boson Scattering

 Vector Boson Scattering probes the quartic gauge boson couplings and EW symmetry breaking

- Striking experimental signature of two forward jets
 - Provides additional motivation for forward tracker extension
- Using leptonic decays clean observations on ZZ, WZ and W[±]W[±] boson scattering
 - Sensitive to dimension-6/8 operators at TeV scale
 - Precision on SM W[±]W[±] boson scattering ~6% with 3000 fb⁻¹

SUSY Status

ATLAS SUSY Searches* - 95% CL Lower LimitsATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeVStatus: August 2016 $\sqrt{s} = 7, 8, 13$ TeV										
	Model		e, μ, τ, γ	Jets	E ^{mbs} _T	∫£ d1[fb	-1) Mass limit	$\sqrt{s} = 7, 8$	TeV √s = 13 TeV	Reference
holusive Searches	MSUGRA/Cl ³ / ₄ 3, ³ / ₄ →4 ⁵ / ₁ (c ³ / ₂ 3, ³ / ₄ →4 ⁵ / ₁ (c ³ / ₂ 3, ³ / ₄ →4 ⁵ / ₁ (c ³ / ₂ 3, ³ / ₂ →4 ³ / ₄ ² / ₄ (c) ³ / ₂ 3, ³ / ₂ →4 ³ / ₄ ² / ₄ (c) ³ / ₂ 3, ³ / ₂ →4 ³ / ₄ ² / ₄ (c) ³ / ₂ 3, ³ / ₂ →4 ³ / ₄ ² / ₄ (c) ³ /	ASSM ompressed) ⇒gg₩* [±] k ⁰ k ⁰ sP) LSP) no-bino NLSP) no NLSP) no NLSP)	$\begin{array}{c} 0.3 \ e, \mu / 1 \cdot 2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1 \cdot 2 \ \tau + 0 \cdot 1 \ i \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets <i>t</i> 0-2 jets 2 jets 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3 20.3	ā. ģ ā ā 608 GeV ā 608 GeV ā 8 ā ā ā 8 ā ā ā 8 ā 5 ā 5 ā 5 ā 5 ā 5 ā 5 ā 5 ā 5 ā 5 ā 805 GeV	1.85 TeV 1.85 TeV 1.80 TeV 1.83 TeV 1.7 TeV 1.0 TeV 2.0 TeV 1.05 TeV 1.37 TeV 1.8 TeV	$\begin{split} m[\hat{q}] &= m[\hat{g}] \\ m[\hat{q}] &= m[\hat{q}]^{-1} \leq 200 \; \text{GeV}, \; m(1^{+4} \; \text{gcn.} \; \hat{q}) = m(2^{-4} \; \text{gcn.} \; \hat{q}) \\ m[\hat{q}] &= m[\hat{q}]^{-1} \leq 5 \; \text{GeV} \\ m[\hat{q}]^{-1} = 0 \; \text{GeV} \\ m[\hat{q}]^{-1} \leq 400 \; \text{GeV} \\ m[\hat{q}]^{-1} \leq 400 \; \text{GeV} \\ m[\hat{q}]^{-1} \leq 500 \; \text{GeV} \\ m[\hat{q}]^{-1} \leq 500 \; \text{GeV} \\ m[\hat{q}]^{-1} \leq 500 \; \text{GeV} < m(NLSP] < 0.1 \; \text{mm}, \; \mu < 0 \\ m[\hat{q}]^{-1} \leq 500 \; \text{GeV} < m(NLSP] < 0.1 \; \text{mm}, \; \mu > 0 \\ m[\hat{q}]^{-1} \leq 500 \; \text{GeV} < m(NLSP] < 0.1 \; \text{mm}, \; \mu > 0 \\ m[NLSP] > 430 \; \text{GeV} \\ m[\mathcal{G}] > 1.8 \times 10^{-2} \; \text{eV}, \; m(\hat{q}] = m(\hat{q}) = 1.5 \; \text{TeV} \end{split}$	1507.05525 ATLAS-CONF-2018-078 1604.07773 ATLAS-CONF-2018-078 ATLAS-CONF-2018-078 ATLAS-CONF-2018-037 ATLAS-CONF-2018-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2018-086 1509.03290 1502.01518
ğ med.	<u>88</u> , 8→6581 88, 8→1081 88, 8→1081 88, 8→1081		0 0-1 <i>«.µ</i> 0-1 <i>«.µ</i>	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	ik ik ik	1.89 TeV 1.89 TeV 1.37 TeV	$m \tilde{k}_{1}^{0} =0 \text{ GeV}$ $m \tilde{k}_{1}^{0} =0 \text{ GeV}$ $m \tilde{k}_{1}^{0} <300 \text{ GeV}$	ATLAS-CONF-2018-052 ATLAS-CONF-2016-052 1407.0600
3" gen. squarks direct production	$ \begin{array}{c} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \! \rightarrow \! b \tilde{k}' \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \! \rightarrow \! \tilde{t}_1 \! + \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \! \rightarrow \! \tilde{t}_1 \! + \\ \end{array} $	ο 1 οταξ ⁰ MSE) Z k	0 2 e, μ (SS) 0 2 e, μ 0 2 e, μ 3 e, μ (Z) 1 e, μ	2 <i>b</i> 1 <i>b</i> 1-2 <i>b</i> 0-2 jets/1-2 <i>b</i> mono-jet 1 <i>b</i> 1 <i>b</i> 6 jets + 2 <i>b</i>	Yes Yes 4 Yes 4 Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	Š ₁ 840 GeV Š ₁ 325-685 GeV Î 17-170 GeV 200-720 GeV Î 18-000 GeV 205-850 GeV Î 1 90-323 GeV Î 1 200-700 GeV Î 1 200-700 GeV Î 1 290-700 GeV Î 2 290-700 GeV Î 320-620 GeV 320-620 GeV		$\begin{split} m[\tilde{k}_1^0] &< 100 GeV \\ m[\tilde{k}_1^0] &< 150 GeV, rr(\tilde{k}_1^+) &= m(\tilde{k}_1^0) + 100 GeV \\ m[\tilde{k}_1^+) &= 2 \pi(\tilde{k}_1^0), m[\tilde{k}_1^0] &= 55 GeV \\ m[\tilde{k}_1^0] &= 1 GeV \\ m[\tilde{k}_1^0] &= 1 GeV \\ m[\tilde{k}_1^0] &= 5 GeV \\ m[\tilde{k}_1^0] &= 150 GeV \\ m[\tilde{k}_1^0] &= 300 GeV \\ m[\tilde{k}_1^0] &= 0 GeV \end{split}$	1606.08772 ATLAS-CONF-2018-037 1209.2102, ATLAS-CONF-2016-077 1506.03618, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2018-038 1506.08816
dîrect	$\begin{array}{c} \tilde{\ell}_{1,\mu}\tilde{\ell}_{1,\mu}, \ \tilde{\ell} \rightarrow \ell \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{1} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}, \ \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell} \\ \tilde{G}GM (\text{wino N} \\ GGM (\text{bino N} \end{array}$	$\begin{array}{l} \mathcal{R}_{1}^{O} \\ (\ell \overline{\nu}) \\ (\tau \overline{\nu}) \\ \ell (\nu), \ell \overline{\nu} \overline{\ell}_{1,\ell} \\ \mathcal{R}_{1,h}^{O} \\ \mathcal{R}_{1,h}^{O} \\ \mathcal{R}_{1,h}^{O} \\ \mathcal{H}_{1,h}^{O} \\ H$	2 ε,μ 2 ε,μ 2 τ 3 ε,μ 2 - 3 ε,μ /γγ ε,μ, γ 4 ε,μ 1 ε,μ + γ 2 γ	0 - 0-2 jets 0-2 j. 0-2 j. 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	Ž 90-335 GeV Š [*] ₁ 640 GeV Š [*] ₁ 580 GeV Š [*] ₁ 580 GeV Š [*] ₁ 425 GeV Š [*] ₁ 520 GeV Š [*] ₁ 520 GeV Š [*] ₁ 520 GeV Š [*] ₁ 530 GeV W 115-370 GeV W 590 GeV	$m[\hat{s}_{1}^{\alpha}]=0$ $m[\hat{s}_{1}^{\alpha}]=r$ $m[\hat{s}_{2}^{\alpha}]=r$	$\begin{split} m[\tilde{k}_{1}^{2}]{=}0 GeV \\ & (GeV, m(\tilde{\ell},\tilde{\tau}){=}0.5(m[\tilde{k}_{1}^{2}){+}m[\tilde{\ell}_{1}^{2})) \\ & m[\tilde{k}_{1}^{2}]{=}0 GeV, m(\tilde{\tau},\tilde{\tau}){=}0.5(m[\tilde{k}_{1}^{2}){+}m[\tilde{k}_{1}^{2})) \\ & m[\tilde{k}_{1}^{2}]{=}0, m[\tilde{\ell},\tilde{\tau}]{=}0.5(m[\tilde{k}_{1}^{2}){+}m[\tilde{k}_{1}^{2})) \\ & m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}0, \tilde{\ell} Geoupled \\ & m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}0, \tilde{\ell} Geoupled \\ & m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}m[\tilde{\ell}_{1}^{2}]{=}0, \tilde{\ell} Geoupled \\ & m[\tilde{k}_{1}^{2}]{=}m[\tilde{k}_{1}^{2}]{=}0, m[\tilde{\ell},\tilde{\tau}]{=}0.5[m(\tilde{\ell}_{1}^{2}){+}m(\tilde{k}_{1}^{2})) \\ & c {=} c1 rm \\ & c {=} c1 rm \end{split}$	1403 5294 ATLAS-CONF-2018-096 ATLAS-CONF-2018-098 ATLAS-CONF-2018-098 1403 5294, 1402 7029 1501 07110 1405 5086 1507 05493
L ong-uve o particles	Direct $\hat{\chi}_1^* \hat{\chi}_1$ p Direct $\hat{\chi}_1^* \hat{\chi}_1$ p Stable, stopp Stable \hat{g} R-hu Metastable \hat{g} GMSB, stable GMSB, $\hat{\chi}_1^0 \rightarrow cev/l$ GGM $\hat{g}\hat{g}, \hat{\chi}_1^0 \rightarrow cev/l$	rod., long-fived \tilde{x}_1^{t} orod., long-fived \tilde{x}_1^{t} ed \tilde{x} R-hadron R-hadron $v, \tilde{x}_1^{0} \rightarrow \tilde{v}(\tilde{x}, \tilde{x}) + \tau(r, \tilde{x})$ $q\tilde{c}$, long-fived \tilde{x}_1^{0} $q_{T/1}(q_{T}, r, \tilde{x})$ $\rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk dE/dx trk dE/dx trk r,μ) 1-2 μ 2 γ cispl. $ev/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\$\vec{k}{1}\$ 270 GeV \$\vec{k}{1}\$ 495 GeV \$\vec{k}{2}\$ 850 GeV \$\vec{k}{2}\$ 850 GeV \$\vec{k}{2}\$ 850 GeV \$\vec{k}{2}\$ 537 GeV \$\vec{k}{2}\$ 440 GeV \$\vec{k}{2}\$ 1.0 TeV \$\vec{k}{2}\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} &m[\tilde{k}_{1}^{*}) + m[\tilde{k}_{1}^{*}) + 160 \ MeV, \ \pi(\tilde{k}_{1}^{*}) = 0.2 \ ns \\ &m[\tilde{k}_{1}^{*}) + m(\tilde{k}_{1}^{*}) + 160 \ MeV, \ \pi(\tilde{k}_{1}^{*}) < 15 \ ns \\ &m[\tilde{k}_{1}^{*}] = 100 \ GeV, \ 10 \ \mu s < \pi(\tilde{k}_{1}^{*}) < 15 \ ns \\ &m[\tilde{k}_{1}^{*}] = 100 \ GeV, \ \pi > 10 \ rs \\ 10 \ ctangle < 50 \\ 1 < \pi(\tilde{k}_{1}^{*}) < 3 \ ns, \ SPS8 \ model \\ 7 < \pi(\tilde{k}_{1}^{*}) < 36 \ model \\ 7 < \pi(\tilde{k}_{1}^{*}) < 36 \ mm, \ \pi(\tilde{k}_{2}^{*}) = 13 \ TeV \\ 8 < \pi(\tilde{k}_{1}^{*}) < 480 \ mm, \ \pi(\tilde{k}_{2}^{*}) = 1. \ TeV \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
RPV	$\begin{array}{c} {\rm LFV} \ \rho\rho {\rightarrow} \sigma_{\tau} {-} \\ {\rm Bilnear} \ {\rm RPV} \\ {\cal R}_{1}^{+}{\cal R}_{1}^{-}, {\cal K}_{1}^{+} {\rightarrow} {\rm W} \\ {\cal R}_{1}^{+}{\cal K}_{1}^{-}, {\cal K}_{1}^{+} {\rightarrow} {\rm W} \\ {\cal R}_{1}^{+}{\cal R}_{1}^{-}, {\cal K}_{1}^{+} {\rightarrow} {\rm W} \\ {\cal R}_{2}^{+}{\cal R}_{2}^{-}, {\cal R}_{2}^{+} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{1}^{+} \\ {\cal R}_{2}^{+}{\cal R}_{2}^{-}, {\cal R}_{2}^{+} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{1}^{+} \\ {\cal R}_{2}^{+}{\cal R}_{2}^{-} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{1}^{+} \\ {\cal R}_{2}^{+}{\cal R}_{2}^{-} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{1}^{+} \\ {\cal R}_{2}^{+}, {\cal R}_{2}^{+} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{2}^{+} \\ {\cal R}_{2}^{+}, {\cal R}_{2}^{+} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{2}^{+} \\ {\cal R}_{2}^{+}, {\cal R}_{2}^{+} {\rightarrow} {\cal R}_{2}^{+}, {\cal R}_{2}^{+} \\ {\cal R}_{2}^{+}, {\cal R$	$ X, P_{\tau} \rightarrow s\mu/s\tau/\mu\tau$ CMSSM $ X_1^0, X_1^0 \rightarrow sev, sgw, µ_{\tau}, µ_{\tau}$ $ X_1^0, X_1^0 \rightarrow trv_{r_s} stw_{\tau}$ $ X_1^0, X_1^0 \rightarrow trv_{r_s} stw_{\tau}$ $ Y_1^0 \rightarrow qqq$ $ y_1^0 \rightarrow qqq$ $ y_2^0 \rightarrow qqq$ $ y_3 \rightarrow bs$	$e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $\mu\nu$ $4 e, \mu$ $3 e, \mu + \tau$ 0 4 $1 e, \mu$ 8 $1 e, \mu$ 8 0 $2 e, \mu$	- 0-3 <i>b</i> - 1-5 large- <i>R</i> jet 3-10 jets/0-4 <i>l</i> 3-10 jets/0-4 <i>l</i> 2 jets + 2 <i>b</i> 2 <i>b</i>	· Yes Yes s· bs· bs· bs· bs· bs· bs· bs· bs· bs·	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 15.4 20.3	\$\vec{x}\$.\$ \$\vec{x}\$.\$ \$\vec{x}\$.\$ \$\vec{1}\$.14 \$\vec{x}\$.\$ \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.14 \$\vec{1}\$.15 \$\vec{1}\$.15 \$\vec{1}\$.15 \$\vec{1}\$.16 \$\vec{1}\$.16 <td>1.9 TeV 1.45 TeV TeV eV 1.55 TeV 1.75 TeV 1.4 TeV</td> <td>$\begin{split} \lambda_{111}^{i} = 0.11, \ \lambda_{112} _{112} = 0.07 \\ m[i] = m[i], \ c_{12,1p} < 1 \ rrm \\ m[i] = m[i], \ s_{12,1p} < 1 \ rrm \\ m[i] = 0.25 \ m[i]_{12} = 0.25 \ m[i]_{1$</td> <td>1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2015-015</td>	1.9 TeV 1.45 TeV TeV eV 1.55 TeV 1.75 TeV 1.4 TeV	$\begin{split} \lambda_{111}^{i} = 0.11, \ \lambda_{112} _{112} = 0.07 \\ m[i] = m[i], \ c_{12,1p} < 1 \ rrm \\ m[i] = m[i], \ s_{12,1p} < 1 \ rrm \\ m[i] = 0.25 \ m[i]_{12} = 0.25 \ m[i]_{1$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2015-015
)ther	Scalar charr	$i, \bar{c} \rightarrow c \bar{\chi}_1^0$	0	2 c	Yes	20.3	2 510 GeV		$m(\tilde{k}_1^0)$ <200 GeV	1501.01325
	*Only a states of	selection of the or phenomena	available m is shown.	nass limits	on ne	w 1	0 ⁻¹	1	Mass scale [TeV]	1

Supersymmetry Production at LHC

Lightest neutralino normally assumed to stable (Dark Matter candidate)

Search for Stau Pair Production

104

Finally HL-LHC will have sensitivity to direct slepton production

Search for WIMP Candidates

ATLAS also has sensitivity to non-SUSY WIMP models

For example with canonical mono-jet signature:

Or invisible Higgs Boson decays:

105

Comparison to non LHC Searches

106

Special Signatures from LLP

Issues and opportunities with LLP signatures:

- Non-standard objects, custom trigger/reconstruction/simulation
- Need to maintain **dedicated** detector capabilities

Potential gains from HL-LHC from high luminosity, track-trigger, fast timing, better directionality.

Displaced Muons from LLP

Long-lived neutral particle (X) decays after some cτ to displaced leptons or jets. Example signature: **displaced muons** (possibly collimated)

ATLAS EXOT

Experimental challenge: trigger such displaced signatures (note: phase-II track triggers with vertex constraint).

Possible models: dark photons, inelastic thermal-relic DM, etc.

23

Impact of Detector Capabilities

Impact of dE/dx readout in CMS tracker

Flavor-Changing Neutral Currents in top¹¹⁰

Search for t \rightarrow Zq and t \rightarrow Hq Decays

- Search for tt with one t \rightarrow Wb decay and one FCNC t decay
 - Reconstruct as much as possible of top decays to obtain maximal discrimination

For t \rightarrow Hq use H \rightarrow bb and kinematic discriminant Furthermore split in categories based on reconstructed topology (#jets, #b-jets, ...) Expected 95% CL limit assuming equal t \rightarrow Hu and t \rightarrow Hc: ~1.1x10⁻⁴

DM through Di-jet Searches

112

LHC can detect mediator between DM and SM if it is light enough
Complements mono-X searches

Dark Matter Interpretations

Mediator Mass [TeV]

Dark Matter Interpretations - Combined

114

Exclusion for Different Model Point

115

Search for ttH Production at 13 TeV

g 800000000

<u>≻</u> Н°

- ttH directly probes the top-Higgs Yukawa coupling instead of loop in ggH g 200000000
 - Benefits from higher x-section at 13 TeV
- See slight excess in many channels
 - Also seen in some Run-1 results

Search for ttH Production at 13 TeV

<u>≻</u> Н⁰

- ttH directly probes the top-Higgs Yukawa coupling instead of loop in ggH geassage to Benefits from higher x-section at 13 TeV
 See slight excess in many channels geassage to t
 - Also seen in some Run-1 results

Latest CMS result for ttH, H→bb has a slight deficit wrt SM

All are still consistent with SM due to the large uncertainties

Physics Projections

HL-LHC Physics prospects done in two ways:

- Parameterized detector performance
 - Event-generator level particles smeared with detector performance parameterized from full simulation and reconstruction of upgraded HL-LHC detectors
 - Effects of pile-up included for either 5x10³⁴ cm⁻²s⁻¹ (140 pile-up events) or 7x10³⁴ cm⁻²s⁻¹ (200 pile-up events)
 - Analysis mostly based on existing 8 TeV analyses with simple re-optimization for higher luminosity
- Extrapolation of Run-1 or Run-2 results
 - Scale signal and background to higher luminosities
 - Correct for different center-of-mass energy
 - Assume unchanged analysis (not re-optimized for higher luminosity)
 - Assume same detector performance as in Run-1/2 (some use corrections based on studies in first approach)

The CMS Experiment

Not shown: Trigger system for selecting the 0.0025% most interesting collisions 119

The ATLAS Experiment

RPC,TGC (trigger chambers)

 Ingger/DAQ System
100 kHz L1 rate (HW trigger)
~1 kHz to tape