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Overview

•Low Energy νe appearance Excess  
•MicroBooNE experiment 
•MicroBooNE LEE searches 
•The Deep Learning LEE search
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TABLE I: The expected (unconstrained) number of events for
the 200 < EQE

⌫ < 1250 MeV neutrino energy range from all
of the backgrounds in the ⌫e and ⌫̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
probability of 0.26%. The table shows the diagonal-element
systematic uncertainties, which become substantially reduced
in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
cluded. The antineutrino numbers are from a previous analy-
sis [3].

Process Neutrino Mode Antineutrino Mode
⌫µ & ⌫̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC ⇡0 501.5 ± 65.4 112.3 ± 11.5
NC � ! N� 172.5 ±24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other ⌫µ & ⌫̄µ 89.6 ± 22.9 22.3 ± 3.5

⌫e & ⌫̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
⌫e & ⌫̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
⌫e & ⌫̄e from K0

L Decay 54.5 ± 20.5 51.4 ± 18.0
Other ⌫e & ⌫̄e 6.0 ± 3.2 6.7 ± 6.0

Unconstrained Bkgd. 1590.5 398.2
Constrained Bkgd. 1577.8± 85.2 398.7± 28.6

Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) ⌫µ ! ⌫e 463.1 100.0

energy range for the total 12.84⇥ 1020 POT data. Each
bin of reconstructed E

QE
⌫ corresponds to a distribution

of “true” generated neutrino energies, which can overlap
adjacent bins. In neutrino mode, a total of 1959 data
events pass the ⌫e CCQE event selection requirements
with 200 < E

QE
⌫ < 1250 MeV, compared to a back-

ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5� e↵ect. Note that the 162.0 event excess in the
first 6.46 ⇥ 1020 POT data is approximately 1� lower
than the average excess, while the 219.2 event excess in
the second 6.38 ⇥ 1020 POT data is approximately 1�
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < E

QE
⌫ < 1250 MeV en-

ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total ⌫e plus ⌫̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8� excess. The signif-
icance of the combined LSND (3.8�) [1] and MiniBooNE
(4.8�) excesses is 6.1�. Fig. 2 shows the total event ex-
cesses as a function of EQE

⌫ in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
⌫ distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
⌫ distributions,

corresponding to the total 12.84 ⇥ 1020 POT data, for ⌫e
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.
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FIG. 2: The MiniBooNE total event excesses as a function
of EQE

⌫ in both neutrino mode and antineutrino mode, cor-
responding to 12.84 ⇥ 1020 POT and 11.27 ⇥ 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at �m

2 = 0.040 eV2 and sin2 2✓ = 0.894 with
a �

2
/ndf = 35.2/28, corresponding to a probability of

16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.
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Low Energy Excess
• LSND and MiniBoonE observed 

an excess of νe appearance at 
low energies


• Best fit in tension with global 3+1 
neutrino models

μ

e

π0
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FIG. 5: MiniBooNE allowed regions for a combined neutrino
mode (12.84 ⇥ 1020 POT) and antineutrino mode (11.27 ⇥
1020 POT) data sets for events with 200 < EQE

⌫ < 1250
MeV within a two-neutrino oscillation model. The shaded
areas show the 90% and 99% C.L. LSND ⌫̄µ ! ⌫̄e allowed
regions. The black circle shows the MiniBooNE best fit point.
Also shown are 90% C.L. limits from the KARMEN [34] and
OPERA [35] experiments.

tineutrino running modes of 460.5 ± 95.8 events (4.8�)
in the energy range 200 < E

QE
⌫ < 1250 MeV. The Mini-

BooNE L/E distribution, shown in Fig. 3, and the al-
lowed region from a standard two-neutrino oscillation fit
to the data, shown in Fig. 5, are consistent with the L/E
distribution and allowed region reported by the LSND
experiment [1]. The significance of the combined LSND
and MiniBooNE excesses is 6.1�. All of the major back-
grounds are constrained by in-situ event measurements,
so non-oscillation explanations would need to invoke new
anomalous background processes. Although the data are
fit with a standard oscillation model, other models may
provide better fits to the data. The MiniBooNE event ex-
cess will be further studied by the Fermilab short-baseline
neutrino (SBN) program [36].

We acknowledge the support of Fermilab, the Depart-
ment of Energy, and the National Science Foundation,
and we acknowledge Los Alamos National Laboratory for
LDRD funding.
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Figure 4. The MINOS and MINOS+ 90% Feldman-Cousins
exclusion limit compared to the previous MINOS result [17]
and results from other experiments [20, 43–46]. The Gariazzo
et al. region is the result of a global fit to neutrino oscillation
data [47].

all values of �m

2

41

above 10�2 eV2. The low sensitivity
in the region �m

2

41

< 10�2 eV2 arises from degeneracies
with the atmospheric mass-splitting�m

2

31

. The upper is-
land occurs at �m

2

41

= 2�m

2

31

, and the dip below occurs
at �m

2

41

= �m

2

31

. The MINOS/MINOS+ result is com-
pared to results from other experiments in Fig. 4, showing
it to be the leading limit over the majority of the range of
�m

2

41

. At fixed values of �m

2

41

the data provide limits
on the mixing angles ✓

24

and ✓

34

. At �m

2

41

= 0.5 eV2,
we find sin2 ✓

24

< [0.006 (90% C.L.), 0.008 (95% C.L.)]
and sin2 ✓

34

< [0.41 (90% C.L.), 0.49 (95% C.L.)].

In conclusion, the joint analysis of data from the MI-
NOS and MINOS+ experiments sets leading and strin-
gent limits on mixing with sterile neutrinos in the 3+1
model for values of �m

2

41

> 10�2 eV2 through the study
of ⌫µ disappearance. The final year of MINOS+ data,
corresponding to 40% of the total MINOS+ exposure,
combined with ongoing analysis improvements, will in-
crease the sensitivity of future analyses even further.
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Appearance Disappearance

• νe appearance : 
- KARMEN ⟶ limit

- ICARUS ⟶ limit

- NOMAD ⟶ limit 
- OPERA ⟶ limit

- MiniBooNE ⟶ signal 
- LSND ⟶ signal


• νe disappearance : 
- KARMEN + LSND ⟶ limit

- Reactor Anomaly ⟶ signal 
- Neutrino-4 ⟶ signal (arxiv 1809.10561)

- ILL ⟶ signal (arxiv 1802.07763)


• νμ disappearance : 

- MiniBoonE + SciBooNE ⟶ limit

- MINOS ⟶ limit

- CCFR, CDHS ⟶ limit

- IceCube ⟶ limit

(here we call signal a 2σ effect)
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Booster 
proton energy : 8 GeVBooster ν beam 

MiniBooNE, MicroBooNE, SBN program

NuMI ν beam 
NOνA, MINERVA, MINOS+

DUNE ν beam

Main Injector 
proton energy : 120 GeV

�5

Fermilab Neutrino Beamlines
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The Booster Neutrino Beamline

MiniBooNE

Booster

Target
ICARUS

SBND

• 8 GeV protons from the Booster, beam spill at 5Hz

• Hosts the Short Baseline Neutrino Program :


• SBN Near Detector

• MicroBooNE

• ICARUS


• 3 detectors, same target nucleus, same operational technology

• Definitive test of LSND oscillation using three baselines

• Simultaneous νμ disappearance and νe appearance searches
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The MicroBooNE Experiment

• MicroBooNE is a neutrino experiment using a 
Liquid Argon Time Projection Chamber (LArTPC)


• Physics Goals of MicroBooNE : 
‣ To investigate the MiniBooNE and LSND νe 

appearance excess at low energy – to confirm 
or deny potential evidence for sterile neutrinos


‣ To measure neutrino-argon cross section 
around 1 GeV


‣ To pursue R&D studies for LArTPC operations 
and exploitation for larger programs (SBN, 
protoDUNE, DUNE)
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The MicroBooNE Detector

• Micro Booster Neutrino Experiment

• 85 ton active mass Liquid Argon TPC

• νμ⟶νe appearance experiment

• Booster Neutrino Beam-line

• Taking data since October 2015

• Cosmic ray tagger added in 2016

• > 97% detector up time

• 1.1x1021 POT delivered10.4 m

2.3 m

2.5 m

νe,νµ
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The MicroBooNE Detector

10 m

2.4 m

2.4 m

E

• Time Projection Chamber 
• 85 active tons of  Liquid Argon 
• 32 cryogenic PMTs 
• 2400 U-wires (+60°) 
• 2400 V-wires (-60°) 
• 3456 Y-wires (vertical) 
• 3mm wire pitch

x

y z
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Raw Event Example

NNN18 Workshop

MicroBooNE Data

4NNN18 Workshop

MicroBooNE Data

4
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The MicroBooNE Detector

E

Vdrift

• A charge deposition in the detector drifts into a 
"unique" combination of  U,V and Y wires 

• There is actually a time degeneracy 
• In the drift dimension, we need a T0, and the 

known drift speed to get the position 
• T0 is given by  

• trigger time (we know when neutrinos 
interact) 

• PMT signal
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LArTPC : why are they so cool?

NNN18 Workshop

MicroBooNE Data

4

• LArTPCs produce bubble chamber-like 
images!


• Able to "see" the interaction

• more "intuitive"

• rely less on the light production model

• can use event topology to reject 

background

• LArTPCs are ~1000x faster than bubble 

chambers

• LArTPCs produce digitized images, 

processed by computer 

NNN18 Workshop

MicroBooNE Data

4
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LArTPC : why are they so hard?

NNN18 Workshop

MicroBooNE Data

4

• Huge amount of data to process


• Pattern, topology (i.e. 
kinematics) is an important 
parameter, need algorithms 
smart enough to recognize them 
without bias and recognize 
backgrounds


• Some events are hard to identify, 
even for a trained human!
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Commissioning

Detector Physics

Reconstructions

Cross section measurements

Low Energy Excess Investigations

�14

The Road to Low Energy Excess
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Recent Physics Results8 Future Improvements MICROBOONE-NOTE-1045-PUB
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⌫µ CC inclusive differential cross section on argon as a function of thereconstructed muon momentum and cosine of the muon polar angle. The black datapoints show the data extracted cross section (using default Genie for background andefficiency estimation), while the green and blue curves shows the MC predicted crosssection from Genie default and alternative model sets respectively. The data crosssections contain flux, cross section modeling and detector systematic uncertainties.
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CC Inclusive Cross Section - High efficiency & purity
- Insensitive to hadrons
- Constrain νe rate
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FIG. 3: The reconstruc
ted mass of the two photon candidates

associated
to the neutrino interaction

vertex

after an energy scale correction
. We separate our simulation into four classes of photon

pairs:

neutrino-i
nduced ⇡

0 that are created in and subsequen
tly exit the argon nucleus (red), cha

rged pion charge

exchange
induced ⇡

0 ! �

�

that occur
outside the incident a

rgon nucleus (y
ellow), pu

re cosmic activity (grey),

and everything
else (orange).

The mean of the data is consistent
, within statistical

uncertaint
ies, with

m⇡0 = 135 MeV/c
2.

model the pure cosmic background
s (87 events) in

B

, the remainder (347
events) are

taken from the

215

simulation. Th
e impurities in

our argon
have been

measured to be less tha
n 1 ppm, therefore

we treat

216

the inner volum
e as purely argon at 89 K to calculate T

. For � we integrate the flux from 0 GeV to

217

3 GeV, shown
in Fig. 4. Th

is results in
a cross sectio

n measurement of

218 D
�

⌫µCC⇡0
E

�
= (1.94± 0.16 [stat.])⇥ 10�

38
cm2

Ar
.

(2)
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Using our t
wo shower

selection we measure a co
nsistent, bu

t highly sta
tistically co

rrelated, cr
oss section

.
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We address th
ree major source

s of uncerta
inty in this measurement: the int

eraction models, the n
eutrino

222

flux prediction,
and the detector si

mulation. O
ur uncerta

inties pred
ominantly impact our b

ackground

223

estimates, which
are solely b

ased on the simulation. Us
ing the defa

ult set of G
ENIE neutrino in

teraction

224

uncertainti
es [27] we p

robe how each modifies our
signal e�ciency and the simulated neutrino induced
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FIG. 4: The measured total flux
integrated

⌫µ charged current si
ngle pion cross section, ri

ght panel,
with the

inner error bars denoting the statistical
uncertaint

y and the outer error bars denote the quadratic
sum of

statistical
and systematic uncertaint

ies. The left panel
shows the full BNB

flux (gray) we integrate over and

the two GENIE cross sections we compare our measurement to.
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263

In conclusion,
MicroBooNE

has utilized
the first im

plementation of a fully automated electromagnetic

264

shower rec
onstruction

to measure the first charge
d current neu

tral pion cross section on argon. This

265

measurement is in agreement with the default
GENIE plus empirical MEC prediction

for this pro
cess.

266

The dominant systematic uncertainty
in this analysis arises from the detector modeling. Future im-

267

provements in our sense w
ire signal m

odeling and signal extr
action procedure

should aid in mitigating

268

the impact of the
se e↵ects [2

0 and 21]. Furthe
rmore, future

analyses ca
n improve on the shower

recon-

269

struction by utilizing a better trac
k-shower s

eparation as an input to the clustering
stage. This

would

270

enable us t
o explore kin

ematic proper
ties on the ⇡

0 decay and provide a more robust
constraint

of the

271

background
s to mitigate the model depen

dence. Tog
ether these

will enable
us to extract a di↵erential

272

cross section as a function of the ⇡

0 kinematics to test models of final sta
te interaction

s and nuclear

273

e↵ects.274
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CCπ0 Cross Section 

- First measurement on Ar


- Test shower reconstruction


- LEE photon backgrounds

Particle identification in LArTPC 

9
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Selected protons in νμ CC sample
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Conclusion • Demonstrated MicroBooNE’s 
ability to use dE/dx to differentiate 

between electron-like and photon-

like showers. 

• Performed MC closure test 
projecting future measurement of 

the inclusive νe CC cross section 

on data. 

• Displayed results for the most 
ever νe CC interactions selected 

in data from a liquid argon time 

projection chamber (~100)!
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Low Energy Excess Searches
- 4 parallel low energy νe-like analysis efforts:

• Pandora CC0πNP

• TrajCluster νe selection

• WireCell selection

• Deep Learning 1l1p


- γ-hypothesis (1γ1p) analysis

MICROBOONE-NOTE-1040-PUB

WireCell event reconstruction
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Figure 20: Reconstructed energy spectrum of the events selected with the CC
⌫

µ

-enhanced reverse

cuts. The shaded area on top of the stacked histograms represent the statistical error,

dominated by the size of the data off-beam sample.
5.2.2 NuMI beam event studiesIt is possible to run this analysis on the complementary NuMI dataset. The NuMI beam is created

from 120 GeV protons hitting a carbon target, while the BNB is created from 8 GeV protons on a

beryllium target. NuMI has also a higher beam intrinsic
⌫

e

component than BNB (5% vs. 0.5%).

Even though it is off-axis, MicroBooNE will still receive ⇠
2

5

0

0

⌫

e

interactions per year. As such,

a study of the events selected in the NuMI dataset is of fundamental importance to validate the
⌫

e

CC0
⇡-Np selection algorithm.
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6.1 Cosmic tagging with the Cosmic-ray Tagger

As seen in Section 3.7, the dominant source of events passing the pre-selection is cosmic-ray interac-

tions. The Cosmic-ray Tagger (CRT), described extensively in [23], offers several ways to reject these

events at the pre-selection stage. First, a coincidence veto of in-time flashes in the PMTs and CRT

would allow us to reject a significant background of in-time cosmic events. There is some danger

that neutrino interactions are also vetoed by this coincidence, but that is unlikely for
⌫

e

events -

most particles that exit the TPC and can hit the CRT are muons.

Additionally, for events where an out-of-TPC neutrino interaction creates a flash in time with

the beam, but a cosmic interaction is matched to that flash, the CRT can also be useful. TPC-to-

CRT matching of muon tracks can mitigate this background by flagging a TPC Pandora neutrino

candidate object, and allowing us to reject out-of-time cosmic rays matched to an in-time, out-of-

TPC neutrino flash.Cosmic-ray rejection is particularly important at low energy, where the component of events with
25
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Figure 7: A breakdown
of backgro

und contributio
ns based on Monte Carlo as a function of each analysis

stage for the 1�1p selection.
The BNB backgroun

d contributio
ns are defined according

to the final state

particle which contribute
s most dominantly to the reconstruc

ted shower. Monte Carlo statistical
uncertaint

y

is shown on the total sum
as a gray band. Although

the selection is dominated by cosmic-related
vertices at

the beginning,
by the end of the analysis by far the largest rem

aining backgroun
d is contribute

d by NC ⇡

0

events. This is expected,
as an NC ⇡

0 in which one photon is lost or mis-reconstr
ucted looks kinematically

and calorimetrically similar to an NC � radiative event. The NC ⇡

0 backgroun
d itself cons

ists primarily of

events in which the second photon was either not recons
tructed or incorrectly

merged into another shower

object.

3 Data to Monte Carlo Comparison Validation
s

Figure 8 provides data and Monte Carlo distributio
n comparisons after the pre-selectio

n stage of the

analysis. This comparison is made using the first 5E19
POT collected by the MicroBooNE

detector.
4 The

1�1p topologica
l selection

distributio
ns are show

n in the panels
on the left, an

d the 1�0p topologica
l selection

distributio
ns are shown in the panels on

the right. The top, middle, and
bottom rows show

these distribu-

tions as fun
ctions of d

i↵erent rec
onstructed

quantities,
namely the reconst

ructed shower ene
rgy (the variab

le

4It is expected
that this sample does not contain a statistica

lly significan
t number of potent

ial signal
events.

13

M
IC

RO
BO

O
N

E-
N

O
TE

-1
04

1-
PU

B

Pandora 1γ1p

MicroBooNE Simulation Preliminary

20 cm

Deep Learning event reconstruction

M
IC

RO
BO

O
NE

-N
O

TE
-1

04
2-

PU
B



Adrien Hourlier — MicroBooNE — MIT

3

TABLE I: The expected (unconstrained) number of events for
the 200 < EQE

⌫ < 1250 MeV neutrino energy range from all
of the backgrounds in the ⌫e and ⌫̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
probability of 0.26%. The table shows the diagonal-element
systematic uncertainties, which become substantially reduced
in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
cluded. The antineutrino numbers are from a previous analy-
sis [3].

Process Neutrino Mode Antineutrino Mode
⌫µ & ⌫̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC ⇡0 501.5 ± 65.4 112.3 ± 11.5
NC � ! N� 172.5 ±24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other ⌫µ & ⌫̄µ 89.6 ± 22.9 22.3 ± 3.5

⌫e & ⌫̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
⌫e & ⌫̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
⌫e & ⌫̄e from K0

L Decay 54.5 ± 20.5 51.4 ± 18.0
Other ⌫e & ⌫̄e 6.0 ± 3.2 6.7 ± 6.0

Unconstrained Bkgd. 1590.5 398.2
Constrained Bkgd. 1577.8± 85.2 398.7± 28.6

Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) ⌫µ ! ⌫e 463.1 100.0

energy range for the total 12.84⇥ 1020 POT data. Each
bin of reconstructed E

QE
⌫ corresponds to a distribution

of “true” generated neutrino energies, which can overlap
adjacent bins. In neutrino mode, a total of 1959 data
events pass the ⌫e CCQE event selection requirements
with 200 < E

QE
⌫ < 1250 MeV, compared to a back-

ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5� e↵ect. Note that the 162.0 event excess in the
first 6.46 ⇥ 1020 POT data is approximately 1� lower
than the average excess, while the 219.2 event excess in
the second 6.38 ⇥ 1020 POT data is approximately 1�
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < E

QE
⌫ < 1250 MeV en-

ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total ⌫e plus ⌫̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8� excess. The signif-
icance of the combined LSND (3.8�) [1] and MiniBooNE
(4.8�) excesses is 6.1�. Fig. 2 shows the total event ex-
cesses as a function of EQE

⌫ in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
⌫ distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
⌫ distributions,

corresponding to the total 12.84 ⇥ 1020 POT data, for ⌫e
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.
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FIG. 2: The MiniBooNE total event excesses as a function
of EQE

⌫ in both neutrino mode and antineutrino mode, cor-
responding to 12.84 ⇥ 1020 POT and 11.27 ⇥ 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at �m

2 = 0.040 eV2 and sin2 2✓ = 0.894 with
a �

2
/ndf = 35.2/28, corresponding to a probability of

16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.
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TABLE I: The expected (unconstrained) number of events for
the 200 < EQE

⌫ < 1250 MeV neutrino energy range from all
of the backgrounds in the ⌫e and ⌫̄e appearance analysis. Also
shown are the constrained background and the expected num-
ber of events corresponding to the LSND best fit oscillation
probability of 0.26%. The table shows the diagonal-element
systematic uncertainties, which become substantially reduced
in the oscillation fits when correlations between energy bins
and between the electron and muon neutrino events are in-
cluded. The antineutrino numbers are from a previous analy-
sis [3].

Process Neutrino Mode Antineutrino Mode
⌫µ & ⌫̄µ CCQE 73.7 ± 19.3 12.9 ± 4.3

NC ⇡0 501.5 ± 65.4 112.3 ± 11.5
NC � ! N� 172.5 ±24.1 34.7 ± 5.4

External Events 75.2 ± 10.9 15.3 ± 2.8
Other ⌫µ & ⌫̄µ 89.6 ± 22.9 22.3 ± 3.5

⌫e & ⌫̄e from µ± Decay 425.3 ± 100.2 91.4 ± 27.6
⌫e & ⌫̄e from K± Decay 192.2 ± 41.9 51.2 ± 11.0
⌫e & ⌫̄e from K0
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Total Data 1959 478
Excess 381.2 ± 85.2 79.3 ± 28.6

0.26% (LSND) ⌫µ ! ⌫e 463.1 100.0

energy range for the total 12.84⇥ 1020 POT data. Each
bin of reconstructed E

QE
⌫ corresponds to a distribution

of “true” generated neutrino energies, which can overlap
adjacent bins. In neutrino mode, a total of 1959 data
events pass the ⌫e CCQE event selection requirements
with 200 < E

QE
⌫ < 1250 MeV, compared to a back-

ground expectation of 1577.8 ± 39.7(stat.) ± 75.4(syst.)
events. The excess is then 381.2 ± 85.2 events or a
4.5� e↵ect. Note that the 162.0 event excess in the
first 6.46 ⇥ 1020 POT data is approximately 1� lower
than the average excess, while the 219.2 event excess in
the second 6.38 ⇥ 1020 POT data is approximately 1�
higher than the average excess. Combining the Mini-
BooNE neutrino and antineutrino data, there are a to-
tal of 2437 events in the 200 < E

QE
⌫ < 1250 MeV en-

ergy region, compared to a background expectation of
1976.5±44.5(stat.)±84.8(syst.) events. This corresponds
to a total ⌫e plus ⌫̄e CCQE excess of 460.5± 95.8 events
with respect to expectation or a 4.8� excess. The signif-
icance of the combined LSND (3.8�) [1] and MiniBooNE
(4.8�) excesses is 6.1�. Fig. 2 shows the total event ex-
cesses as a function of EQE

⌫ in both neutrino mode and
antineutrino mode. The dashed curves show the best fits
to standard two-neutrino oscillations.

Fig. 3 compares the L/EQE
⌫ distributions for the Mini-

BooNE data excesses in neutrino mode and antineutrino
mode to the L/E distribution from LSND [1]. The er-
ror bars show statistical uncertainties only. As shown
in the figure, there is agreement among all three data
sets. Fitting these data to standard two-neutrino oscil-
lations including statistical errors only, the best fit oc-
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FIG. 1: The MiniBooNE neutrino mode EQE
⌫ distributions,

corresponding to the total 12.84 ⇥ 1020 POT data, for ⌫e
CCQE data (points with statistical errors) and background
(histogram with systematic errors). The dashed curve shows
the best fit to the neutrino-mode data assuming standard two-
neutrino oscillations.
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FIG. 2: The MiniBooNE total event excesses as a function
of EQE

⌫ in both neutrino mode and antineutrino mode, cor-
responding to 12.84 ⇥ 1020 POT and 11.27 ⇥ 1020 POT, re-
spectively. (Error bars include both statistical and correlated
systematic uncertainties.) The dashed curves show the best
fits to the neutrino-mode and antineutrino-mode data assum-
ing standard two-neutrino oscillations.

curs at �m

2 = 0.040 eV2 and sin2 2✓ = 0.894 with
a �

2
/ndf = 35.2/28, corresponding to a probability of

16.4%. This best fit agrees with the MiniBooNE only
best fit described below. The MiniBooNE excess of
events in both oscillation probability and L/E spectrum
is, therefore, consistent with the LSND excess of events,
even though the two experiments have completely dif-
ferent neutrino energies, neutrino fluxes, reconstruction,
backgrounds, and systematic uncertainties.
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Signal Definition

• Excess region at low energy, dominated by CCQE process

• Most events with simple topology
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Signal Definition

U V Y

p
e-

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

Wire

T
im

e

U V Y

p

µ-

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

Wire

T
im

e

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

U V Y

p
e-

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

Wire

T
im

e

U V Y

p

µ-

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

MicroBooNE Simulation 
Preliminary

Wire

T
im

e

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

10 cm

10
 c

m

• We will be focusing on a 1 lepton and 1 
proton topology:

• 1 e or μ with KE > 35 MeV

• 1 p with KE > 60 MeV

• any number of tracks below threshold


• We will work under the assumption of a 
CCQE interaction
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Machine Learning

  9

 Why Deep Learning?

Jarrett Moon - DNP - October 25, 2018

Why Deep Learning?

Our data comes in images. Convolutional Neural Networks (CNNs) were created 
for this sort of task

We use two categories of CNNs

Semantic segmentation networks (SSNet) 

Labels which parts of the image the 
network thinks are object X

e.g. In this image, the network labels 
the pixels it thinks are the car 

Classification networks

Asks: “Does this image contain object X?”

Yields a score for how confident the 
network is that the image contains X

• LArTPCs provide high resolution pictures of neutrino 
interactions


• Convolutional Neural Networks (CNN) are design to 
identify content of images (i.e. self driving cars, bio 
imagery, etc.)


• CNN look for patterns, most basic => more complex 

Categorization

Detection

Semantic Segmentation
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Machine Learning for LArTPC

wing

beak

eye

tail

flower

legs

Green = nature

Bird (Golden-crowned kinglet)

• CNNs look for patterns, pattern associations on rich images

• LArTPCs images are mostly empty (99% of pixels are empty)

• Neutrinos interactions are a small fraction of the total image

• Particles are mostly tracks or shower, without much pattern

"Convolutional Neural Networks Applied to Neutrino Events in a 
Liquid Argon Time Projection Chamber” JINST 12, P03011 (2017) 
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Analysis Chain

Cosmic tagger

Track/shower 
separation

3D 
reconstruction

νμ selectionνe selection

Multi part.

PID

MicroBooNE 
images
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Cosmic Tagger

(2)(1)

min. ΔT

max. ΔT

(3)

Through-going 
Stopping
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Wire

νe

p

e-

60
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m

• Follow the charge distribution from one end to the other

• Tracks with only one exit point are labelled as "stopping 

muons"

• Only "contained" charge remains (no entry/exit point)
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Semantic Segmentation Networks
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Shower Pixel Label
Track Pixel Label

• SSNets identify the content of an image, and work 
the convolution chain back to the location of the 
identified objects


• Pixel-level identification

• Trained to recognize tracks to shower

• Track/shower boundaries can be  

potential vertex!

• How to validate such network?

track

shower
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Network on Data

  13

 Shower or Track?

Jarrett Moon - DNP - October 25, 2018

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Roadmap
PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Roadmap

The SSNet is trained on simulation, but performance on data is excellent

Example: A data event containing a ν
 μ
CCπ0 event (1 3p1πμ 0)

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Yellow : Track pixels
Cyan   : Shower pixels

“Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection 

Chamber” JINST 12, P03011 (2017)

“A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE 

Liquid Argon Time Projection Chamber “ arXiv:1808.07269, submitted to PRD

"A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber “ arXiv:1808.07269, submitted to PRD 

• Network trained on a simulation sample to identify tracks and showers

• Run on a data sample (selection of νμ CCπ0 events)

• "Truth" labelled by a trained human physicist
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Vertex Finding

  14

 Interaction Vertex Finding

Jarrett Moon - DNP - October 25, 2018

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Roadmap

Identify potential neutrino vertices

First identify vertex “seeds” on the 2D images. 
➢ 2 Track-labeled segments meet at a kink

or
➢ A track segment meets a shower segment  

If a vertex seed and the associated track/shower segments are 
temporally and spatially consistent, this is called a 3D vertex 
and passed to full 3D reconstruction

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

• Identify potential neutrino vertices

• Use SSNet’s output track-only and shower-only images

• OpenCV libraries for image processing

• First, identify seeds in each image separately

• Track/shower boundary

• Kinks on tracks 
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• Identify locations in image 
where LC and HC exist 

• Pixel intensity threshold is 
applied per plane 
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• Identify locations in image 
where LC and HC exist 

• Pixel intensity threshold is 
applied per plane 
• U — LC: 10 HC: 70 
• V — LC: 10 HC: 60 
• Y — LC: 10 HC: 40

HC

LC

Track Pixel Analysis

HC regime LC regime

• Analyze track pixels only 
1. Find clusters in two charge 

scales: Low Charge (LC) & 
High Charge (HC)

DL Review Day 1
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U• Analyze track pixels only 
1. Find clusters in two charge 

scales: LC & HC 
2. Chunk shape analysis

Track Pixel Analysis

• Compute the convex hull for 
each cluster 
• smallest convex polygon 

which encloses all points 

• Identify where the cluster is 
curving by finding defects 
• points on original cluster far 

from convex hull 
• require defect of a certain 

size 

• Find the line from the hull, 
though defect point, and 
crossing the cluster

Defect point  

Defect line  

DL Review Day 1
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• Analyze track pixels only 
1. Find clusters in two charge 

scales: LC & HC 
2. Chunk shape analysis 

- Compute convex hull 
- Find defects 

3. Split cluster into straight 
tracks until all defects are 
removed in track image

Track Pixel Analysis

DL Review Day 1
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Tracks: 1,2,3,4,5,6
19vgenty

Track Vertex Seeds
• Determine vertex seeds 

1. Location of defect point 
• tell you where contour is curving 

2. Location of PCA crossings

PCA crossing 

PCA line 

• Apply principle component analysis 
(PCA) to each straight cluster 

• extrapolate 2D track direction  

• Find PCA crossing points between 
lines 

• Indicate curvature where 
large kink may not exist 

• Locate the LC-HC    
transition 

• Crossing point must be near 
charge!

DL Review Day 1
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Vertex Seeds

• Break down the track-only pixel cluster in sub-clusters : 

• High-Charge / Low-Charge

• Linear clusters


• Fit each linear clusters by a line (Principal Component 
Analysis)


• Vertex Seeds are the cluster break-down points and PCA 
crossing points
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Best Seed PositionStep 4, Vertex Seeds Finding : Vertex Search-Time Scan

11

time

Vertex Candidate

12

time

Step 4, Vertex Seeds Finding : Vertex Search-Time Scan

13

time

Θ

Step 4, Vertex Seeds Finding : Vertex Search-Time Scan
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time
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Step 4, Vertex Seeds Finding : Vertex Search-Time Scan
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Step 4, Vertex Seeds Finding : Vertex Search-Time Scan
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Step 4, Vertex Seeds Finding : Vertex Search-Time Scan
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Step 4, Vertex Seeds Finding : Vertex Search-Time Scan

18

time

Θ
Φ

Vertex Found !

No local minimum.  
Throw away

Step 4, Vertex Seeds Finding : Vertex Search-Time Scan

MicroBooNE 
Simulation 
Preliminary

18

time

Θ
Φ

Vertex Found !

No local minimum.  
Throw away

Step 4, Vertex Seeds Finding : Vertex Search-Time Scan

Φϴ

Zoom Zoom

• Scan the track-only pixels around found vertex 
seeds


• For each location, draw a circle centered on the 
considered point


• Look for crossing points


• define angles θ and Φ


• Optimal seed position is achieved when θ ~ Φ
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Best Vertex Location

0 1 2 3 4 5
R (space-charge corrected) [cm]∆

0

0.1

0.2

• Seeds are then compared across images

• temporal coincidence

• 3D consistency

• only 2 prongs coming out of the vertex


• Cluster pixels coming out os the reconstructed vertex 
point


• Spatial resolution of the vertex finding: 
68% of the neutrino candidates have a 
reconstructed vertex within 0.75 cm of the true 
vertex
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Track Reconstruction
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Random points in 3D in:

• Sphere around the last found point 

• "physics independent" : no assumption 
on expected curvature radius, kinks, …

• Forward cone 
• rcone = 2.rsphere

• θopen = 30°

• average direction of last 10 cm of the 

track

• Assumes a globally straight track

• Helps jumping over dead regions and 

faint tracksM
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Reconstruction Example

• Kinetic energy from the reconstructed range

• Proton/muon candidate based on average pixel intensity

• Neutrino energy :  
• B is an effective nuclear binding energy for the CCQE interaction (~40 MeV)

true 
Eν     = 974.8 MeV

KE μ = 602.9 MeV

KEp  = 225.9 MeV

reconstructed 
Eν     = 993    MeV

KE μ = 626.8 MeV

KEp  = 220.6 MeV

Erange
⌫ = KErange

p +KErange
µ +mµ +mp �mn +B

MicroBooNE 
Simulation 
Preliminary

20 cm

40 cm
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Tracking diagnostic

• At the end of each track throw 3D points in a forward 
spherical cap of radius 3 cm and opening angle 37°


• 3 possible cases:

• points in dead region

• points in empty region

• points on a non-empty region


• All in empty pixel = reached end of track

• 2 planes in dead regions and 1 plane empty = tracker 

stopped in dead region

• Other cases are  failing in the middle of tracks

• Attribute a "good reconstruction" label to each track 

found in the vertex

M
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MicroBooNE 
Simulation 
Preliminary
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Reconstruction Example
MicroBooNE 
Simulation 
Preliminary

MicroBooNE 
Simulation 
Preliminary

MicroBooNE 
Simulation 
Preliminary

true 
Eν     = 496.5 MeV

KE μ = 195.5 MeV

KEp  = 157.1 MeV

reconstructed 
Eν     = 498    MeV

KE μ = 201.2 MeV

KEp  = 162.6 MeV• Reach dead wires in two planes : 

• Estimate direction before dead wires

• Push through dead region

• hopefully reconnect to rest of the track


• Mange to recover ~20% additional events

20 cm 20 cm 20 cm
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Angular Resolution

• Each track is associated to two angles:

• θ angle with respect to the beam direction

• Φ the angle of the projection in the (X,Y) plane 

with respect to the X axis

• Define the opening angle as the angle between 

two tracks
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Track Reconstruction performances1 Performance on Proton Reconstruction
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Figure 1: Based on the reconstructed length of the proton candidate, a kinetic energy can be estimated. We
plot the residual error (recoKEp ≠ trueKEp)/trueKEp as a function of the true kinetic energy
of the protons. The main distribution is flat and with an average close to 0, hinting for a good
linearity in kinetic energy reconstruction.

2 Performance on Muon Reconstruction
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Figure 4: Based on the reconstructed length of the muon candidate, a kinetic energy can be estimated. We
plot the residual error (recoKEµ ≠ trueKEµ)/trueKEµ as a function of the true kinetic energy
of the muons. The main distribution is flat and with an average close to 0, hinting for a good
linearity in kinetic energy reconstruction.
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Figure 2: We plot the residual error (recoKEp ≠ trueKEp)/trueKEp to estimate the global resolution of
the proton energy resolution. A fit of the central peak yields a 3.7% energy resolution.

1− 0.5− 0 0.5 1
µ

)/true KEµ-true KE
µ

(reco KE
0

50

100

150

200  / ndf 2χ  54.58 / 16
Constant  8.3± 185.6 
Mean      0.0013210± 0.0002081 
Sigma     0.00117± 0.03875 

MicroBooNE

Simulation

In Progress

Figure 5: We plot the residual error (recoKEµ ≠ trueKEµ)/trueKEµ to estimate the global resolution of
the proton energy resolution. A fit of the central peak yields a 3.9% energy resolution.

• Kinetic energy estimated on the 
range of the reconstructed 
tracks


• Residual error show no 
systematic bias with respect to 
true kinetic energy


• About 4% energy resolution on 
each individual particle 
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3 energy definitions

• Access to the full kinematics of the muon and the protons 
• Assuming 1μ1p CCQE interaction, we can access the neutrino energy

• MiniBooNE used only the muon kinematics to estimate the neutrino energy

• All three energies should (roughly) agree for 1l1p CCQE events,  

but not for more complex topologies, or cosmic background 

• The same can be done with an electron hypothesis in the νe case

Erange
⌫ = KEp +KEµ +Mµ +Mp � (Mn �B)

EQE
⌫ [p] = 0.5 ·

2 · (Mn �B) · Ep � ((Mn�B)

2
+M2

p �M2
µ)

(Mn �B)� Ep +

q
(E2

p �M2
p ) · cos ✓p

EQE
⌫ [µ] = 0.5 ·

2 · (Mn �B) · Eµ � ((Mn�B)

2
+M2

µ �M2
p )

(Mn �B)� Eµ +

q
(E2

µ �M2
µ) · cos ✓µ

EQE
⌫ [e] = 0.5 ·

2 · (Mn �B) · Ee � ((Mn�B)

2
+M2

e �M2
p )

(Mn �B)� Ee +

q
(E2

e �M2
µ) · cos ✓µ
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Track Reconstruction Performance15
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MicroBooNE Simulation Preliminary

FIG. 20. Relative di↵erence between the energy reconstructed
for the interaction (Erange

⌫

) and the true length-based energy
from the simulation (true Erange

⌫

). A fit by a Gaussian func-
tion allows to obtain an estimation of the global fractional
resolution of 2.2± 0.1%.

un-responsive channels are visible. The sharpness of918

these regions, however, is lower than for the vertexing919

stage itself, as the track reconstruction has moderate920

abilities to track across un-responsive wires provided that921

the two other planes have a 3D-consistent non zero charge922

deposition. However, due to the spatial extension of the923

tracks, and the global forwardness of the event, a vertex924

a meter upstream of an un-responsive region can fail re-925

construction if one of the tracks cross into that region.926

Indeed, the un-responsive region around Z ⇠ 700 cm in927

figure 10 has now moved to Z ⇠ 650 cm.928

IX. CONCLUSIONS929

We have presented a reconstruction method for three-930

dimensional event reconstruction of two-track events in931

LArTPCs. We have discussed the algorithms within932

the context of reconstruction of events in the Micro-933

BooNE detector. This reconstruction uses computer vi-934

sion and clustering tools to find 3D-consistent vertices,935

and a 3D stochastic best neighbor search to reconstruct936

tracks emerging from these vertices. Because the future937

experiments of the Fermilab SBN program have simi-938

lar LArTPC design and run in the same BNB neutrino939

beam-line, the code is easily adaptable for SBN use. The940

o↵-beam DUNE program, which will reconstruct atmo-941

spheric neutrinos, will also find aspects of the code to be942

applicable. The code that can be used to perform this943

reconstruction can be found publicly on GITHUB [17].944

The main parameters that a↵ect the performance of945

the vertexing algorithm are the out-going proton and946

muon energies and their opening angle. The vertexing al-947

gorithm is also a↵ected by the performance of up-stream948

reconstruction stages such as the SSNet labelling, the949

cROI finding, and the cosmic pixel tagger. From the out-950

put of the vertexing stage, the track finding algorithm is951

mainly a↵ected by the un-responsive regions. The de-952

pendency of the e�ciency on the energy is simply an in-953

creased probability of crossing such a region as the track954

length increases.955

The performance of the vertex reconstruction was op-956

timized to precisely place vertices on 3D-consistent kinks957

with a maximum e�ciency. The track reconstruction is958

then ran for all the found vertices. The performances of959

the track reconstruction are optimized with the objec-960

tive to find nearby tracks with small opening angle, and961

to maximize the length of the reconstructed prong but962

following a 3D-consistent path of non-zero charge depo-963

sition. A layer of smoothing algorithm is then applied964

to the found set of points and finally, a self-diagnostic965

is performed to ensure that the reconstructed variables966

are relevant, and reject the vertices for which the recon-967

struction failed to follow the track to its end to increase968

the purity of the final sample of events. The e�ciencies969

of the vertex finding and the track reconstruction are970

(52 ± 1)% and (75.5 ± 0.9)% respectively. The spatial971

resolution of the vertex finding algorithm is of the order972

of the wire spacing of MicroBooNE, and the track recon-973

struction achieves an energy resolution of 2.2±0.1%. The974

spatial reconstruction tools presented here are exploiting975

the excellent resolution capabilities of LArTPCs.976

Further work will include allowing the tracker to re-977

cover tracks by improving its ability to cross through978

un-responsive regions. The local ionization will also be979

exploited to better pin-point the end of muon tracks and980

separate the Michel electron. A spatial correction of the981

reconstructed points based on a precise measurement of982

the space-charge e↵ect inducing inhomogeneities of drift983

field and distorting the reconstructed tracks will also be984

performed, further improving the performances of this985

reconstruction.986
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FIG. 18. Relative e�ciency as a function of the true energy
for events that are being well reconstructed, i.e. for which the
reconstruction reaches the end of the tracks and with only two
found tracks above 5 cm.

Figure 18 shows, with the same color code as Figure868

16, the visible energy spectrum of all the generated 1µ1p869

neutrino events and the evolution of the e�ciency with870

respect to the neutrino visible energy. The average e�-871

ciency of the vertex reconstruction is (75.5±0.9)%, how-872

ever, a clear, linear, decreasing trend is visible, consis-873

tent with the behavior observed in the muon and proton874

single-particle e�ciencies from Figure 16.875

Figure 19(a) shows a comparison of the true and re-876

constructed visible energies. Each slice in true energy is877

fitted by a Gaussian around its mean value. The fit re-878

sults are shown as the black dots, and the errors on these879

dots correspond to the � of the fitted Gaussian. A linear880

fit performed on the result shows a linearity with a slope881

factor of 0.97± 0.01 and an o↵set of (19± 6)MeV, for a882

neutrino energy range of [300� 1000]MeV.883

Figure 19(b) shows the evolution of the fractional resolu-884

tion (�/µ from the previous Gaussian fits) as a function885

of energy. The errors are the errors on the parameters886

estimated by the Gaussian fit. The relative resolution is887

fitted by the function:888

�

E

=
Ap
E

(2)

where A represents the stochastic term of the resolu-889

tion.890

891

Figure 20 shows the relative error made in reconstruct-892

ing the full energy of the neutrino. The distribution893

is fitted with a Gaussian around its central peak to894

evaluate the global energy resolution. The peak of the895

distribution shows a bias in reconstructed energy of896

⇠ 0.5%, with a resolution of 2.2± 0.1%.897

898

The event shown in Figure 21 is a 974.8MeV neu-899

trino (true E

vis
⌫ ), producing a 602.9MeV muon and a900
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FIG. 19. (a) : Comparison of the reconstructed energy to
the true range-based energy. (b) Evolution of the resolution
as a function of the true length-based energy.

225.9MeV proton. Figure 21(a) shows the three ADC901

images corresponding to the view of each plane cropped902

around the neutrino interaction. Figure 21(b) shows the903

projections of reconstructed tracks for each plane over-904

laid on top of the corresponding ADC images. The905

straight vertical light blue lines correspond to the un-906

responsive wires. The reconstructed energies are re-907

spectively 626.8MeV for the muon track (red dots) and908

220.6MeV for the proton track (black dots). The re-909

constructed length-based energy is 993.4MeV and con-910

stitutes an error of +2% from the true visible energy.911

3. Spatial dependency of the e�ciency912

Figure 22 shows the spatial dependency of the e�-913

ciency based on the position of the vertex, projected914

on the (X,Z) plane (22(a)), and on the (Y,Z) plane915

(22(b)). On the projection on the (Y,Z) plane, regions916

with lower e�ciency corresponding to large regions with917
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220.6MeV for the proton track (black dots). The re-909

constructed length-based energy is 993.4MeV and con-910
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• Estimate the resolution for: 

• contained 1μ1p νμ interactions, 

• true muon kinetic energy > 35 MeV,

• true proton kinetic energy > 60 MeV


• Overall energy range : (2.2±0.1)% 
• Evolution in 1/√E typically dominated by stochasticity

• 81%/√E(MeV) = 2.5%/√E(GeV) => meets DUNE resolution target
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Particle ID
• Use a categorization CNN to identify contents of the image centered 

around the reconstructed tracks

• Classify the probability of presence of 5 types of particles : p,μ,π,e and γ

  16

 Particle ID 

Jarrett Moon - DNP - October 25, 2018

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Roadmap

Second Deep Learning application in the analysis

Classify the probability of the presence of five different particles being in the 
image (p,μ-,e-, ,πγ -)

PMT PreCuts

Cosmic Tagging / ROI Finding

Track / Shower Labels

Candidate Vertex Finding

3D Reconstruction

Select 1μ1p Select 1e1p

Particle ID

Look for:

Example of

Accurate proton ID
Potential e/  confusionγ

MicroBooNE 
Simulation 
Preliminary

  9

 Why Deep Learning?

Jarrett Moon - DNP - October 25, 2018

Why Deep Learning?

Our data comes in images. Convolutional Neural Networks (CNNs) were created 
for this sort of task

We use two categories of CNNs

Semantic segmentation networks (SSNet) 

Labels which parts of the image the 
network thinks are object X

e.g. In this image, the network labels 
the pixels it thinks are the car 

Classification networks

Asks: “Does this image contain object X?”

Yields a score for how confident the 
network is that the image contains X

"Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber” JINST 12, P03011 (2017) 
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Data/Simulation Comparison

• We developed a chain of reconstruction and selection of neutrinos based on MC 
studies


• Need to ensure their performance on data


• Respect blindness : small data sample of ~4x1019 POT


• Off-beam sample for cosmic rays studies


• MC sample of beam neutrino interactions


• Simulated beam neutrino interactions and cosmic sample are normalized to 
4x1019 POT and for a predicted spectrum to be compared to data


• Look for significant shape-only differences 
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Data/Simulation Comparison

  19

 Particle Energy Reconstruction 

Jarrett Moon - DNP - October 25, 2018

The 3D reconstruction provides the lengths of particle tracks. Comparing these 
gives evidence that tracks are reconstructed similarly in data

  20

 Neutrino Energy Reconstruction 

Jarrett Moon - DNP - October 25, 2018

Track lengths can be converted into KE using known the known stopping power 
of liquid Argon. 

For contained events this can be used to reconstruct the neutrino energy

• No significant distortion in data compared to predictions 
(within our statistically limited sample)


• Reconstruction, identification and selection seem to behave 
similarly on data and Monte Carlo
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Systematic Uncertainties

• Currently available : 

• Beam flux uncertainties


• ν-Ar uncertainties


• Oscillation fit and sensitivity study machinery 
taking into account full systematics

• In progress : detector-based systematics: 


• One simulated beam neutrino sample


• Vary detector parameters in multiple 
possible "universes"


• Build correlations and covariance matrices 
from the universes
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Coming soon

NNN18 Workshop

Semi-Supervision: Completing images
● Instead of training datas on labels, train data to reproduce data or be 

constrained by some consistency check
● Goal is to learn features in the dataset itself, not on simulation

Using similar idea to reproduce 
parts of MicroBooNE images

Use to provide guide for particle 
trajectories in dead regions

Useful aid for 3D track 
reconstruction (only for position, 
not for calorimetry)

Exploring the question: can we 
build features on data, then use 
them as starting points for training 
other supervised tasks?

22

NNN18 Workshop

Semi-Supervision: Consistent Correspondence
● Matching features across planes 

= locating 3D position 
● Have two correspondences 

(per starting plane)
● Early development looks promising, 

but still long way to go
● Predictions should be 3D 

consistent, e.g. of constraint 
● Exploring if this consistency 

constraint (in form of loss) will help 
with correspondence prediction -- 
best case scenario: supervised 
training on simulated images, then 
semi-supervised fine-tune on data

23

MicroBooNE

Figure 28: An example neutrino candidate event display from MicroBooNE data (event 41075, run
3493) showing a U plane view. (a) The raw waveform image in units of average baseline subtracted
ADC scaled by 250 per 3 µs. (b) The image after software noise-filtering in units of average baseline
subtracted ADC scaled by 250 per 3 µs. (c) The image after 2D deconvolution in units of electrons
per 3 µs. Prolonged signals associated with near-vertical tracks, such as the one at the top left of
each event display window, are recovered after the deconvolution step. Additionally, the image
quality near the neutrino interaction vertex improves after the 2D deconvolution, which is expected
to lead to improvements in the pattern recognition.

Figure 30 shows an event display of the U plane from a di�erent event, and shows a similar
improvement after the deconvolution. The delta ray (low-energy knock-out electron) associated
with the longer muon track at the bottom of the display comes into focus, and the short vertical
track pointing to the vertex is recovered. This short track may be associated with a proton that was
knocked out of an argon nucleus by a neutron associated with the neutrino interaction. Accurately
identifying tracks near neutrino interaction vertices is important for neutrino event reconstruction
at MicroBooNE as well as at DUNE [36].

Shown in figure 31 is yet another event display corresponding to the event showcased in
figure 30, this time for the V plane view. As for the case of the U plane for the same event, the delta
rays associated with the longer muon track at the bottom of the display and the neutrino interaction
vertex become more easily identifiable by eye in the image after the deconvolution, and the short
track near the neutrino interaction vertex is recovered. However, one also notices some blurring of
the event image near the neutrino interaction vertex. This is in part due to a deficiency in the ROI

– 39 –

• 2D deconvolution : tracks 
clearer, easy to follow


• Wire-to-wire cross-talk 
better accounted for

• Work on a new SSNet that 
learns spatial coherence


• Knows about rotations 
between the planes

• Work on a new CNN to fill 
in gaps in images


• No more dead wires!
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Conclusions

• MicroBooNE employs a novel technology to investigate MiniBooNE’s low 
energy excess


• Several analyses in parallel, developing independent tools that can be 
valuable for later LArTPC programs


• Data/prediction only show minor disagreement (not statistically significant), 
shows good maturity of the chain


• Upcoming improved signal processing and neutrino generators will improve 
reliability of the predictions and robustness of the Monte Carlo events
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Thank you!


