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Introduction ATLAS and the LHC

Probing the nature of the universe using

machine learning at the ATLAS experiment

Objective: probe the nature of the universe

Search for new physical phenomena or measure known phenomena

Experimental apparatus: ATLAS experiment (at the LHC)

The device that we will use to test hypotheses about the universe

Methodology: machine learning

Machine learning is increasingly used to exploit the enormous dataset

Let’s start with the experiment, as it defines what we can study
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Introduction ATLAS and the LHC

What is ATLAS? Image: ATLAS

ATLAS is a major scientific collaboration

∼3000 signing authors, >5000 members
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Introduction ATLAS and the LHC

What is the ATLAS experiment? Image: CERN

The ATLAS experiment is an enormous particle physics “detector”

Essentially a really big, fast, and complicated camera
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Introduction ATLAS and the LHC

Where is ATLAS? Image: CERN
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Introduction ATLAS and the LHC

What is the LHC? Image: CERN

The world’s largest and most powerful particle accelerator
27 km of superconducting magnets, cooled to 1.9 K (-271.25 ◦C)

Harder vacuum and colder than space!

Protons are accelerated to 6.5 TeV (99.999999% the speed of light)
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Introduction Particle physics

Probing the nature of the universe using

machine learning at the ATLAS experiment

Objective: probe the nature of the universe

Search for new physical phenomena or measure known phenomena

Experimental apparatus: ATLAS experiment at the LHC

The device that we will use to test hypotheses about the universe

Methodology: machine learning

Machine learning is increasingly used to exploit the enormous dataset

Now, why did we build such a huge device? Why is it useful?
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Introduction Particle physics

Why is the LHC interesting? Image: NASA

Big Bang Today
LHC

14 TeV
1017 K
10-25 s

The LHC is the best way to probe the earliest moments of the universe
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Introduction Particle physics

The Standard Model of particle physics
Medal image:
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The Standard Model is complete, but does not explain most of the universe

Steven Schramm (Université de Genève) Machine learning in ATLAS December 2, 2019 9 / 65

https://www.nobelprize.org/prizes/about/the-nobel-medals-and-the-medal-for-the-prize-in-economic-sciences/


Introduction Particle physics

Dark matter Image: NASA

The Standard Model (ordinary matter) represents only 5% of the universe

The LHC is sensitive to many well-motivated Dark Matter candidates
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Introduction Particle physics

Gravity Image: T. Pyle/Caltech/MIT/LIGO Lab

The Standard Model doesn’t explain the first force humanity “discovered”

LHC is sensitive to some models of gravitons, with implications on gravity
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Introduction Particle physics

Naturalness and the hierarchy problem

Why is gravity so weak compared to EM force / why is the Higgs so light?

Raw value
1036 GeV2

Quantum corrections
1036 GeV2

Higgs Boson2

(125 GeV)2

123456789012345678901234567890123456
-

123456789012345678901234567890107831
=

15625 = (125)2

-=

The LHC is sensitive to several possible explanations
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Introduction Machine learning

Machine learning at the LHC

The LHC collaborations have a lot of data

Machine learning techniques are used in ∼every part of the process

Building physics objects from detector electrical signals (reconstruction)

Correcting physics objects for mis-measurements (calibration)

Quickly filtering the enormous amount of input data (triggering)

Determining the origin of a physics object (identification)

Searching for unexpected detector signals (generic searches)

Improving the final data analysis sensitivity (multivariate analysis)

Validation of the quality of the recorded data (monitoring)

Quickly generating large-scale simulated datasets (fast simulation)

Machine Learning (ML) terminology: clustering + pattern matching,

regression, classification, anomaly detection, and generative models
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Introduction Machine learning

Brief introduction to ML (from a physicist)

ML is a powerful technique to extract information from a dataset

ML has both positives and negatives

Classification improvements using ML can be quite substantial

However, less understanding of what is being done

Need to ensure the ML is learning real features, not simulation artifacts

Need to have a way to quantify data vs simulation differences

There are many, many types of ML techniques

Next slides are a brief intro to two common ones: BDTs and NNs
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

var1

v
a
r2

Background
Signal
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

1. Independent variable cut(s)

var1

v
a
r2

Background
Signal

Cut
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

1. Independent variable cut(s)

2. Cut on var1 and var2

simultaneously

var1

v
a
r2

Background
Signal

Cut
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

1. Independent variable cut(s)

2. Cut on var1 and var2

simultaneously

3. Partition the parameter

space and simultaneously

cut multiple times

var1

v
a
r2

Background
Signal
Cut1
Cut2
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

1. Independent variable cut(s)

2. Cut on var1 and var2

simultaneously

3. Partition the parameter

space and simultaneously

cut multiple times

4. Calculate new properties f ()

and g(); cut simultaneously

on them instead

f (var1,var2)

Background
Signal

Cut

g
 (

v
a
r1

,v
a
r2

)
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Introduction Machine learning

Classification example

Typical HEP use case:

separate signal vs background

Two discriminating variables

What can we do?

1. Independent variable cut(s)

2. Cut on var1 and var2

simultaneously

3. Partition the parameter

space and simultaneously

cut multiple times

4. Calculate new properties f ()

and g(); cut simultaneously

on them instead

Rough conceptual analogy...

#3 ∼ Boosted Decision Trees

#4 ∼ Neural Networks
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Introduction Machine learning

Classification example, BDT perspective
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Introduction Machine learning

Classification example, BDT perspective
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Introduction Machine learning

Classification example, BDT perspective

var1
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In this simple example, the two

decision trees can be combined

into a single tree

In reality, not easy to cleanly

separate signal and background
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Introduction Machine learning

Classification example, BDT perspective

In reality, partitions are not perfect

The background is non-zero in the signal region

Having a reasonable amount of signal =⇒ keeping some background

Each tree has a misclassification rate

Define the final discriminant as a combination of individual trees,

weighted by their respective misclassification rates

Discriminant = c1 · DT1 + c2 · DT2 + ...
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Introduction Machine learning

Classification example, NN perspective

N1 = f (var1,var2)

Background
Signal
N3 Cut

N
2
 =

 g
 (

v
a
r1

,v
a
r2

)

Neural networks: more complex

Cut on combinations of

input variables

In analogy to the example:

Nodes N1 and N2 are the

functions f () and g()

Cut on N3, which is the

convolution of f () and g()

var1

var2
out

N1

N2

N3
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Introduction Machine learning

Classification example, NN perspective

How this works (in very brief):

Nodes 1 and 2:

Inputs: {var1, var2}, {var1, var2}
Parameters: {c1, c2, b1}, {d1, d2, b2}
Activation: ReLU, for non-linearity

N1 = max(0, c1 · var1 + c2 · var2 + b1)

N2 = max(0, d1 · var1 + d2 · var2 + b2)

Node 3 (the final discriminant):

Inputs: N1 and N2

Parameters: a1, a2, b3

Activation: Sigmoid, for a probability

N3 = 1
/[

1 + e−(a1·N1+a2·N2+b3)
]

var1

var2
out

N1

N2

N3

ReLU
(Rectified Linear Unit)

Sigmoid

0
0

1

0
0

x

We will look at this in

more detail later
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Introduction Machine learning

Classification example, NN perspective

The last slide was a bit simplistic

This is slightly more realistic

Layers 1 and 2 are “hidden layers”

Hidden = neither inputs nor outputs

If there are at least two hidden layers,

then the network is “deep”; a DNN

Output layer could have multiple nodes

One output = binary discriminant

(signal vs background)

2+ outputs = multi-class discriminant

(signal vs BG1 vs BG2 or similar)

var1

var2

out

ReLU
Sigmoid

N6

N7

N8

N9

N1

N2

N3

N4

N5

Layer 1 Layer 2 Output
Layer

Input
Layer

An infinitely deep network can represent any non-linear function

That said, in many cases we aren’t so close to infinity
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Introduction Machine learning

Machine learning in ATLAS

That is a very brief introduction to BDTs and NNs

BDTs define a series of partitions and weight different such series

NNs form non-linear combinations and convolutions of variables

BDTs and NNs are not the only types of ML!

They are, however, the dominant use type in HEP

Now, how does ATLAS make use of these ML tools?

To answer that, we need to understand what the data looks like
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ATLAS basics Detector

The ATLAS detector Image: CERN

Large detectors are built around each interaction point

The ATLAS experiment is the largest detector (by size)

Combining the different sub-detectors enables particle identification
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ATLAS basics Detector

Particle identification in ATLAS Image: CERN
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ATLAS basics Detector

Telling apart different particles involving hadrons

The last slide shows how to identify particles except quarks

However, particles involving quarks are much more complex

Quarks cannot exist in isolation: they immediately “shower”

We call this collimated stream of particles a “jet”

There are many different quarks and related particles

How can we tell them apart?

Requires a much more complex approach, and the whole detector!

Arguably the most active area of development for ML in particle physics
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ATLAS basics Detector

Differentiating between jets, simplified

p p p p

p p p p

Most quarks Gluons

b-quarks Unstable particle
decays to quarks
(W, Z, H, top, etc)

p p

Legend

Tracks
(charged particles)

Proton-proton
collision vertex

Tracking
Detector

Electromagnetic
Calorimeter

Hadronic
Calorimeter

More tracks,
less energy/track

Tracks do not point
to collision vertex

Multiple discernible
structures
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ATLAS basics Data taking

How much data do we have? Plots: ATLAS

Particle physics uses an unusual unit: the inverse femtobarn, fb−1

One inverse femtobarn ≈ 100 trillion proton-proton collisions

ATLAS has recorded 140 fb−1 of good data from 2015–2018

Therefore, 140 fb−1 ≈ 14 quadrillion = 14× 1015 collisions

That is a big dataset
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ATLAS basics Data taking

Pileup
Left: ATLAS

Right: ATLAS

The last slides are a very simplified view of what happens

In reality, averaged 34 collisions per crossing in Run 2 (2015–2018)

In-time pileup: other collisions that happened at the same time

Out-of-time pileup: overlapping collisions due to detector read-out time

We only want to look at one collision, so we need to separate pileup

Dealing well with pileup is the key to huge datasets
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25 simultaneous visible collisions

The tracking detector can resolve

individual vertices
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Reconstruction

Reconstruction and identification
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Reconstruction

The multiple stages of reconstruction

Reconstruction: turning detector signals into physics objects

Four main stages of reconstruction:

1. Convert analog electrical signals to digital signals to energy values

2. Group (cluster) regions of energy values into a single object

3. Calibrate the resulting object

4. Identify the origin of that object

The third and fourth steps might be inverted, or might be iterative

These are also two steps where ML is very promising

Regression is the ML name for a calibration-like algorithm

Classification if the ML name for an identification algorithm
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Reconstruction Calibration

Object calibration (regressions)
Left: CONF-2017-029

Right: Ennis (2017)

ATLAS is increasingly making use of regressions

Boosted Regression Tree (BRT) significantly improves pτT resolution

Resolution = measurement precision, want it to be 0 (perfect)

NNs are also used for regressions, here for the jet mass

Comparing a normal calibration vs neural network regression

NN calibration is a sharper peak (better resolution) =⇒ many benefits
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Reconstruction Identification

Jets, revisited: a second stage classification

p p p p

p p p p

Most quarks Gluons

b-quarks Unstable particle
decays to quarks
(W, Z, H, top, etc)

p p

Legend

Tracks
(charged particles)

Proton-proton
collision vertex

Tracking
Detector

Electromagnetic
Calorimeter

Hadronic
Calorimeter

More tracks,
less energy/track

Tracks do not point
to collision vertex

Multiple discernible
structures
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Reconstruction Identification

Hadronic decay tagging Both: JETM-2018-03

Goal: identify hadronic decays (signal) vs quarks/gluons (background)
Even two-variable simple selections give impressive results

Combined O(10) variables into a BDT or DNN
Huge improvements, 2-3× increased background rejection

However, BDTs and DNNs are still performing similarly
They both use “high-level” variables (properties of jets)
TopoDNN adds low-level info (properties of inputs to jets)
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Reconstruction Identification

Comparing data and simulation Both: JETM-2018-03

Next, define high-purity “control regions”

Allows for comparing data and simulation

This can be used to control and cross-check our ML tools

DNN discriminant agrees well between data and simulation

They are identical within the physical uncertainties

E
v
e

n
ts

 /
 5

 G
e

V

500

1000

1500

2000

2500 Data 2015+2016

 (top)tt

)W (tt

 (other)tt

)WSingle Top (

Single Top (other)

 + jetsW

 + jets, multijetZ, VV

Total uncert.

Stat. uncert.

 modelling uncert.tt

ATLAS
1 = 13 TeV, 36.1 fbs

=1.0 jetsR tkTrimmed anti

jet) < 1.0b jet, R(largeR∆

 > 350 GeV
T

p

 [GeV]combm jet RLeading large

60 80 100 120 140 160 180 200 220 240

D
a

ta
/P

re
d

.

0.5

1

1.5

E
v
e

n
ts

 /
 0

.0
2

5
1000

2000

3000

4000

5000

6000
Data 2015+2016

 (top)tt

)W (tt

 (other)tt

)WSingle Top (

Single Top (other)

 + jetsW

 + jets, multijetZ, VV

Total uncert. (excl. tagger)

Stat. uncert.

 modelling uncert.tt

ATLAS
1 = 13 TeV, 36.1 fbs

=1.0 jetsR tkTrimmed anti

jet) < 1.0b jet, R(largeR∆

 > 350 GeV
T

p

 > 40 GeVcombm

 jet DNN top  discriminantRLeading large

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
a

ta
/P

re
d

.

0.5

1

1.5
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Reconstruction Identification

Multi-class tagging Both: EXOT-2017-14

Sometimes there are multiple similar objects to differentiate

Different hadronic decays can appear similar: W/Z vs H vs top vs QCD

Multi-class DNN trained on a mix of low-level and high-level variables

First stage: discriminate against non-decaying (QCD) jet background

Second step: use discriminant likelihoods for signal ambiguity resolution
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Reconstruction Identification

Decorrelated taggers Both: PUB-2018-014

ML exploits correlations, but this may not be desired

When measuring a variable, you don’t want correlations to change it

Studied a variety of decorrelation techniques

Two ML-based: uniform boosted BDTs and adversarial neural networks

Adversarial training parametrizes the trade off: shaping vs classification

Inclusive selection:
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Reconstruction Identification

Adversarial neural networks (PUB-2018-014)

Idea: put two networks competing against each other

First network: perform the classification, signal vs background

Second network: insist that the shape remains unchanged

Change the loss function to make the networks compete

Ltot = Lclassifier − λ · Ladversary, where λ is a hyperparameter

Result: Adversarial Neural Network (ANN, 6= Artificial NN)

This is generic: can be applied to any variable(s) of interest

However, adversarial networks can be very hard to train
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Reconstruction Identification

Jet identification: quark/gluon tagging
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Reconstruction Identification

Convolutional neural networks (CNNs) (image)

CNNs are a dominant form of image recognition
Convolutions are essentially mini-patterns; CNNs have several levels

Large patterns: large parts of faces
Medium patterns: individual parts of faces
Small patterns: edges and gradients (structural transitions) of faces
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Reconstruction Identification

CNNs and jet images Both: PUB-2017-017

“Jet images” and CNNs have been tested for quark/gluon tagging

Convolutional NN uses tracks and calorimeter towers as inputs

Different inputs are analogous to different “colours” in RGB pictures

Moderate gain over two-variable likelihood for high quark efficiency

However, ultimately little gain beyond using the number of tracks

Not enough information for the CNN to exploit in this context
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Reconstruction Identification

Jet identification: b-tagging
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Reconstruction Identification

Ordering in b-tagging (PUB-2017-003)

When there is an ordering expectation, it should be taken into account

Recall that b-jets are primarily identified by displaced vertices

Sort all tracks by their displacement significance

Non-b-jet: random, uncorrelated track displacements, no real structure

b-jet: correlated displacements, multiple tracks from same b-vertex

Cuts on displacement work, but neglect the track-track correlations
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Reconstruction Identification

RNNs and b-tagging
Left: PUB-2017-003

Right: PUB-2017-013

Use of tracks as input to RNN for b-tagging

Recurrent NN considers up to 15 tracks for each jet (for training speed)

∼60% gain using same variables vs likelihood, ∼140% with extra vars

RNN output is an input to the higher-level b-tagging BDT

Joint improvements from physics and ML developments

Important to push forward in both directions for the best possible result
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Steven Schramm (Université de Genève) Machine learning in ATLAS December 2, 2019 49 / 65

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-013/


Final analysis

ML in analysis

Steven Schramm (Université de Genève) Machine learning in ATLAS December 2, 2019 50 / 65



Final analysis

Preparing for a physics analysis
Left: HIGG-2016-33

Right: CMS

So far we have discussed building, calibrating, and identifying objects

These ML improvements propagate to searches and measurements

Canonical example: measuring Higgs boson properties

Clear “spike” in the data for the two-photon or two-b-jet mass

This is the easiest way to show the existence of a new particle

ML can be used to increase the prominence of this population of events
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Final analysis

ML in the final results
Left: HIGG-2013-32

Right: HIGG-2018-13

BDTs and NNs are used throughout many high-profile ATLAS results

BDTs played a key role in the first evidence for H → ττ

Note that the τ particle is identified using a BDT (another type of jet)

At the analysis level, another BDT improves compared to cut-based

BDTs are also key to last year’s ttH observation

Two separate BDTs are used, with multiple channels and categories
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Looking toward the future

Looking toward the future
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Looking toward the future

Looking toward the future Both: ATLAS computing

Currently the LHC delivers ∼ 8.5× 109 collisions per second

This is set to increase to ∼ 50× 109 collisions per second

There will also be much more information in every event

Below is the foreseen associated computing resource costs

Something needs to be done to reduce computing requirements

Storage is hard, but CPU can be addressed more directly
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Looking toward the future

Simulation Both: PUB-2018-001

Currently, roughly half of all CPU is dedicated to simulation

This is going to continue, we need more simulation than data

The problem is the fully detailed ATLAS simulation is slow

Enormous number of interactions to propagate through the detector

Two main types of generative models under study

Generative Adversarial Networks and Variational AutoEncoders
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Looking toward the future

Generative Adversarial Networks (GANs) (image)

Similar to our previous discussion on adversarial networks
Puts a generator against a discriminator

Generator: produce images from random noise inputs

Discriminator: tell “fake” images apart from real ones

If training succeeds, the discriminator can no longer tell what is real
At this point, the generator can be used to produce realistic data
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Looking toward the future

Variational AutoEncoders (VAEs) (image)

VAEs compress information to a “latent space”, then reconstruct
Essentially learning an identity matrix with a small dimensionality

Training: minimize difference between inputs and outputs

Once trained, the decoder has learned how to create input-like images
Cut the network, starting from latent space, and use noise as inputs

Will then produce realistic images similar to the training inputs

Steven Schramm (Université de Genève) Machine learning in ATLAS December 2, 2019 57 / 65

https://www.compthree.com/blog/autoencoder/


Looking toward the future

What is the current status? (SIM-2019-007)

Significant update to the VAE approach this month

Making enormous improvements, but still room for improvement

Main focus so far is on electrons, later extend to hadrons

Speeds not listed, but typically orders of magnitude faster with

VAE/GAN than full simulation when running with GPUs
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Looking toward the future

Anomaly detection

Another use of machine learning is to detect unusual situations

Train ML to understand the expectation

Look for deviations from that expectation

Two main use cases:

1. Unexpected features in a time series

2. Statistically significant outliers in N-dimensional space

Both of these are common in industry applications

They are increasingly under study also in HEP

In particular, the topic of statistical outliers is a major focus right now
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Looking toward the future

Anomaly detection: statistical outliers (plot)

Anomaly detection is used a lot in monitoring for fraud

Most likely your credit card purchases are being watched this way

Many parameters to such methods, looking for unusual behaviour

Steven Schramm (Université de Genève) Machine learning in ATLAS December 2, 2019 60 / 65

https://www.researchgate.net/figure/Figure-1-anomaly-detection_fig1_321682378


Looking toward the future

Anomaly detection in HEP (arXiv:1808.08992)

Lack of discovery of new physics so far prompts questions

Are we looking in the wrong place for new physics?

Increasing interest in more generic searches for new particles

Example of jet identification: consider an autoencoder

Train the autoencoder on normal Standard Model jets

The ML is then able to reconstruct normal jets, but not abnormal jets

Look for jets where the autoencoder output is far from the input
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Looking toward the future

Anomalous jet identification (arXiv:1808.08992)

Autoencoder was trained on QCD jets (light quarks)
QCD jets are thus reconstructed similarly (low reconstruction error)
Both hadronic top quark decays and gluinos show up as anomolous jets
Stable also vs MC type, so it’s not learning MC features

This principle can be expanded
Train on all known jet types and look for anomalies
Iteratively add detector features/etc to the training as encountered

May eventually encounter an unexpected type of new physics
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Summary

Summary
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Summary

A few last thoughts

ML can be a powerful tool, but it is not magic
Inputs matter a lot: better inputs = better performance

Having sufficient statistics is important: it needs to be able to “learn”

You need to pre-process training samples to avoid undesired features

Don’t leave everything to the machine
With infinite statistics and complexity, machines could learn “anything”

We do not live in such a world, so we need to help the machine

ML + domain knowledge is a winning combination

ML algorithms do not necessarily mean increased MC dependence
It is not uncommon for ML to reduce MC modelling uncertainties

You can even use adversaries to not learn data/MC or MC/MC diffs

That said, you should still check this, as bad things can happen

Recall that ML is an approximation algorithm
If you can calculate the exact likelihood or analytic solution, do it!

ML can at best converge on this exact solution
ML is most useful in situations where exact solutions are intractible

Most commonly situations with many useful (distinct) dimensions
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Summary

Summary

ATLAS has a big dataset, and this is only going to grow

Machine learning is increasingly used to exploit this data

Used in all corners of the experiment

Triggering, reconstruction, analysis, simulation, and much more

ATLAS is using a variety of three-letter ML acronyms to do this

BDTs, DNNs, CNNs, RNNs, ANNs, BRTs, GANs, VAEs, ...

There are also many other approaches under study but not yet public;

the field of ML is evolving at an extremely fast rate

HEP benefits a lot from watching external community developments

At the same time, we sometimes have our own contributions as we care

about some topics more than most external people

In the coming years, ATLAS dataset will approach the exabyte scale

It’s important to start thinking now about how we can benefit

Machine learning usage is only going to increase!
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Backup

Backup Material
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Backup

Overlapping signal definitions

It is hard to unambiguously define a top quark
Natural confusion with W boson as it’s part of the decay

The W is also easy to confuse with Z and H bosons
W and Z are ∼identical except for small mass shift

Higgs is a bit more different, but still similar substructure

What if our analysis involves top, W, Z, and Higgs?
Need a tagger that can tell them apart from each other AND quarks
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Backup

Multi-class jet identification (EXOT-2017-14)

We would have five labels, but we will combine W and Z into V
Design a network with four outputs: V, H, top, and quarks/gluons

Last layer uses sigmoid activation =⇒ each output is between 0 and 1

Define “probabilities” (not between 0 and 1) as:

P(V) = log10

(
DV

0.9 · DQCD + 0.05 · (DH + Dtop)

)
Same for H and top, just switch labels as appropriate

However, these are not exclusive: a jet can be multi-tagged
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Backup

Second-stage identification

In case a jet is tagged with multiple origins, how can be resolve this?

Simple approach: log ratios of single-tag discriminants

End result is unique identification as V, H, top, or QCD
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Backup

An alternative: SoftMax
This approach works, but it is complex and has three stages

Raw discriminant D(X), probability P(X), and multi-tag decision T(X)
SoftMax is an alternative output layer choice

All values are in the range [0,1] and are normalized such that
∑

Xi = 1
Outputs are now probabilities, use most probable label as final decision
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P(V): D(V)/[D(QCD)+D(H)+D(top)
P(H): D(H)/[D(QCD)+D(V)+D(top)
P(top): D(top)/[D(QCD)+D(V)+D(H)

T(V) = P(V), log[D(V)/D(H)], log[D(V)/D(top)]
T(H) = P(H), log[D(H)/D(V)], log[D(H)/D(top)]
T(top) = P(top), log[D(top)/D(V)], log[D(top)/D(H)]

T(X) = MAX(P(Xi))
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Backup

A closer look at jet images for q/g tagging

Individual jet images are very sparse

This is challenging for CNNs to handle

Convolutions are looking for consistent features in a given grid size
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Backup

Training adversarial networks (plot)

Training proceeds in stages

1. Pre-train the classifier

2. Pre-train the adversary on

the trained classifier

3. Simultaneously train the

classifier and adversary

Necessary for convergence

Need to start from a

reasonable classifier

Adversary then learns the

desired pre-tag distribution

and how the classifier differs

Then the two are allowed to

evolve together to converge
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Backup

Expanding to unsupervised learning

So far, we have always been talking about supervised learning

When training, you know the correct result (truth information)

Anomaly detection is a place where you may want to stop doing this

Train directly on the data to avoid MC limitations

The data will have features not in MC (detector structure, etc)

In this case, the training has no truth information

This is known as unsupervised learning

Multiple ways to consider doing this

1. Define control and signal regions in data, train in control regions

2. Rely on any anomalies being rare enough to not impact training

The first option is the normal HEP approach, the second is unique
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Backup

Contamination in anomaly detection (arXiv:1808.08992)

When training the autoencoder, it will focus on the bulk of the inputs
Rare inputs will be neglected as they have ∼no weight

As such, you can train and use anomaly detection on the same data
Only works for truly anomalous signals (low contamination)

Still remarkably powerful: 10% signal contaimination in training leads

to 10% signal efficiency at 1% background efficiency

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

Signal contamination fraction in training dataset

PCA
Dense
CNN

S
ig

n
a
l 
e
ffi

ci
e
n
cy

 @
 1

%
 b

a
ck

g
ro

u
n
d

 e
ffi

ci
e
n
cy
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Backup

Image denoising for pileup mitigation (PUB-2019-028)
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Backup

Image denoising for pileup mitigation (PUB-2019-028)

Missing transverse momentum, Emiss
T , is a full event balance

Does a good job suppressing resolution pileup dependence

However, has some moderate implications on the scale

Trained to optimize resolution, not scale

An area that may improve later with a different optimization
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