

CEA Paris-Saclay IRFU Seminar

First Results of the Muon g-2 Experiment at Fermilab

 $\vec{\mu_S} = g \frac{q}{2m} \vec{S}$

Liang Li Shanghai Jiao Tong University

Muon g-2 Collaboration

US Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central College
- Northern Illinois
- Regis
- Virginia
- Washington

US National Labs

- Argonne
- Brookhaven
- Fermilab

China

- Shanghai Jiao Tong

Germany

Dresden

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

Korea

- CAPP/ISB
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Muon g-2 Collaboration

7 countries, 35 institutions, 190 collaborators

May 27-31, 2019 Elba Collaboration Meeting

What is g-factor?

Spin, magnetic momentum, g-factor

- Intrinsic magnetic momentum for any (charge) particle with spin S
- g-factor dictates the relationship between momentum and spin, tells something fundamental about the particle itself (and those interacting with it)
 - Classical system \rightarrow g = 1
 - Elementary particles such as electrons \rightarrow g = 2
 - Composite particles such as protons \rightarrow g != 2
 - proton g=5.6, neutron g=-3.8
- It provides a unique prospective to analyze the particle without 'breaking' it: observe and learn!

Why g=2 or not?

1928 Dirac predicted g=2 for electron

- Do we really 'see' g=2 as predicted by Dirac?
- NO! [1948 Kush and Foley measured $g_e = 2.00238(6)$]
 - Where does this 0.1% deviation comes from?
 - Empty space ?!
- As it turns out, the space is never 'empty', virtual particles pop in and out within short period radiative corrections

Quantum Corrections

Soon in 1948 Schwinger calculated first order correction

- $a_e = \alpha / 2\pi = 0.00118$
- Compared to experimental value $a_e = 0.00119(5)$
- First order QED: beginning of QED and the Standard Model

More Quantum Corrections

Consider QCD (hadronic) and electroweak corrections

- Difference seen in theory and experiment values
- New correction beyond EW scale? beginning of the Beyond Standard Model?
- g-2 is sensitive to new physics

Muon g-2 Theory: Summary

Muon g-2 Experiment

Over 50 years of non-stopping improvement on δa_{μ}

- Pushing both theoretical and experimental frontend
- Last measurement from BNL E821 (2004) came with 0.54ppm
- New muon g-2 experiment at Fermilab aim at 0.14ppm
- Very exciting and highly expected measurement!

Muon g-2 Experiment vs. Theory

 $a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm Weak} + a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL} = 116591810\,(43)\times10^{-11}$

WP20: world average value of SM calc.

- Strong theory community consensus
- "Recent lattice result by BMW with 0.8% error needs further study"
- We (experiment) do not pick and choose theory value to compare

Muon g-2 Experiment vs. Theory

Latest comparison gives 3.7 σ difference

- Hint of BSM physics
- With improvements in theory calculation and experiment measurements, muon g-2 as a fundamental property can serve as a benchmark test for any new physics, such as dark matter, SUSY...
- Or even "Monsters"!

E821(BNL) vs. E989(Fermilab)

E821 (BNL) : a_{μ}^{exp} = 116 592 089 (63) X 10 ⁻¹¹ Uncertainty: 0.46 ppm stat., 0.28 ppm syst.

Goal: reduce experimental uncertainty by a factor of 4 New team: >95% new people

New equipment: new beam + new detector + new monitor probes

- 21 times more statistics: powerful Fermilab particle source
 - $\delta_{stat} = 0.46 \text{ ppm} \rightarrow 0.1 \text{ ppm}$
- New segmented calorimeters, straw wire tracker, fast muon kicker...
 - $\delta \omega_a = 0.21 \text{ ppm} \rightarrow 0.07 \text{ ppm}$
- Long shimming period, magnet temperature stability, more/better in-situ calibrations, more probes, modern instrumentation...
 - δ(ω_p) = 0.17 ppm → 0.07 ppm

E989 (Fermilab) expected experimental uncertainty: 0.14 ppm ~ 16 X 10 ⁻¹¹ > 5 σ deviation with the same central value

The Big Move of The Big Ring

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

Arriving at Fermilab

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

Experimental: How to Measure?

The name of game changes: a $\rightarrow \omega$

- Put (polarized) muons in a magnetic field and measure precession f.q.
- Get muon spin direction from decayed electrons
- $a_{\mu} \sim$ difference between precession frequency and cyclotron frequency

 $\omega_a = \omega_s - \omega_c$

mc

 μ^+

g=2

Frequency Measurements

Never measure anything but frequency !

Arthur Schawlow 1981 Nobel Laureate

Frequency Measurements

Frequency measurements can be done in very high precision

Measure frequency ratio and extract from several measurements

$$a_{\mu} \sim \frac{\omega_a}{\langle B \rangle} = \frac{g_e}{2} \frac{\omega_a}{\varpi_p} \frac{m_{\mu}}{m_e} \frac{\mu_p}{\mu_e}$$

- ω_p is the proton precession frequency ($\omega_p \sim IBI$)
- + ϖ_p is the weighted magnetic field folded with muon distribution
- All other values from Committee on Data for Science and Technology (CODATA), uncertainty < 25 ppb
 - E.g. muon-to-electron mass ratio by muonium hyperfine structure experiment
- Final measurements done in three steps
 - Inject muons into a ring with uniform magnetic field
 - Measure muon frequency difference ω_a
 - Measure proton precession frequency ω_{p} and muon distribution
 - Blind analyses: measurements and correction factors done
 before simultaneously and independently *before* final answer

Experiment Setup

Muon Campus Plan

Muon Campus and MC1

Muon Campus

- Source generates 35 keV H⁻ ion beam.
- Linac accelerates H⁻ ion beam to 400 MeV and strips e-
- Booster accelerates protons from 400 MeV to 8GeV
- MI-8 Line takes the beam from the booster to the Recycler
- Recycler splits a batch from the booster into 4 bunches small enough to fit in the storage ring
- •Beam strikes target to create pions
- M2/M3 lines take the pion/muon/proton beam from target to delivery ring
- Pions decay in the delivery ring protons are kicked out
- M4/M5 lines then take the muon beam to MC1

Muon Storage

Muon Storage

Muon Injection and Storage System

Truncated double cosine theta superconducting septum magnet

Superconducting inflector

- Provides nearly field free region for muons to enter the ring
- Beam injected through magnet windings
- Does NOT perturb main precision field

Muon Injection and Storage System

- Pulsed fast magnetic kickers
- Direct muons onto storage orbit (~10 mrad)
- 1-turn pulsed magnet (~200 G)

Electric Quadrupoles

Muon Injection and Storage System

Pulsed electric quadrupoles

- Vertical beam confinement
- Pulsed HV power source
- Operates at \pm 18-20 *KV*

Magnetic Shimming

Magnetic field need to be uniform to $\pm 1~\text{ppm}$ level averaged over azimuth

- 1 B field ~ 1.45T
- 12 C shape flux return yokes
- 72 poles
 - Minimizing higher-order multipoles
 - Dipole moment ~ 1.45T
- Field Shimming
 - Passive shim method (geometry)
 - 24 iron top hats
 - 864 wedges: angle quadrupole
 - >1000 edge shims: sextapole
 - >8000 surface iron foils
 - Active shim method (current)
 - Surface correction coil
 - Power supply feedback

g-2 Magnet in Cross Section

Measuring ω_p, the B field

- 378 Fixed Probes above and below the vacuum chamber measure the field continuously throughout the experiment
- A 17-element NMR Trolley maps the field where muons live every 2-3 days: beam off

- Digitizing Free Induction Decay (FID) signals for more precise frequency determination
- Monitoring the field and provide feedback to the storage ring power supply during data taking
- Absolute and cross calibration of all probes

(FID) Waveforms with ~10 ppb resolution

B Field Measurements

Shim 1.45 T field to high uniformity and measure it vs time

Detector Performance: Calorimeter

Segmented, fast response, PbF₂ crystal calorimeter (9X6 array)

- Lead-floride Cherenkov crystal reduces pileup: SICCAS-SJTU-Washington
 - Fast separation for pileup backgrounds (>2.5 ns, 100%)
 - Resolution (2.3% at 3 GeV) better than requirement (5%)
- Silicon photomultiplier (SiPM) directly on back of PbF₂
 - No disturbing magnetic field, avoid long light guides

Detector Performance: Tracker

Doublet of UV straw chambers

New straw tracking detector

- w straw tracking detector Two stations installed, 1024 straws •
- Measure muon decay vertex and momentum

Detector Performance: Tracker

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

June 28th, 2021 36

Measuring ω_a

The integrated number of electrons (above E_{th}) modulated at ω_a

- Angular distribution of decayed electrons correlated to muon spin
- Five parameter fit to extract ω_a

$$N_{\text{ideal}}(t) = N_0 \exp(-t/\gamma \tau_{\mu}) [1 - A\cos(\omega_a t + \phi)]$$

- Pileup
- Gain (energy scale) changes
- Coherent Betatron Oscillations
- Muon Losses
- E-field and pitch corrections

Wiggle, Wiggle, Wiggle...

2D Wiggle

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

Wiggle, Wiggle, Wiggle... First commissioning run: June 2017

Wiggle, Wiggle, Wiggle...

Wiggle, Wiggle, Wiggle...

Data Analyses

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

Data Analyses

The glory details

- Muons make horizontal circular movement under influence of magnetic field B, what about vertical movement?
 - Need to use electrostatic quadruples to confine muons vertically, this brings additional complication

$$\vec{\omega}_a \equiv \vec{\omega}_s - \vec{\omega}_c = -\frac{q}{m_{\mu}} \left[a_{\mu} \vec{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Pitch correction minimized if $\gamma = 29.3$

- How to measure this?
 - Choose γ = 29.3, p_µ= 3.09 GeV (magic momentum)
 - Residual electric field correction
 - Muon beam swims and breathes vertically and horizontally
 - Coherent betatron oscillations (CBO)
 - Betatron motion leads to a pitch correction since muons don't always travel perpendicular to the magnetic field

42

Electric field correction

E-field Correction, C_e

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + \underline{C_e} + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

$$\vec{\omega}_a = -\frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

Not all muons are at magic momentum!

$$C_e = 2n(1-n)\beta_0^2 \frac{\langle x_e^2 \rangle}{R_0^2}$$

$$\langle x_e^2 \rangle = \sigma_{x_e}^2 + \langle x_e \rangle^2$$

Correction depends on width and mean

$$C_e \sim 450 \ ppb$$
, $\delta_{C_e} \sim 50 \ ppb$

Pitch Correction, C_p

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

Phys. Rev. Accel. Beams 24, 044002 (2021)

Muon Loss Correction, C_{ml}

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

Phase-momentum correlation due to dipole bending magnets in upstream beamline

Momentum-dependent muon losses mean different average phase early to late

$$\Delta \omega_a = \frac{d\phi}{dt} = \frac{d\langle \phi \rangle}{d\langle p \rangle} \cdot \frac{d\langle p \rangle}{dt} \neq 0$$
$$C_{ml} < 20 \, ppb, \, \delta_{C_{ml}} \sim 5 \, ppb$$

Relative Phase [mrad] Data Data Fit imulation [68% CL -0.5 0 0.5 ∆p/p₀ [%] Units 1/5 low 1/5 hiah Arb. 10-10 10-10-10-200 50 100 150 250 300 350 Time [us]

Phys. Rev. Accel. Beams 24, 044002 (2021)

Phase-acceptance Correction, Cpa

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \; \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \; \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

Beam shifting from early-to-late time due to storage ring conditions

Decay-position-dependent phase means different average phase early to late

$$\Delta \omega_{a} = \frac{d\phi}{dt} = \frac{d\langle Y_{RMS} \rangle}{dt} \cdot \frac{d\langle \phi \rangle}{d\langle Y_{RMS} \rangle} \neq 0$$

$$C_{pa} \sim 200 \ ppb, \ \delta_{C_{pa}} \sim 80 \ ppb$$

Phys. Rev. Accel. Beams 24, 044002 (2021) Phys. Rev. D 103, 072002 (2021)

Magnetic Field Measurement, ω_p

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \left\langle \omega_p(x, y, \phi) \right\rangle \times M(x, y, \phi) \right\rangle (1 + B_k + B_q)}$$

NMR trolley maps magnetic fields at about 9000 locations in azimuth in the storage region every 2-3 days

Fixed NMR probes interpolate the field between the trolley runs

Dedicated Plunging Probe to calibrate the NMR trolley probes to the water sample

Phys. Rev. A 103, 042208 (2021)

Muon-weighted Average Field, ω_p

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle\!\left\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\right\rangle\!\right\rangle\!\left(1 + B_k + B_q\right)}$$

The actual field experienced by the muon in the storage region

Measure muon beam distribution with straw trackers by extrapolating positron tracks back to the storage region

Use beam dynamics simulations, tuned to the tracker data, to get the muon beam distribution around the ring

$$\delta_{\tilde{\omega}_p} \sim 56 ppb$$

Phys. Rev. A 103, 042208 (2021)

Muon's view

Kicker Transient Field, *B_k*

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \ \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

When kicker produces pulsed magnetic field (~ 200G) for 150 ns, eddy currents generated in kicker plates

Faraday magnetometer installed between the plates to measure the rotation of polarized light in a crystal due to the transient field

Signal is fitted with an exponentially decaying function: $\Delta B(t) = \Delta B(0) \exp(-t/\tau_k)$

 $B_k \sim 30~ppb$, $\delta_{\mathcal{C}_{pa}} \sim 40~ppb$

Phys. Rev. A 103, 042208 (2021)

Magnetometer between kicker plates

Electrostatic Quadrupole Transient Field, B_q

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \ \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

ESQs are (dis-)charged every muon fill ($700\mu s$)

Electric pulse induces mechanical vibrations in ESQ plates and then generates magnetic perturbations

Customized NMR probes measured B_q at several positions in the storage region

Uncertainty determined by the full width of the measured effect due to limited measurements in Run1 \rightarrow expect improvement in Run2

 $B_q \sim 20 \ ppb$, $\delta_{B_q} \sim 90 \ ppb$

Phys. Rev. A 103, 042208 (2021)

L.Li, CEA Paris-Saclay / IRFU / Department of Particle Physics Seminar

Quad plates inside vacuum chamber

ω_a^m Measurement

$$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_p(T_r)} = \frac{f_{\text{clock}}(\omega_a^m)(1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

itude [a.u.]

fa ----| fcB0

149.2 ns 10⁶ 10⁷

The ideal and naïve case, 5parameter function:

$$N(t) = N_0 e^{-t/\tau} \left[1 + A_\mu \cos(\omega_a t + \phi) \right]$$

- Pileup
- Gain (energy scale) changes
- Coherent Betatron Oscillations
- Muon Losses
- E-field and pitch corrections

$$F(t) = N_0 \cdot N_x(t) \cdot N_y(t) \cdot \Lambda(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot [1 + A_0 \cdot A_x(t) \cdot \cos(\omega_a^m t + \phi_0 \cdot \phi_x(t))]$$

Phys. Rev. D 103, 072002 (2021)

$$\begin{split} & \overbrace{\mathbf{0},\mathbf{5}}^{\mathsf{D}} \underbrace{\begin{bmatrix} \mathbf{0},\mathbf{5}\\ \mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0}\\ \mathbf{0},\mathbf{0}\\ \mathbf{0}\\ \mathbf{0}\\$$

Blinded Analysis

Avoid possible bias during analysis

• Credibility is the key

Hardware Blinding

• Perturb the clocks from the nominal frequency of 40 MHz \rightarrow 39.XX MHz

Blinded Analysis

Avoid possible bias during analysis

Credibility is the key

Hardware Blinding

• Perturb the clocks from the nominal frequency of 40 MHz \rightarrow 39.XX MHz

Software Blinding

- Software package to apply individual offsets to fit results to ensure independence of analyses
- $\omega_a \rightarrow \omega_a \pm \Delta ppm$
- Unblinding can be done in different stages and cross check

Relative Unblinding

- 6 independent ω_a analysis groups with multiple methods blinded from each other
- Relative unblinding performed for analysis consistency check
- A-weighted method extract more information from high energy positrons
- Statistics uncertainty: δ_{stat} = 0.43 ppm < 0.46 ppm (BNL)

Systematics: Numerator

Source	Uncertainty
Frequency Standard	1 ppt
Frequency Synthesizers	0.1 ppb
Digitization Frequency	2 ppb
Total Systematic	2 ppb

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
C_{pa}	-184	-165	-117	-164
Stat. uncertainty	23	20	15	14
Tracker & CBO	73	43	41	44
Phase maps	52	49	35	46
Beam dynamics	27	30	22	45
Total uncertainty	96	74	60	80

$R(\omega_a)$ with detailed	s	systematic	s cate	egories	[ppb]
Total systematic uncertainty		65.2	70.5	54.0	48.8
Time randomization		14.8	11.7	9.2	6.9
Time correction		3.9	1.2	1.1	1.0
Gain		12.4	9.4	8.9	4.8
Pileup		39.1	41.7	35.2	30.9
Pileup artificial dead time		3.0	3.0	3.0	3.0
Muon loss		2.2	1.9	5.2	2.4
СВО		42.0	49.5	31.5	35.2
Ad-hoc correction		21.1	21.1	22.1	10.3

*Run 1 ω_a data analyzed in four subsets

	1a	1b	1c	1d
C _P (ppb)	176	199	191	166
Statistical uncertainty	<0.1	<0.1	<0.1	<0.1
Tracker alignment/reco.	11.0	12.3	12.0	10.7
Tracker res. & acc. removal	3.3	3.9	3.7	3.0
Azimuthal avg. & calo. acc.	1.0	1.3	2.2	1.1
Amplitude fit	1.2	0.4	1.0	2.9
Quad alignment/voltage	4.4	4.4	4.4	4.4
Systematic uncertainty	12.4	13.7	13.6	12.3

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
C_{ml}	-14	-3	-7	-17
Phase-momentum	2	0	1	3
Form of $l(t)$	2	0	1	1
f_{loss} function	2	1	2	2
Linear sum $(\sigma_{C_{ml}})$	6	2	4	6

	1a	1b	1c	1d
C _e (ppb)	471	464	534	475
Statistical uncertainty	0.4	0.5	0.4	0.2
Fourier method	8.4	13.4	14.4	3.9
Momentum-time correlation	52	52	52	52
Quad alignment/voltage	6.4	6.4	6.4	6.4
Field index	1.7	1.5	1.7	4.0
Systematic uncertainty	53	54	54	53

Systematics: Denominator

				DRORE	Calibration Coefficients					
				PROBE	Value (Hz)	Stat (Hz)	Syst (Hz)			
				1	90.81	0.38	2.02			
[mun 1 (aubatmusture)]	774ppb			2	84.21	0.65	1.18			
run-1 (substructure)		Source	Uncertainty (ppb)	3	95.02	0.53	2.19			
azimuthal shape*	7.6 ppb	Temperature	15 – 28	4	86.03	0.25	1.28			
skin depth	12.6 ppb			5	92.96	0.51	1.10			
frequency extraction $(0.4/1 \text{ms})$	4.6 ppb	Configuration	22	6	106.24	0.46	1.35			
Q3L: fit, position	$1.5\mathrm{ppb}$	Trolley	25	7	116.64	0.96	1.61			
repeatability	$13.3\mathrm{ppb}$	Fixed Probe Production	-1	8	76.39	0.60	1.21			
drift	10.2 ppb			9	83.52	0.23	1.64			
radial dependency	44 ppb	Fixed Probe Baseline	8	10	24.06	1.39	1.26			
and e pulses	140ppb	Tracking Drift	22 - 43	11	177.55	0.22	1.99			
2 o-puises	14.0 ppb			12	110.85	0.44	1.73			
total -15.0 ppb	81.7 ppb	Total	43 - 62	13	122.89	2.08	1.93			
				14	77 11	0.53	1.88			

Run-1 Estimate:
$B_k = -27.4 \pm 37 \text{ ppb}$

Quantity	Symbol	Value	Unit		correction [ppb]				uncertainty [ppb]				
Diamagnetic Shielding T dep	(1/σ)dσ/dT	-10.36(30)	ppb/°C	Dataset	1a	1b	1c	1d	1a	1b	1c	1d	
Bulk Susceptibility	δ _b	-1504.6 ± 4.9	ppb	1. Tracker and	-	_	-	-	9.2	13.3	15.6	19.7	
Material Perturbation	δs	15.2 ± 13.3	ppb	2. COD									
Paramagnetic Impurities	δρ	0 ± 2	ppb	effects	1.6	1.5	1.7	1.4	5.2	4.7	5.2	4.9	
Radiation Damping	δ _{RD}	0 ± 3	ppb 3. In-fil effects	3. In-fill time effects	-1.9	-2.3	-1.2	-4.1	-	-	-	-	
Proton Dipolar Fields	δ _d	0 ± 2.3	ppb	Total	-0.3	-0.8	0.5	-2.7	10.6	14.1	16.5	20.3	

15

16

17

AVG

74.82

20.35

172.12

1.06

0.44

1.23

0.70

1.59

2.94

1.96

1.70

The Unblinding Ceremony!

Feb 25, 2021

Secret frequency of 39.XX MHz

Unblinded result

- 15% smaller error than BNL
- Both experiments dominated by statistical error
- Good agreement
- Increased significance after combination

a_{μ} (Exp) - a_{μ} (SM) = 0.0000000251(59) → 4.2σ

Correction Factors and Uncertainties

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
С,	489	53
C _n	180	13
C _{mt}	-11	5
C _{pa}	-158	75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
Bk	-27	37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_{e}		22
$g_c/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

 $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11} \quad (0.46\,\text{ppm})$

Phys. Rev. Lett. 126, 141801 (2021)

Four Papers in a Roll

PHYSICAL REVIEW A 103, 0

PHYSICAL REVIEW LETTERS 126, 141801 (2021)

Editors' Suggestion Featured in Physics

Magnetic-field measurement and analysis for the Mu

Featured in Physics

T. Albahri,³⁹ A. Anastasi,^{11,*} K. Badgley,⁷ S. Bacßler,^{47,†} I. Bailey,^{19,‡} F. Bedeschi,¹¹ M. Berz,²⁰ M. Bhattacharva,⁴³ H. P. Binney,⁴⁸ P. Bloon G. Cantatore, 13,34 R. M. Carey, 2 B. C. K. Casey, 7 D. Cauz, 35,8 R. Chakrabe R. Chislett,³⁶ J. Choi,⁵ Z. Chu,^{26,§} T. E. Chupp,⁴² A. Conway,⁴¹ S. Co S. Dabagov, 9,1 P. T. Debevec, 37 S. Di Falco, 11 P. Di Meo, 10 G. Di Sci V. N. Duginov,17 M. Eads,22 J. Esquivel,7 M. Farooq,42 R. Fatemi,38 G A. Fioretti,^{11,14} D. Flay,⁴¹ N. S. Froemming,^{48,22} C. Gabbanini,^{11,14} M. D. C L. K. Gibbons,⁶ A. Gioiosa,^{29,11} K. L. Giovanetti,¹⁵ P. Girotti,^{11,32} W. G F. Gray, 24 S. Haciomeroglu, 5 T. Halewood-Leagas, 39 D. Hampai, 9 F. Han, 38 G. Hesketh,36 A. Hibbert,39 Z. Hodge,48 J. L. Holzbauer,43 K. W. Hong, P. Kammel,⁴⁸ M. Kargiantoulakis,⁷ M. Karuza,^{13,45} J. Kaspar,⁴⁸ D. Kawa K. S. Khaw, 27,26,48,§ Z. Khechadoorian, 6 N. V. Khomutov, 17 B. Kiburg, 7 M N. Kinnaird,2 E. Kraegeloh,42 N. A. Kuchinskiv,17 K. R. Labe,6 J. LaBounty D. Li.^{26,¶} L. Li.^{26,§} I. Logashenko,^{4,#} A. Lorente Campos,³⁸ A. Lucà, B. MacCoy,⁴⁸ R. Madrak,⁷ K. Makino,²⁰ F. Marignetti,^{10,30} S. Mastroia J. Mott, 2,7 A. Nath, 10,31 H. Nguyen, 7 R. Osofsky, 48 S. Park, 5 G. Paulet K. T. Pitts,37 B. Plaster,38 D. Počanić,47 N. Pohlman,22 C. C. Polly,7 J. Pri E. Ramberg,7 J. L. Ritchie,46 B. L. Roberts,2 D. L. Rubin,6 L. Santi, Y. K. Semertzidis,^{5,18} D. Shemyakin,^{4,#} M. W. Smith,^{48,11} M. Sorbara,¹² D. Stratakis,7 T. Stuttard,36 H. E. Swanson,48 G. Sweetmore,40 D. A. S T. Teubner,³⁹ A. E. Tewsley-Booth,⁴² K. Thomson,³⁹ V. Tishchenko,³ D. Vasilkova,36 G. Venanzoni,11 T. Walton,7 A. Weisskopf,20 L. Welty-Ri (The Muon g - 2 Collaborat ¹Argonne National Laboratory, Lemont, ²Boston University, Boston, Massacha ³Brookhaven National Laboratory, Unton. ⁴Budker Institute of Nuclear Physics, Nove 5 Center for Axion and Precision Physics (CAPP) / Institute for Basic 6Cornell University, Ithaca, New Yo 7 Fermi National Accelerator Laboratory, Bat. ⁸INFN Gruppo Collegato di Udine, Sezione di 9 INFN, Laboratori Nazionali di Frascati, 10 INFN, Sezione di Napoli, Napol INFN, Sezione di Pisa, Pisa, 12 INFN, Sezione di Roma Tor Vergata, 13 INFN, Sezione di Trieste, Trieste 14 Istituto Nazionale di Ottica - Consiglio Nazionale e 15 Department of Physics and Astronomy, James Madison Univ-¹⁶Institute of Physics and Cluster of Excellence PRISMA+, Johannes G 17 Joint Institute for Nuclear Research, D 18 Department of Physics, Korea Advanced Institute of Science and Techn

*Deceased.

[†]Also at Oak Ridge National Laboratory. [‡]Also at The Cockcroft Institute of Accelerator Science and Technology. [‡]Also at Shanghai Key Laboratory for Particle Physics and Cosmology; also at Ke (MOE). [‡]Also at Lebedev Physical Institute and NRNU MEPhl. [‡]Also at Shenzhen Technology University. [‡]Also at Novosibirsk State University.

Published by the American Physical Society under the terms of the Creative Commons of this work must maintain attribution to the author(s) and the published article's titl

2469-9926/2021/103(4)/042208(35)

042208-1

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

B. Abi,⁴⁴ T. Albahri,³⁹ S. Al-Kilani,³⁶ D. Allspach,⁷ L. P. Alonzi,⁴⁸ A. Anastasi,^{11,a} A. Anisenkov,^{4,b} F. Azfar,⁴⁴ K. Badgley,⁷ S. Baeßler, 47.c I. Bailey, 19.d V. A. Baranov, 17 E. Barlas-Yucel, 37 T. Barrett, 6 E. Barzi, 7 A. Basti, 11.32 F. Bedeschi, A. Behnke,²² M. Berz,⁵⁰ M. Bhattacharya,⁴³ H. P. Binney,⁴⁸ R. Bjorkquist,⁶ P. Bloom,⁷¹ J. Bono,⁷ E. Bottalico,^{11,32} T. Bowcock,³⁰ D. Boyden,²² G. Cantatore,^{13,34} R. M. Carey,² J. Carroll,³⁹ B. C. K. Casey,⁷ D. Cauz,⁵⁵⁸ S. Ceravolo,⁹ R. Chakraborty, ³⁸ S. P. Chang, ^{18,5} A. Chapelain, ⁶ S. Chappa, ⁷ S. Charity, ⁷ R. Chislett, ³⁶ J. Choi, ⁵ Z. Chu, ^{26,e} T. E. Chupp, ⁴² M. E. Convery,7 A. Conway,41 G. Corradi,9 S. Corrodi,1 L. Cotrozzi,11.32 J. D. Cmkovic, 3,37,43 S. Dabagov,5 P.M. De Lurgio,¹ P.T. Debevec,³⁷ S. Di Falco,¹¹ P. Di Meo,¹⁰ G. Di Sciascio,¹² R. Di Stefano,^{10,30} B. Drendel,⁷ A. Driutti ^{35,13,8} V. N. Duginov,¹⁷ M. Eads.²² N. Eggert,⁶ A. Epps,²² J. Esquivel,⁷ M. Faroq,⁴ R. Fatemi,⁸ C. Ferrari,^{11,14} M. Fertl,^{48,16} A. Fiedler,²² A. T. Fienberg,⁴⁸ A. Fioretti,^{11,14} D. Flay,⁴¹ S. B. Foster,² H. Friedsam,⁷ E. Frlež,⁴⁷ N. S. Froemming.^{46,22} J. Fry.⁴⁷ C. Fu,^{56,e} C. Gabbanini,^{11,144} M. D. Galati,^{11,132} S. Ganguly,^{37,7} A. Garcia.⁴⁸ D. E. Gaster,² J. George,⁴¹ L. K. Gibbons,⁶ A. Gioiosa,^{29,11} K. L. Giovanetti,¹⁵ P. Girotti,^{11,32} W. Gohn,³⁸ T. Gorringe,³⁸ J. Grange,¹⁴² S. Grant,³⁶ F. Gray,²⁴ S. Haciomeroglu,⁵ D. Hahn,⁷ T. Halewood-Leagas,³⁹ D. Hampai,⁹ F. Han,³⁸ E. Hazen, J. Hempstead,⁴⁸ S. Henry,⁴⁴ A. T. Herrod,^{39,d} D. W. Hertzog[®],⁴⁸ G. Hesketh,³⁶ A. Hibbert,³⁹ Z. Hodge,⁴⁸ J. L. Holzbauer,⁴³ K. W. Hong,⁴⁷ R. Hong,^{1,38} M. Iacovacci,^{10,31} M. Incagli,¹¹ C. Johnstone,⁷ J. A. Johnstone,⁷ P. Kammel,⁴⁸ M. Kargiantoulakis,⁷ M. Karuza,^{13,45} J. Kaspar,⁴⁸ D. Kawall,⁴¹ L. Kelton,³⁸ A. Keshavarzi,⁴⁰ D. Kessler,⁴¹ K. S. Khaw, "Z.2444, g. X. Khechadoonia," N. K. Khomutov, "I. B. Kiburg," M. Kiburg, 7.21 O. Kim, 3.5 S. C. Kim, "Y. I. Kim," B. King, ³⁹a N. Kinnaird,² M. Korostelev, ^{19,d} I. Kourbanis," E. Kraegeloh,⁴² V. A. Krylov,¹⁷ A. Kuchibhotla,³⁷ N. A. Kuchinskiy,¹⁷ K. R. Labe,⁶ J. LaBounty,⁴⁸ M. Lancaster,⁴⁰ M. J. Lee,⁵ S. Lee,⁵ S. Leo,³⁷ B. Li,^{26,1,e} D. Li,^{26,g} L. Li,^{26,e} I. Logashenko, ^{4,5} A. Lorente Campos, ³⁸ A. Lucà, ⁷ G. Lukicov, ³⁶ G. Luo, ²² A. Lusiani, ^{11,25} A. L. Lyon, ⁷ B. MacCoy, ⁴⁸ R. Madrak,⁷ K. Makino,²⁰ F. Marignetti,^{10,30} S. Mastroianni,¹⁰ S. Maxfield,³⁹ M. McEvoy,²² W. Merritt,⁷ A. A. Mikhailichenko,^{6,a} J. P. Miller,² S. Miozzi,¹² J. P. Morgan,⁷ W. M. Morse,³ J. Mott,^{2,7} E. Motuk,³⁶ A. Nath,^{10,31} D. Newton,^{39,ad} H. Nguyen,⁷ M. Oberling,¹ R. Osofsky,⁴⁵ J.-F. Ostiguy,⁷ S. Park,⁵ G. Pauletta,^{35,8} G. M. Piacentino,^{29,12} R. N. Pilato,^{11,32} K. T. Pitts,³⁷ B. Plaster,³⁸ D. Počanić,⁴⁷ N. Pohlman,²² C. C. Polly,⁷ M. Popovic,⁷ J. Price,³⁹ B. Quinn,⁴³ N. Raha,¹¹ S. Ramachandran,¹ E. Ramberg,⁷ N. T. Rider,⁶ J. L. Ritch⁴⁶ B. L. Roberts,⁷ D. L. Rubin,⁶ L. Santi,³⁵⁸ D. Sathyan,² H. Schellman,^{23,b} C. Schlesier,³⁷ A. Schreckenberger,^{46,237} Y. K. Semertzidis,^{5,18} Y. M. Shatunov,⁴ D. Shemyakin,^{4,b} M. Shenk,²² D. Sim,³⁹ M. W. Smith,^{48,11} A. Smith,³⁹ A. K. Soha,⁷ M. Sorbara,^{12,33} D. Stöckinger,²⁸ J. Stapleton,⁷ D. Still,⁷ C. Stoughton,⁷ D. Stratakis,⁷ C. Strohman,⁶ T. Stuttard,³⁶ H. E. Swanson,⁴⁸ G. Sweetmore,⁴⁰ D. A. Sweigart,⁶ M. J. Syphers,^{22,7} D. A. Tarazona,²⁰ T. Teubner,³⁹ A. E. Tewsley-Booth,⁴² K. Thomson,³⁹ V. Tishchenko,³ N. H. Tran,² W. Turner,³⁹ E. Valetov,^{20,19,27,d} D. Vasilkova,³⁶ G. Venanzoni,¹¹ V. P. Volnvkh,¹⁷ T. Walton,⁷ M. Warren,³⁶ A. Weisskopf,²⁰ L. Welty-Rieger,⁷ M. Whitley,³⁹ P. Winter,¹ A. Wolski,^{39,d} M. Wormald,³⁹ W. Wu,⁴³ and C. Yoshikawa⁷

(Muon g - 2 Collaboration)

¹Argonne National Laboratory, Lemont, Illinois, USA Boston University, Boston, Massachusetts, USA ³Brookhaven National Laboratory, Upton, New York, USA ⁴Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁵Center for Axion and Precision Physics (CAPP)/Institute for Basic Science (IBS), Daejeon, Republic of Korea 6Cornell University, Ithaca, New York, USA ⁷Fermi National Accelerator Laboratory, Batavia, Illinois, USA ⁸INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy ⁹INFN, Laboratori Nazionali di Frascati, Frascati, Italy ¹⁰INFN, Sezione di Napoli, Napoli, Italy ¹¹INFN, Sezione di Pisa, Pisa, Italy 12 INFN, Sezione di Roma Tor Vergata, Roma, Italy ¹³INFN, Sezione di Trieste, Trieste, Italy 14 Istituto Nazionale di Ottica-Consiglio Nazionale delle Ricerche, Pisa, Italy ¹⁵Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia, USA ¹⁶Institute of Physics and Cluster of Excellence PRISMA+, Johannes Gutenberg University Mainz, Mainz, Germany

to the Run-1 measurement of the muon anomalous gnetic moment at Fermilab

(ley,⁷ S. Baeßler,^{45, b} I. Bailey,^{19, c} V. A. Baranov,¹⁷ E. Barlas-Yucel,³⁶ Bhattacharya,⁴² H. P. Binney,⁴⁶ P. Bloom,²¹ J. Bono,⁷ E. Bottalico,^{11,31} R. M. Carev,² B. C. K. Casev,⁷ D. Cauz,^{34,8} R. Chakrabortv,³⁷ rity,⁷ R. Chislett,³⁵ J. Choi,⁵ Z. Chu,^{25, d} T. E. Chupp,⁴¹ S. Corrodi,¹ ^{36,42} S. Dabagov,^{9, e} P. T. Debevec,³⁶ S. Di Falco,¹¹ P. Di Meo,¹⁰ ^{1,29} A. Driutti,^{34,13,37} V. N. Duginov,¹⁷ M. Eads,²² J. Esquivel, i,^{11,14} M. Fertl,^{46,16} A. Fiedler,²² A. T. Fienberg,⁴⁶ A. Fioretti,^{11,14} g,^{46,22} J. Fry,⁴⁵ C. Gabbanini,^{11,14} M. D. Galati,^{11,31} S. Ganguly,^{36,7} ons,⁶ A. Gioiosa,^{28,11} K. L. Giovanetti,¹⁵ P. Girotti,^{11,31} W. Gohn,³⁷ Grant,³⁵ F. Gray,²³ S. Haciomeroglu,⁵ T. Halewood-Leagas,³⁸ 1,⁴⁶ A. T. Herrod,^{38, c} D. W. Hertzog,⁴⁶ G. Hesketh,³⁵ A. Hibbert,³⁸ Hong, 45 R. Hong, ^{1, 37} M. Iacovacci, ^{10, 30} M. Incagli, ¹¹ P. Kammel, ⁴⁶ J. Kaspar,⁴⁶ D. Kawall,⁴⁰ L. Kelton,³⁷ A. Keshavarzi,³⁹ D. Kessler,⁴⁰ prian,⁶ N. V. Khomutov,¹⁷ B. Kiburg,⁷ M. Kiburg,^{7,21} O. Kim,^{18,5} ¹ M. Korostelev,^{19, c} E. Kraegeloh,⁴¹ N. A. Kuchinskiv,¹⁷ K. R. Labe,⁶ J. Lee,⁵ S. Lee,⁵ B. Li,^{25,1,d} D. Li,^{25, f} L. Li,^{25, d} I. Logashenko,^{4, g} Lukicov,³⁵ A. Lusiani,^{11,24} A. L. Lvon,⁷ B. MacCov,⁴⁶ R. Madrak,⁷ Mastroianni,¹⁰ J. P. Miller,² S. Miozzi,¹² W. M. Morse,³ J. Mott,^{2,7} yen,⁷ R. Osofsky,⁴⁶ S. Park,⁵ G. Pauletta,^{34, 8} G. M. Piacentino,^{28, 12} B. Plaster,³⁷ D. Počanić,⁴⁵ N. Pohlman,²² C. C. Polly,⁷ J. Price,³⁸ ndran,¹ E. Ramberg,⁷ J. L. Ritchie,⁴⁴ B. L. Roberts,² D. L. Rubin,⁶ ³⁶ A. Schreckenberger, ^{44, 2, 36} Y. K. Semertzidis, ^{5, 18} M. W. Smith, ^{46, 11} pleton,⁷ C. Stoughton,⁷ D. Stratakis,⁷ T. Stuttard,³⁵ H. E. Swanson,⁴⁶ Syphers,^{22,7} D. A. Tarazona,²⁰ T. Teubner,³⁸ A. E. Tewsley-Booth,⁴¹ N. H. Tran.² W. Turner.³⁸ E. Valetov.^{20, 19, 26, c} D. Vasilkova.³⁵ sskopf,²⁰ L. Welty-Rieger,⁷ P. Winter,¹ A. Wolski,^{38, e} and W. Wu⁴²

The Muon g-2 Collaboration)

National Laboratory, Lemont, Illinois, USA University, Boston, Massachusetts, USA National Laboratory, Upton, New York, USA titute of Nuclear Physics, Novosibirsk, Russia s (CAPP) / Institute for Basic Science (IBS), Daejeon, Republic of Korea ell University, Ithaca, New York, USA al Accelerator Laboratory, Batavia, Illinois, USA Collegato di Udine, Sezione di Trieste, Udine, Italy boratori Nazionali di Frascati, Frascati, Italy IFN, Sezione di Napoli, Naples, Italy INFN, Sezione di Pisa, Pisa, Italy Sezione di Roma Tor Vergata, Rome, Italy FN, Sezione di Trieste, Trieste, Italy Ottica - Consiglio Nazionale delle Ricerche, Pisa, Italy tronomy, James Madison University, Harrisonburg, Virginia, USA Physics and Cluster of Excellence PRISMA+. Jutenberg University Mainz, Mainz, Germany stitute for Nuclear Research, Dubna, Russia d Institute of Science and Technology (KAIST), Daejeon, Republic of Korea ter University, Lancaster, United Kingdom tate University, East Lansing, Michigan, USA Central College, Naperville, Illinois, USA n Illinois University, DeKalb, Illinois, USA is University, Denver, Colorado, USA cuola Normale Superiore, Pisa, Italy stronomy, Shanghai Jiao Tong University, Shanghai, China titute, Shanghai Jiao Tong University, Shanghai, China chenphysik, Technische Universität Dresden, Dresden, Germany

Unprecedented: Physical Review Series publish four papers at once for one measurement!

Data Collection

We have collected plenty of data over the past 3 years

Run 1 results ~6% of full stats: 434 ppb stat ⊕ 157 ppb syst errors

Outlook

- Analysis of Run2/3 ongoing, expect a factor of two improvement in precision
- Run 4 data taking now is expected to bring the statistics to 13x BNL
- Run 5 in 2021-2022 should bring us to the TDR goal of ~ 21x BNL

Outlook

Conclusions

The first results of Muon g-2 measurement at 0.46 ppm Result consistent with BNL result (within one sigma) with improved precision

 $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11} \quad (0.46\,\text{ppm})$

Combining BNL's result, it strengthens the significance of the discrepancy to 4.2 sigma!

We expect a factor of two improvement in precision from Run2/3 data and more from Run4/5.

Stay tuned!