V. Lefranc & A. Montanari ICRC – July 2021

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany 37th International **Cosmic Ray Conference** 12-23 July 2021

H.E.S.S.

ICRC highlights: a selection

About 37th ICRC

- The Astroparticle conference every 2 years
- Online but hosted in Berlin
- 1683 participants from 55 countries
- 1384 contributions (including 674 posters) \rightarrow 280 hours of talk
- All contribution (slides + recorded videos) available
 @ https://icrc2021-venue.desy.de/

Outline – Valentin Lefranc

- Facilities : Status and future
- Multi-messenger
- Neutrinos
- High energy cosmic ray spectrum

Facilities : Status and future

- Ground based
 - Radio : (CHIME, SKA pathfinders MeerKAT , ASKAP) / Optical (ZTF, VRO)

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA) future : CTA, TAIGA, TACTIC, MACE

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA)
 - UHE (HAWC, LHAASO, Auger TA). future : SWGO

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA)
- LHAASO : China , 4410 m, 1km2
 - Wide FOV air Cherenkov image Telescopes.
 - Water Cherenkov Detector
 - Scintillator detectors
 - burst detectors

Ground based

- Radio / Optical (ZTF, VRO)
- Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA)
- LHAASO : China , 4410 m, 1km2
 - Wide FOV air Cherenkov image Telescopes.
 - Water Cherenkov Detector
 - Scintillator detectors
 - burst detectors

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA)
 - UHE (HAWC, LHAASO, Auger, TA)
 - GW (LIGO, Virgo, KAGRA) future : LIGO India

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S., MAGIC, VERITAS, CTA)
 - UHE (HAWC, LHAASO, Auger, TA)
 - GW (LIGO, Virgo, KAGRA)
 - Neutrino (Ice Cube, Antares, Baikal GVD) future : KM3NET, IceCube (upgrade and Gen2), RNO-G, PUEO, GRAND, **BEACON Hyper Kaminokande**

UHECR

- Ground based
 - Radio / Optical (ZTF, VRO)
 - Gamma ray (H.E.S.S. , MAGIC, VERITAS, CTA)
 - UHE (HAWC, LHAASO, Auger TA)
 - GW (LIGO, Virgo, KAGRA)
 - Neutrino (Ice Cube , Antares, Baikal GVD)
- Satellites
 - X-rays (Swift, INTEGRAL, SVOM)
 - Gamma rays (Fermi)
 - Cosmic rays : AMS, DAMPE, CALET
- Future Satellites :
 - Gamma ray: ASTROSAT, POLAR-02, GRAINE, SVOM
 - Cosmic rays : GAPS, HERD, HELIX, TIGERIS, AMS100, ALADINO

All together

Multi Messenger Astronomy

Real time and network

- Observatories have to work close together and provide fast reliable informations to hope coincident observation.
- Neutrino Alert system : Baikal, IceCube, Antares
- AMON network
 - Real time alerts :Searching for HE gamma-ray and neutrino coincidences
- Astro-COLIBRI
 - Use all channel (AMON, VoEvents, GW, FERMI, INTEGRAL ...) and provide a easy readable web interface (also available as an app with notifications)
 - Ask me or Fabian for more infos ! Contribution : https://pos.sissa.it/395/935

Neutrino follow ups

- Number of alerts increases : Ice Cube 3x more alerts/week in 2 years
 - Used over 50 times (GRBs, FRBs, blazar flares, ...) no significant detection.
 - Current limits constrain nearby bright transients and future ones aim to constrain populations of sources
- Fermi-LAT : follow-up observations of real time highenergy neutrino detections have identified 7 candidate counterparts
- IACTs observational strategies:
 - Fast reaction (<1day)
 - Deep exposures (HESS, VERITAS) Fabian is responsible of the HESS observations of this contribution
 - Follow-up of many alerts (MAGIC)

Konstancja Satalecka, PoS 960. See Olga Sergijenko, PoS 975, Andrea Bulgarelli, PoS 937, Roberta Zarin, PoS 005 for CTA alert & follow-up systems.

Blazars

- Blazars represents 80% of the gamma rays sky as seen with Fermi but can only explain maximum 30% of the neutrino diffuse flux
- More sources contribution must explain the gap between gamma / neutrino and neutrino / CRs

Blazars & Neutrinos

TXS 0506+056

- Neutrino Event : IC170922A
- Detected in GeV and TeV during a flaring period that overlapped with the arrival of the neutrino event but other lower energy neutrino event not correlated with GeV activity.
- Modelisation of the emission not compatible with the Neutrino flux alternative model are investigated. (Different production area for neutrino and gammas)

3HSP J095507

- Neutrino Event : IC200107A 300 TeV
- Hard X rays shorly after the neutrino arrival
- Modelisation of the emission not compatible with the Neutrino flux

 Detected in a quiescent state of weak gamma-ray activity at the time of neutrino arrival.

PKS 1502+106

 More Neutrinos should be detected when flaring

Tidal distruption event

- ZTF telescope detected his 2nd brightest events.
 - Neutrino detected 175 days after discovery (0.2 PeV).
- Neutrinos from TDEs could contribute up to 26% to diffuse neutrino flux
- Second event, AT 2019fdr, coincident with another neutrino event (IC200530A, 80 TeV)
- We are entering a new era for the detection of TDEs, does this have implications on neutrino detection?
- Where are the neutrinos produced?
- Need to improve on our understanding of the TDE population.

Soft X-ray TDEs

Robert Stein, PoS 009. Winter & Lunardini, PoS 997

Compact binary mergers

• GW 170817

- First joint detection EM and GW
- Associated with GRB 170817A
- Possible other EM counterpart : AT2017gfo ?
- 3.4 years later: X-rays are still there
- Neutrino Observatories : Upper limits
- IACTs : Possible short GrBs,
 - H.E.S.S. follow up 4 BBH and set up Upper limits. (2 contributions by Halim Ashkar pos.sissa.it/395/943 and pos.sissa.it/395/936)
 - CTA will be a key (north and south)
- Need to get ready for expected larger number of multimessenger detections

0°

UNIVERSITÉ

PARIS

UNIVERSITE PARIS-SACLAY

Neutrinos

- Borexino sees first evidence for CNO neutrinos.
- All other searches at this point still compatible with background
- JUNO has the potential to resolve B8

Supernovae

- Still waiting for the ONE
- Supernova Early Warning System will alert the astronomical community to what is coming, many neutrino telescopes are (in the process of) joining forces

- Need more statistics
- KM3NET and Baikal almost there

- Need more statistics
- KM3NET and Baikal almost there
- IceCube
 - First identifiable electron-anti-neutrino
 - First identifiable tau neutrino

• Pierre Auger and TA main results :

- Thanks to a lower threshold a low ernergy break was discovered.
- Five breaks in the energy spectrum are now reported.

• Pierre Auger and TA main results :

- Thanks to a lower threshold a low ernergy ankle was discovered.
- Five breaks in the energy spectrum are now reported.
- Auger reported a different mass composition differences between ON / OFF planes.

- Pierre Auger and TA main results :
 - Thanks to a lower threshold a low ernergy ankle was discovered.
 - Five breaks in the energy spectrum are now reported.
 - Auger reported anisotropy between ON / OFF planes, different species from different regions ?
- Anisotropy searches in the top region (>32 EeV)
 - Auger : 4σ from centaurus region confirmed by catalog based search
 - TA: 3.2 and 3.7 hot spots in the direction of Ursa Major and Perseus super cluster.

Outline – Alessandro Montanari

- Dark Matter (DM)
 - WIMPs direct detection, indirect detection
 - PeV decaying dark matter
 - Dark matter searches with cosmic rays and neutrino
- Very high energy (VHE, >100 GeV) gamma rays and extended sources
 - Halos and extended VHE sources
 - Ultra-High-Energy (UHE, >100 TeV) gamma-ray sources
 - Cosmic-ray models in the Galaxy
- VHE cosmic-ray spectra
 - Positron, electron, proton spectra
- Conclusions

Dark Matter

Dark Matter

Evidence

- Doesn't scatter/emit/absorb light
- Does have mass (and hence gravity).
- Is ~84% of the matter in the universe.
- Forms the primordial "scaffolding" for the visible universe
- Forms "halos" around galaxies
- Interacts with other particles weakly or not at all (except by gravity)

VNIVERSITÉ PARIS UNIVERSITÉ PARIS-SACLAY

WIMPs – direct detection status

- Elastic scattering of WIMPs off target nuclei
 Spin independent WIMP-nucleon
 Sub-GeV masses start to be probed
 - Getting closer to the neutrino-floor

ANAIS (Nal) 3 years data: 314 kg x y exposure Data consistent with no modulation: incompatible with DAMA at 3.3σ PRD 103, 102005 (2021)

WIMPs – indirect detection

WIMPs – gamma-ray indirect detection

- **Observations of overall 20 dwarf spheroidal** galaxies by five instruments
 - No overall excess in the stacked dataset
 - Different J-factors computation and \bigcirc uncertainties tested
 - Common analysis procedure
- \rightarrow 2-3 times more constraining limits than individual analyses.

WIMPs – gamma-ray indirect detection

- <u>NEW</u> observations of the Galactic Center (GC) region for line spectral features search with MAGIC (204 hours)
 - $\,\circ\,$ No significant excess
 - Large energy threshold due to high zenith angle observations
 - Reach H.E.S.S. 2018 limits above ~1TeV
- → Upper limits on the annihilation cross section of DM particles

→ Present constraints can challenge DM thermal relic density

m_{DM} (TeV)

WIMPs – gamma-ray indirect detection - prospects

H.E.S.

Decaying DM with LHAASO

- <u>NEW</u> observations of the GC region with LHAASO (340 days)
 - $\,\circ\,$ First results on DM with LHAASO
 - \rightarrow Lower limits on the lifetime of DM particles
 - → Challenge the HE IceCube events as PeV DM

Photon signals from PBHs

- **Observations of PBHs with H.E.S.S. (4924 hours)**
 - <u>NEW</u> limits on the evaporation rate
 - PBHs are unlikely to participate significantly in the missing mass of the universe
- Sensitivity prospects of MeV satellite
 - Probing part of the open window
 - Constraining the fraction of PBHs as DM Ο

Bounds from

Open window in

the mass range

 $10^{17} - 10^{23}$ g

WIMPs – indirect detection

Neutrinos

 $\langle \sigma v \rangle [cm^3 s^{-1}$

- **Observations of the GC region** lacksquare
 - ANTARES data (14 years), Ο sensitivity prospect with KM3NeT (1 year)
 - \rightarrow Upper limits on the annihilation cross section of DM particles

- **Neutrinos from the Sun** ○ IceCube data
- → Upper limits on the SD annihilation cross section of DM particles

WIMPs – indirect detection

Gamma-rays π0 W⁻/Z/q ?? ν_µν_e π^+ ut $W^+/Z/\overline{q}$ Neutrinos π- ν_{μ} μ $v_{\mu}v_{e}$ e-+ a few p/p, d/d Anti-matter

Charged cosmic rays – antiprotons, positrons

Cosmic ray data from AMS-02

- Antiprotons:
 - Hint for an excess in anti-p data compatible with DM
 - <u>NEW</u> studies: systematic uncertainties at few % level are important
- Positrons:
 - Most of the signal can be explained by nearby pulsars
 - \rightarrow Latest constraints on DM

INIVERSITE

Gamma ray very-high-energy and extended sources

Gamma ray very-high-energies and extended sources

Pulsar Wind Nebulae and halos: Geminga

UNIVERSITE PARIS UNIVERSITE PARIS-SACLAY

- HAWC measurements
 around Geminga
 - Diffusion coefficient a factor 100 lower than from local measurements
- <u>NEW</u> Improvements in the data analysis of H.E.S.S. measurements around Geminga

- Diffusion suppressed in halo regions?
- More halos candidates seen by LHAASO and TibetAS-γ

VHE gamma rays and PeVatrons

• What is a PeVatron?

- Only hadronic accelerators?
- "Leptonic PeVatrons"?

• When is it no longer a candidate?

- Clear accelerator
- Confirmed hadronic
 - Coincident neutrino
- How many PeVatrons do we know so far?
 - o 14 UHE sources

LHAASO UHE photons (E>100 TeV)

TibetAS-γ VHE photons sources

- Observations of Galactic sources with TibetAS- γ
 - $\circ~$ Detection of VHE sources
 - o More than 5σ at >100 TeV
 - Photon at 450 TeV from the Crab Nebula
- \rightarrow ~9 coincident with LHAASO UHE sources

E² (TeV cm⁻² s⁻¹)

×

Differential Flux

X Chon		
	V	Chon
	Λ.	CHER

Associated Source	RA[deg]	Dec[Deg]	
Crab	83.65	22.02	
TeV J1825-134	276.52	-13.4	
TeV J1831-099	277.58	-9.84	
TeV J1840-055 TeV J1837-065	279.91	-6.03	
TeV J1844-035	280.92	-3.58	
TeV J1849-000	282.84	0.03	
TeV J1857+026	284.70	2.66	
MGRO J1908+06	287.01	6.20	
2HWC J1955+285	298.87	28.63	
Cygnus OB1	305.02	36.77	
Cygnus OB2	308.01	41.19	
SNR G106.3+2.7	336.77	60.88	
This work			

Fibet

ASV

Extended VHE gamma-ray sources

Fermi Bubbles, close to the GC region
 Previously detected by *Fermi*-LAT

- Search for the Fermi Bubbles emission
 - $\circ~$ Extended source at GeV and TeV energies
 - Understanding the properties of the parent-particle population
- → <u>NEW</u> DAMPE flux points consistent with *Fermi*-LAT measurements (with 4.8 year dataset)

30

significance

- → <u>NEW</u> H.E.S.S. upper limits at the base of FBs (with 546 hours IGS)
 - → strong constraints on the energy cutoff in spectra of parent-particle population!

universite

bubble N

Z.Q.Shen

Consistent with

Fermi-LAT Results

E_v (GeV)

E (TeV

FBs for H.E.S.S. Rol

E.S.S. Pevatron

101

TS_N=193.7 (13.5σ)

 $TS_{s}=194.6 (13.6\sigma)$

10-

Sr

Ξ²Φ_γ (TeVcm⁻²s⁻¹

Cosmic ray distribution models in the Galaxy

• Does the cosmic ray spectrum harden towards the GC as seen from gamma-ray measurements?

<u>NEW</u> Fermi-LAT measurements of the hardening

- <u>NEW</u> observations in the Galaxy
 - Complementary facilities
- → Present data cannot distinguish between scenarios with and without hardening towards the GC
- → Need more data

Cosmic ray spectra and anisotropies

Cosmic ray spectra and anisotropies

CALET electron/positron and proton spectra

S. Torii

universitė

 \rightarrow Extended energy reach to ~ 60 TeV

→ Systematic uncertainties being worked out

DAMPE proton spectrum

- **NEW** cosmic rays spectrum measured with DAMPE
 - \circ Proton spectrum
 - $\circ~$ In agreement with CALET
 - Measured hardening at ~500 GeV and softening at ~14 TeV

Conclusions

- Contributions from new observatories
- Networks for coincident observations
- Blazars and neutrinos events
- More neutrino alerts
- New results on Dark Matter
- PeV era just started!
- Analyses of extended TeV sources and propagation/distribution of cosmic rays
- New detectors with different operating modes and complementary techniques
- More community open tools
- → Plenty of exciting results
- → Stay tuned for the upcoming <u>TeV-PeV astrophysics</u>!

Backup slides

Blazars & Neutrinos

UNIVERSITÉ PARIS-SACLAY

- Interesting correlation between Blazar high radio state and neutrino arrival time.
- Hints that gamma-rays and neutrinos may be produced in different regions of blazars and are not directly related.
- Models statistically consistent with the detection of neutrinos but require extreme parameters, atypical of the blazar population.
- Need to move beyond one-zone model as well as investigate time variability.

Blazars & Neutrinos

Hints that gamma-rays and neutrinos may be produced in different regions of blazars and are not directly related.

neutrino flux.

Dark Matter targets in gamma rays

Galaxy satellites of the Milky Way

- Many of them within the 100 kpc from GC:
 - Lower signal than from the GC
- Low astrophysical background

Galactic Centre (GC)

- o Proximity (~8kpc)
- Possibly brightest source of DM annihilation signals:
 - DM profile: core? cusp?
- High astrophysical
 bck / source confusion

Dark Matter subhalos in the Galactic halo

- Lower signal than the GC region
 - No other wavelengths counterpart
- No astrophyiscal background

Galactic halo Large statistics Galactic diffuse background

Aquarius, Springel et al., Nature 2008

Origins of Galactic Cosmic Rays

Ultra High Energy gamma-ray sources

Hadronic vs Leptonic

