

ETNZ training for the next America Cup (October 2024, Barcelona)

Faster than the wind...

DPhP-CEA, 30 janvier 2023

What is a sailing boat?

Water

Air

What qualities do you look for in a sailboat?

- 1) Do not sink!
- 2) Don't turn over!

Transport of goods...

Comfort ...

Sea resistance ...

3) Speed ...

1) Do not sink... (vertical balance of forces)

Static floating (Archimedean mode)

Dynamic floating (planing or flying mode)

Pogo 12.50 Gitana 17

2) Don't turn around... (balance of moments) Centre of Gravity versus Centre of Thrust

Weight stability

Shape stability

Importance of ballast (80 % of boat weight!)

Importance of hull shape

Do not turn around...

Dynamic stability => moving the CG

Moth International

49er (JO)

Propulsion: Pushed by the wind

Running (detached flow)

Trois-mâts Belem

Detached and turbulent flow

The propulsive force is mainly due to the drag force

Sailing into the wind?

« Navigation en finesse » (laminar flow)

Pen Duick

The propulsive force is essentially a lift force

sailing « en finesse »

$$L = \frac{1}{2}\rho V^2 SC_L$$
$$D = \frac{1}{2}\rho V^2 SC_D$$

Finesse = lift-to-drag ratio = L / D = 1 / $tan(\varepsilon_a)$

sailing « en finesse »

$$L = \frac{1}{2}\rho V^2 SC_L$$
$$D = \frac{1}{2}\rho V^2 SC_D$$

Finesse = lift-to-drag ratio = L / D = 1 / $tan(\varepsilon_a)$

Origine of lift

$$P + \frac{1}{2}\rho V^2 = \text{Constante}$$

Daniel Bernoulli (1700-1782)

Simulation of a potential flow around a thin sail

Use of the « Eiffel » polar curve: L = f(D)

Gustave Eiffel (1832-1923)

- Upwing sailing: finess
$$e = \frac{L}{D} = 1/\tan \epsilon$$

Keels and sails having good lift/drag ratio

Performance glider

Imoca

Real or apparent wind?

Real or apparent wind?

- ⇒ A fast sailing boat always sails close to the (apparent) wind.
- \Rightarrow If R >> 1 then β becomes quite small!

Real or apparent wind?

$$V_A^2 = V_T^2 + V_S^2 + 2V_T V_S \cos \gamma$$

$$\tan \beta = \frac{V_T \sin \gamma}{V_T \cos \gamma + V_S} = \frac{\sin \gamma}{\cos \gamma + X}$$

$$\sin(\beta_{\max}) = \frac{1}{X}$$

- ⇒ A fast sailing boat always sails close to the (apparent) wind.
- \Rightarrow If R >> 1 then β becomes quite small!

$$R = \frac{Boat\ speed}{True\ wind\ speed}$$

1492 : Caravelle 25 m, 270 m², 100 tonnes R ≈ 0,25 ? 2007 : AC32 24 m, 200 m², 24 tonnes R ≈ 1 2020 : Imoca 18 m, 600 m², 7 tonnes R ≈ 1,5

Why is it necessary to increase the lift/drag ratio?

Lanchester theorem (1907)

The apparent upwind angle is equal to the sum of the aerodynamic and hydrodynamic glide angles:

$$\beta = \varepsilon_a + \varepsilon_h$$

Aero/hydro equilibrium (here in 2D)

$$R = 3 \Longrightarrow \beta_{min} = \epsilon_a + \epsilon_h \approx 20^o, f \sim 6$$
$$R = 5 \Longrightarrow \beta_{min} = \epsilon_a + \epsilon_h \approx 11^o, f \sim 10$$

Sailboat speed polar curve

 $V_S(\theta)$: curve of target speeds as a function of heading versus true wind.

- depends on the sail set,
- the wind strength
- the state of the sea

5 10 15 20 30 **VMG** upwind **VMG** downwind 175 170 165 160 155 150

Construction of the convex envelope: $V(\theta)$

- The flat areas correspond to the tackable positions (VMG).
- Similar to Wulff's construction in crystals growth

How to go faster

Increasing the sail surfaces?

Shamrock IV (sir Lipton)

- Decreasing the hydrodynamic drag? (wave drag)

Club Méd. (A. Colas)

- Decreasing the immersed volume (lightening and foils)

Flying boats and speed records

They all learn to fly!

Windfoil

Nacra 17

← Mini 6.50

AC 45 -->

What is the speed limit for a sailing boat?

Evolution of speed records (over 500 m)

1 knot = 1 nautical mille/hour =1,852 km/h

Cavitation or ventilation speed

At 50 knots, $\frac{1}{2}\rho_w V_S^2 \approx 3P_{atm}$

Supercavitating foils

Ventilation on a kitefoil 'mast'.

(World record at 121 km/h in 2012)

World sailing speed record! 121 km/h!

Faster than the wind?

- Is there a maximum value for R_{max} ?

- Is the Lanchester theorem really a limit?

Can we sail directly into the wind?

Sailing into the wind... is it possible?

1920 – Constantin (on the river Seine)

1933 – Lord Brabazon

1980 – Jim Bates

Peter Worsley, 2008

Autogiro, gyrovoile, Archinaute ...

Directly downwind, faster than the wind (DDWFTTW)

Blackbird, July 2010, record at 2.8 times the wind velocity.

