

1 La loi de Schmidt (1959, ApJ 129, 243)

L'idée selon laquelle la densité de gaz interstellaire décroît en raison du taux de formation d'étoiles a été évoquée pour la première fois par Van den Bergh (1957, ApJ 125, 445): si le SFR était constant, le gaz interstellaire contenu dans le voisinage solaire serait épuisé dans 700 millions d'années.

Deux explications sont possibles:

- soit le gaz interstellaire est réapprovisionné régulièrement = suggestion de Van den Bergh (1957)

- soit le SFR siminue avec la densité de gaz = suggestion de Schmidt (1959)

 $\rho_{\text{SFR}} \sim (\rho_{\text{gaz}})^n$, n(Schmidt)=2

Schmidt a utilisé:

 $\Sigma_{gaz}=$ 11 $M_{\odot}pc^{-2}(=20\%~\Sigma_{tot}),$ où ont été comptabilisés le HI, HII(H+), H_2, He. $\Sigma_{*}=$ 30 $M_{\odot}pc^{-2}$

 $\Sigma_*(\text{Seq.Princ.}) = 25M_{\odot}\text{pc}^{-2}, \Sigma_*(\text{naines blanches}) = 4M_{\odot}\text{pc}^{-2}, \Sigma_*(\text{Géantes}\&\text{Superg.rouges}) = 1M_{\odot}\text{pc}^{-2}$

Galaxies J1 - David Elbaz

Mesurer la formation d'étoiles dans les galaxies

Problème	
Les premières mesures donnaient des valeurs de n variant 0 <n<4. Beaucoup de galaxies S0 et Sa contiennent de grandes quanti gaz et très peu de formation stellaire. De même dans les régions externes des galaxies spiral irrégulières.</n<4. 	entre tés de es et
Comment expliquer cela ?	
Nous allons voir qu'il existe un seuil en densité surfacique d interstellaire: la formation stellaire suit de manière universelle de Schmidt-Kennicutt (sauf aux très petites échelles), mais celle s'applique qu'au-dessus d'un seuil en densité.	u gaz la loi -ci ne
Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les galaxies	Page 7

2 Efficacité de formation d'étoiles (SFE) On appelle SFE, le SFR par unité de masse de gaz: SFE = SFR/ M_{oaz} Le SFE est un meilleur indicateur de la physique de formation d'étoiles car il ne dépend pas de la taille des galaxies, il est cependant plus difficile à mesurer car il requière la mesure de la masse de gaz contenue dans les galaxies distantes. Les travaux de Kennicutt qui ont permis de mettre en évidence la loi précédente ont utilisé des observations de gaz relativement peu dense (n(H₂)≥500 cm-3). Une étude récente de Gao & Solomon (2004) a été effectuée à l'aide d'un autre traceur du gaz, la molécule HCN, dont l'émission vibrationnelle requière une plus grande densité du gaz pour être émise (n(H₂) \geq 3x10⁴ cm⁻³). 1000.0 The fit lines: $SFR=1.4M(H_g)/10$ for $SFR < 20M_{\odot}yr^{-1}$ and $SFR=7.6(M(H_g)/10^9)^{1.73}$ for all al Spirals ULIGs, L_{IR} 100. SFR $(M_{\odot} yr^{-1})$ SFR $(M_{\odot} yr^{-1})$ 10.0 10. 1.0 0. 10¹⁰ 1010 1011 108 108 10 10 M(H₂)(M₀)

Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les galaxies Page 18

Efficacité de formation d'étoiles (SFE) et gaz dense

• La molécule de CO présente une corrélation non linéaire avec la luminosité infrarouge totale utilisée comme estimateur du SFR (N=1.7)

- •La molécule HCN, qui trace le gaz dense, présente une corrélation linéaire !
- •L'efficacité de conversion du gaz dense en étoiles semble donc être universelle !

•Ce qui change d'une galaxie à l'autre est la fraction de gaz dense. Celle-ci est particulièrement élevée dans les galaxies lumineuses en infrarouge, dont la formation d'étoiles est allumée par des fusions de galaxies.

3 Définition d'un "starburst" On peut définir un temps caractéristique de conversion du milieu interstellaire d'une galaxie en étoiles: t(consommation gaz)= Mgaz / SFR = 1 / SFE (efficacité SF) Ce temps est l'inverse de l'efficacité de formation d'étoiles. Il est plus intuitif que cette dernière. Définition #1: t(consommation gaz) << t(Hubble) starburst = > Pour les plus gros starbursts : t(consommation gaz)~ 1 Gyr ! Le starburst correspond à une phase d'activité supérieure à la moyenne intégrée sur l'histoire de la galaxie. On a pour cela défini un autre paramètre appelé "paramètre de taux de naissance" ou "birthrate parameter", b: b = SFR / <SFR> (ou encore "paramètre de Scalo") Définition #2: b = SFR / <SFR> ≥ 2-3 => starburst (Heckman 2005) Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les galaxies Page 20

	4 Mesures observationnelles du taux de formation d'étoiles
 la la n 	a couleur d'une galaxie reflète l'âge moyen de sa population stellaire a forme du continu spectral résulte de son taux de formation d'étoiles noyenné dans le temps
• '	'intensité de la raie Hα, mesure la quantité de photons ionisants
p	principalement issus des étoiles M≥ 10 M _☉ , dont la durée de vie est ≤ 3 Myr.
E	Ile mesure donc l'intensité actuelle de formation d'étoiles
• l' d fe	'intensité de l'émission en UV est dominée par les étoiles M≥ 5 M _☉ , de lurée de vie ≤0.1 Gyr. Elle donc aussi une mesure quasi-instantanée de la prmation stellaire mais sur une durée supérieure à Hα
• '	extinction par la poussière absorbe une partie des photons H α , mais aussi
d	les photons ionisants avant émission H α , et des photons UV. Pour les
g	galaxies les plus actives, la concentration du gaz interstellaire est telle que la
n	najorité de la lumière des étoiles massives est absorbée et réémise dans
l'	l'infrarouge moyen à lointain, qui fournit donc aussi une mesure de la
fo	pormation stellaire quasi-instantannée.
• lá	a raie interdite OII est aussi une mesure du flux ionisant mais polluée par la
q	juantité de métaux dans la galaxie

Galaxies J1 - David Elbaz	Mesurer la formation d'étoiles dans les galaxies
---------------------------	--

Au cours de son évolution, une population stellaire se déplace dans le diagramme Hδ-D4000, galaxies présentant une forte largeur équivalente, EW(Hδ), sont dominées par des étoiles de type A à F, on les appelle généralement galaxies "post-starburst", car les étoiles O et B ne sont plus dominantes, mais on s'est aperçus récemment qu'un grand nombre d'entre elles étaient encore des starbursts dont la lumière des étoiles O et B était absorbée. Le diagramme de droite montre l'effet d'une flambée de formation stellaire qui commence alors que la galaxie a 3Gyr, son effet est représenté par la boucle en noir.

Galaxies J1 - David Elbaz	Mesurer la formation d'étoiles dans les galaxies	Page 26
---------------------------	--	---------

les galaxies massives sont peuplées d'étoiles vieilles, ce qui était connu, mais la séparation nette en deux populations reste mal comprise. Pourquoi les galaxies sont-elles si nettement séparées de manière bimodale ?

Liste des raies que l'on peut trouver dans un spectre						
 Lyman break 912A CIII 977 	20. 21.	NeV 3346 NeV 3426	40. 41.	Hell 4540 Mgl 4571	60. 61.	OI 5577 OV 5590
 [OV] 1033.84 Lya 1215.16 NV 1240.12 	22. 23. 24.	OII1 3726 OII2 3729 H12 3750	42. 43. 44.	NV 4611 NIII/CIII 4640 Felli 4658	62. 63. 64.	CVI 5805 NaID 5893. Olt 6300.3
 6. Sill 1263 7. OI+Sill 1304.50 	25. 26. 27	H11 3771 H10 3798 H9 3835	45. 46. 47	Hell4_3 4685.7 NelV 4725 Hell8 4 4859 3	65. 66. 67	Olt 6363.8 NIIt 6548.1 Hg 6562.8
 8. CII 1334.5 9. [SiIV+OIV] 1399.68 10. Nix 1487 	27. 28. 29.	Nelli 3868 H8+Hel 3889	48. 49.	Hβ 4861.3 NV 4933	68. 69.	NIIt 6583.4 SIIt 6716.4
10. NIV 1487 11. CIV 1549.06 12. Hell 1640.43	30. 31. 32.	CallH 3933.7 CallK 3968.468 H7+NellI 3967.5	50. 51. 52.	N 4949 Olllt 4958.9 Olllt 5006.9	70. 71. 72.	SIIt 6730.8 Fell 7155 Call 7291
13. [OIII] 1663.99 14. [NIII] 1750	33. 34. 35.	N 4058 Hδ 4101.7 GB 4300.	53. 54. 55.	Fe5015 5015. Fell 5159 Mgllb 5174.0	73. 74. 75.	Call 7324 Ollredt 7320,30 Ol 7774
15. Allii 1857 16. [CIII] 1908.73 17. NelV 2424	36. 37.	Hγ 4340.5 OIIIt 4363.2	56. 57.	Fe5270 5270. OVI 5282	76. 77.	Call 8498 Call 8542
18. Mgll 2798.74 19. NeV 2973	38. 39.	Fe4383 4383. Fe4351 4351.	58. 59.	Hell7_4 5411.5	/δ.	Call 8662
Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les galaxies Page 31						

Les ingrédients					
 régions HI: principalement constituées d'H et He (≈ 25% en masse) ne aussi d'ions de faible potentiel d'ionisation, e.g. C+. Les régions où les sont photo-dissociées sont appelées régions de photodissociation. 	utres, mais molécules				
 régions HII: contiennent des électrons et des protons libres issus d' ionisé et autres ions. 	hydrogène				
• Nuages Moléculaires: principalement H_2 et CO. Gravitationnellement liés, de masse $10^5 \cdot 10^6 M_{\odot}$. Densité de surface maximale de $H_2 \approx 10 \cdot 500 M_{\odot}/pc^2$ pour les galaxies normales, $10^3 \cdot 10^4 M_{\odot}/pc^2$ dans les centres des starbursts et $10^5 M_{\odot}/pc^2$ dans les ULIRGs (starbursts extrêmes).					
• Poussière: tailles typiques $\approx 0.1 \ \mu m$. Chauffées par le champ de rainterstellaire, leur émission pique entre 60 et 100 μm .	yonnement				
 Rayons Cosmiques: particules accélérées par des champs magnétiques chocs de supernovae. 	ues ou les				
Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les galaxies	Page 32				

Le milieu interstellaire (ISM) de la Voie Lactée

- % identiques de gaz moléculaire et neutre de $\approx 4 \times 10^9 \, M_{\odot}$
- Les régions HII représentent 1% de la masse
- H⁺ se trouve aussi dans les régions diffuses et le halo
- Poussière \approx 1-2% de la densité de l'ISM
- Eléments lourds: $\approx 10^{-3} 10^{-4}$ en nombre
- Intensité du champ magnétique: quelques µG
- Rayons cosmiques: principalement constitués de protons

Galaxies J1 - David Elbaz

Mesurer la formation d'étoiles dans les galaxies

Prop	Propriétés typiques de l'ISM des Spirales								
Phase	T (K) typique	Densité (cm ⁻³)	Facteur de remplissage en volume (%)						
Moléculaire	20	>1000	>1						
Neutre froid	100	200	2-4						
Neutre "tiède" (warm)	>6000	1	>30						
"tiède" & ionisé	8000	>1	<15						
chaud & ionisé (hot)	106	10-3	<50						
axies J1 - David Elbaz	Mesurer la formatio	n d'étoiles dans les galax	ies Page 36						

Efficacité d'absorption des photons Lyman et raies de Balmer

On subdivise traditionnellement les nébuleuses/régions HII en deux types:

1) Cas A: tous les photons Lyman s'échappent de la nébuleuse. Aucune absorption des photons Lyman ne se produit = cas optiquement fin.

2) Cas B: tous les photons Lyman sont ré-absorbés par d'autres atomes d'H. cas optiquement épais.

Dans la pratique, on est quasiment toujours dans le cas B. Ce cas présente d'intéressantes implications astrophysiques: les désexcitations vers le niveau fondamental sont négligeables à cause des absorptions très efficaces des photons Lyman. De plus les désexcitations en cascade passent par les raies de Balmer (niveau final n=2), par chance ces raies tombent dans le domaine visible. Ainsi tous les photons ionisants finissent par produire des raies de Balmer. En comptant les photons dans les raies de Balmer, on compte le nombre total de photons ionisants émis par les étoiles centrales de la région HII. Les raies de Balmer peuvent donc être utilisées pour mesurer la luminosité totale rayonnée par les étoiles massives et donc, à l'aide d'une hypothèse sur la distribution en masse des étoiles, on peut ainsi remonter à leur masse totale et donc au Taux de Formation d'Etoiles de la galaxie.

Galaxies J1 - David Elbaz	Mesurer la formation d'étoiles dans les galaxies	Page 40
	······································	- 3

Efficacité d'absorption des photons Lyman et raies de Balmer

Comme le montre la table ci-dessous, la population des différents niveaux excités de l'H dépend très peu de la densité électronique (N_e) et de la température électronique (T_e). Donc les rapports de raies H α et H β sont principalement définis par la physique atomique. Ainsi la mesure de l'intensité d'une seule raie de Balmer permet-elle de définir l'intensité de l'ensemble des raies de Balmer. Et comme celles-ci proviennent de l'absorption des photons ionisants, on mesure ainsi à l'aide d'une seule raie de Balmer (H α ou H β , par exemple), la totalité du flux ionisant.

On se place, en général, dans le cas B avec $T_e=10,000$ K, ce qui implique un rapport des intensités des principales raies de Balmer:

 $I(H\alpha)/I(H\beta) = 2.86$

Temperature	5000	10,0	00	20,0	00	· · · • •	
$N_e \ ({\rm cm^{-3}})$	10^{4}	10^{2}	10^{6}	10^{2}	10^{4}	Si l'on mesure une valeur	
$ \begin{array}{c} \alpha_{\rm H\beta}^{\rm eff} \\ I({\rm H}\alpha)/I({\rm H}\beta) \\ I({\rm H}\gamma)/I({\rm H}\beta) \\ I({\rm H}\epsilon)/I({\rm H}\beta) \end{array} $	5.44 3.00 0.460 0.155	3.02 2.86 0.468 0.159	3.07 2.81 0.471 0.163	1.61 2.75 0.475 0.163	1.61 2.74 0.476 0.163	plus forte, c'est qu'une autre cause affecte le rapport: l'extinction par la poussière ! car les plus petites λ sont plus absorbées:	
$\alpha_{\rm H\beta}^{\rm eff}$ in units of 10^{-14} cm ³ s ⁻¹ > nombre de recombinaisons créant 1 H β H β (4861Å) et H α (6563Å)							
Galaxies J1 - David Elbaz Mesurer la formation d'étoiles dans les					galaxies Page 41		

Les raies de recombinaison de l'hydrogène et λ associée

Les raies de l'H autres que H α sont utilisables mais elles sont plus difficilement accessibles, car elles tombent dans des domaines de longueurs d'onde hors du visible.

			6 5	Balmer	Paschen	Brackett	13.6
Série	Domaine	Région en λ	3			611 A 251 A 584 A	- 12-
Lyman	912-1216 Å	UV	2		Pα 18751 Pβ 12818 Pγ 10938 imit 8204	Box 40 Bf 26 Limit 14	eV 10
Balmer	3947-6563 Å	Optique		Ia 6563 A Hg 4861 A Hy 4340 A Hb 4101 A nit 3646 A	-		
Paschen	8210-18750 Å	Optique/proche-IR					8-
Brackett	1.5-4.05 μm	proche-IR	Lyα 1215 Å Lyβ 1026 Å Lyβ 972 Å Lyδ 949 Å Lyε 937 Å				6-
Pfund	2.3-7.5 μm	proche-IR					4-
			-				2-
			1	_			0
Galaxies J1 - D	David Elbaz Me	surer la formation d'étoiles da	ans les galax	ies		Page	42

8 Relation taux de formation d'étoiles et observables: H α et OII

Le taux de formation d'étoiles (SFR, star formation rate) et la luminosité H $\!\alpha$ sont reliés par :

SFR $(M_{\odot} yr^{-1}) = 7.9 \times 10^{-42} L(H\alpha) \text{ (ergs s}^{-1}) = 1.08 \times 10^{-53} Q(H^0) \text{ (s}^{-1}).$

où $Q(H^0)$ est la luminosité des photons ionisants. Ce calcul correspond au cas B de recombinaison avec une température électronique de 1000K. Pour la raie Brackett γ , le coefficient de conversion est 8.2×10^{-40} et l'on peut dériver les autres coefficients (Pa α ,...).

Au-delà de z~0.5, la raie H α (6563Å) est redshiftée dans l'IR proche et la raie H β (4861Å) est plus faible et souffre de la présence d'absorption H β stellaire à la même λ . La raie la plus forte est alors la raie interdite (doublet) de OII(3727Å), mais celle-ci n'est pas uniquement sensible au flux de photons ionisants, elle dépend aussi de la métallicité et du taux d'ionisation du gaz, de plus elle est à plus courte λ et souffre donc de plus d'extinction mais pouvant être observée dans le visible jusqu'à z~1.6, elle a été utilisée comme indicateur de formation d'étoiles:

$$SFR \ (M_{\odot} \ yr^{-1}) = (1.4 \pm 0.4) \times 10^{-41} \ L[OII] \ (\text{ergs s}^{-1})$$

Galaxies J1 - David Elbaz

Mesurer la formation d'étoiles dans les galaxies

Indicateurs non affectés par l'extinction

L'émission IR des galaxies présente l'avantage de n'être pas affectée par l'extinction. Les photons IR ont des longueurs d'ondes supérieures à la taille caractéristique des grains de poussière et sont donc peu affectés par eux. Les étoiles massives responsables des photons ionisants et de ceux qui dominent l'UV finissent leur vie sous la forme de supernovae dont les restes accélèrent les électrons dans le champ magnétique ambiant créant une émission synchrotron aussi d'indicateur du SFR:

(Condon et al. 1991):

$$q = \log_{10} \left(\frac{L_{\rm FIR}(W)}{3.75 \times 10^{12} ({\rm Hz})} \times \frac{1}{L_{1.4 \rm GHz} (W {\rm Hz}^{-1})} \right)$$

$$(y) = 1.5 \text{ creations datas te champ inaglicadae ambiant
$$(y) = 1.5 \text{ a } 5.5 \text{ b } 9.5 \text{ 10 } 10.5 \text{ 11 } 11.5 \text{ 12 } 12.5 \text{ b } 9 \text{ cm}(L_{\odot})$$

$$(y) = 1.5 \text{ cm}(L_{\odot})$$$$

 $q = 2.34 \pm 0.01$

ormation d'étoiles dans les galaxies

1. measure H_a and H_b fluxes in erg s⁻¹ cm⁻²,
$$F_{\alpha}^{bs}$$
 and F_{α}^{bb} .
2. unredden from Galactic extinction using the Galactic extinction curves
from the Table III of Fitzpatrick (1986, AJ 92, 1068) or Fitzpatrick (1990,
PASP 111, 63):
 $F_{\alpha}^{HW} = F_{\alpha}^{abs} \times 10^{0.4 \times E_{arw}(B-V) \times fut(\lambda/L_{\alpha})}$ (7)
where F_{α}^{AW} is the H_a flux density corrected for Galactic extinction (Milky
 $E_{MW}(B-V)$ in the Galactic extinction error and is a function of λ only.
 $E_{MW}(B-V)$ in the Balaner decrement $F_{\alpha}(F_{B})$.
3. unredden from intrinsic extinction. Estimate $E_{gas}(B-V)$ (inside the
observed galaxy) from the Balaner decrement $F_{\alpha}(F_{B})$.
 $A_{\lambda}(H_{\alpha}) - A_{\lambda}(H_{\beta}) = A_{\lambda}(665A) - A_{\lambda}(4861A)$
 $= [fit_{2}(\lambda_{\alpha}) - fit_{2}(\lambda_{\beta})] \times E_{gas}(B-V)$ (6)
Eq.(8) gives:
 $E_{gas}(B-V) = 2.5 log \left[\frac{F_{abs}^{cas}}{F_{abs}^{abs}} \right] \times \frac{1}{fit_{2}(\lambda_{\alpha}) - fit_{2}(\lambda_{\beta})}$ (9)
where, $F_{\alpha}^{eat}/F_{\alpha}^{HT} = 2.86$ is the intrinsic ratio of these lines ($N_{e} = 10^{2}$ cm⁻³,
 $T_{e} = 10^{4}$ K. Osterbrock 1989, Astrophysics of Gaseous Nebulas, University
Science Books, MIIV Valley, CA). This formula gives the olor excess from
the Galactic extinction, with the following formale:
 $E_{\alpha}^{eat} = F_{\alpha}^{AW} \times 10^{0.4} E_{ac}(H^{-1/2}) fit(\lambda)$ (10)
5. the unreddend star formation rate (SRF) from the H_a emission line is
then given by the formula of Kernite (1998, ARA&A 36, 189):
 $SFR_{H\alpha}(M_{\odot}yr^{-1}) = 7.9 \times 10^{-2} L_{H\alpha}(erg s^{-1})$ (12)
The aperture factor can be calculated from the brack-band photometric
image of the galaxy on which the slit is correlated. its the fraction of
total light entering the balk. Or it can be computed by comparison ton
to deserved magnitude in the same A range.

$H\alpha$ et IR: le cas des starbursts...

Dans les starbursts, nous avons vu que l'émission H α sous-estime le SFR des galaxies d'un facteur ~10. Après correction de l'extinction mesurée par le décrément de Balmer, l'accord entre H α et IR tient jusqu'à des SFR plus élevés de quelques 10 M_oyr¹, mais la statistique reste limitée et les barres d'erreur sur la valeur du SFR(H α) corrigé de l'extinction sont très élevées (correction d'ouverture, problème de l'obtention de H α et H β dans un même spectre pour les galaxies distantes).

Corriger l'émission UV de l'extinction: la loi de Calzetti

Attention ! L'excès de couleur dérivé du décrément de Balmer mesure l'extinction dans la région où sont présents les photons ionisants, donc principalement les étoiles plus massives que 10 M_{\odot} . Les photons UV sont émis par des étoiles plus vieilles en moyenne, avec une dominante des masses $\geq 5 M_{\odot}$, et sont géographiquement plus étalées dans l'espace. L'extinction du continu UV est donc inférieure à celle des raies de Balmer:

1. the color excess for the stellar continuum was derived by Calzetti (1997):

 $E_{cont}(B-V) = 0.44 \times E_{gas}(B-V) \tag{14}$

2. the intrinsic flux in the UV continuum, F_{UV}^{int} , is computed with the following formula:

$$F_{UV}^{int} = F_{UV}^{obs} \times 10^{0.4} E_{cont}(B-V) k'(\lambda) \tag{15}$$

where $k'(\lambda)$ is the extinction law derived for the stellar continuum by Calzetti et al. (2000, ApJ 533, 682) with: $R'_V = 4.05 \pm 0.80$, for starburst galaxies.

Galaxies J1 - David Elbaz

Mesurer la formation d'étoiles dans les galaxies

Page 53

Corriger l'émission UV de l'extinction: la technique de la pente β

Meurer et al. (1999) ont trouvé une corrélation reliant le rapport entre L(IR) et L(UV), donc la fraction de photons UV absorbés/non absorbés et la pente du spectre dans l'UV appelée pente β . : $f_{\lambda} \sim \lambda^{\beta}$. L'idée sous-jacente est que dans le domaine 1000-3000 Å, le spectre UV d'une galaxie est plat en f_{ν} , i.e. $f_{\nu} = Cte$, comme $f_{\lambda}=df/d\lambda=c\lambda^2 f_{\nu}$, cela revient à β =-2. La ligne en trait plein est en accord avec la loi d'extinction de Calzetti (2000) pour les starbursts

Les ULIRGs possédant des SFR de quelques 100 $M_{\odot}yr^{-1}$, présentent un L(IR)/L(UV) audessus de la corrélation par un facteur pouvant aller jusqu'à 100 (Goldader et al 2002). Inversement, les galaxies sélectionnées en UV sont souvent sous la corrélation (Burgarella et al. 2005). Plus généralement, cette corrélation apparaît comme le fait d'une sélection fortuite de l'échantillon de Meurer et al. (1999).

