

The R3B-GLAD Project

2nd KEK-CEA Workshop

on superconducting magnets and cryogenics for accelerator frontier Saclay, March 28, 2008

R^3B

Reactions with Relativistic Radioactive Beams

Glad: GSI Large Acceptance Dipole

General view of the R3B-GLAD Project

- Introduction
- Main specifications
- Some technical challenges
- Some present activities

C. Berriaud, JE. Ducret, Ph. Fazilleau, B. Gastineau, B. Hervieu, JP. Lottin, C. Mayri, C. Meuris, C. Pes, Y. Queinec, Z. Sun

The R³B collaboration

The R³B Collaboration

Aarhus, Denmark, University of Aarhus D.V. Fedorov, H.O.U. Fynbo, A.S. Jensen, K.-H. Langanke, K. Riisager

> Argonne, USA, Argonne National Laboratory J. Nolen

Bergen, Norway, University of Bergen J.S. Vaagen

Birmingham, UK, University of Birmingham M. Freer

Caen, France, GANIL

D. Boilley, C.E. Demonchy, W. Mittig, P. Roussel-Chomaz, H. Savajols

Daresbury, UK, CCLRC Daresbury Laboratory R. Lemmon, J. Simpson, D. Warner

Darmstadt, Germany, Technische Universität J. Enders, T. Nilsson, A. Richter, G. Schrieder

Darmstadt, Germany, GSI

T. Aumann, F. Becker, K. Boretzky, P. Egelhof, H. Emling, H. Feldmeier, H. Geissel, J. Ge M. Gorska, V. Henzl, J. Hoffmann, D. Henzlova, A. Kelic, I. Kojouharov, N. Kurz, G. Münze T. Neff, M.V. Ricciardi, T. Saito, K.-H. Schmidt, H. Simon, K. Sümmerer, W. Trautmann, S. H. Weick, O. Yordanov

Debrecen, Hungary, ATOMKI

A. Algora, M. Csatlós, Z. Gácsi, J. Gulyás, M. Hunyadi, A. Krasznahorkay

Dresden, Germany, Forschungszentrum Rossendorf E. Grosse, A. Wagner

Dubna, Russia, Joint Institute for Nuclear Research S.N. Ershov, L. Grigorenko

> East Lansing, USA, NSCL, MSU B. Sherrill

Gatchina, Russia, Petersburg Nuclear Physics Institute, PNPI A. Khanzadeev

> Giessen, Germany, Justus-Liebig-Universität H. Lenske, M. Winkler

Gif sur Yvette, France, DAPNIA, CEA Saclay N. Alamanos, A. Boudard, J.-E. Ducret, B. Gastineau, E. Le Gentil, V. Lapoux, S. Leray, S. P. E. Pollacco, C. Volant

> Göteborg, Sweden, Chalmers University of Technology H. Johansson, B. Jonson, M. Meister, G. Nyman, M. Zhukov

Guildford, UK, University of Surrey J. Al Khalili, W. Catford, W. Gelletly, R. Johnson, M. Oi, Z. Podolyak, P. Regan, P. Stevens I. Thompson, J. Tostevin, P. Walker

> Heidelberg, Germany, Max-Planck-Institut Heiko Scheit

> > Keele, UK, University of Keele M. Bentley

Köln, Germany, Universität zu Köln P. Reiter

Kolkata, Saha Institute of Nuclear Physics, India U. Datta Pramanik

Krakow, Poland, Jagellonski University P. Adrich, M. Kajetanowicz, A. Klimkiewicz, K. Korcyl, R. Kulessa

> Krakow, IFJ PAN Krakow A. Mai

Liverpool, UK, University of Liverpool M. Chartier, P. Nolan

> Lvon, IPN Lvon, France Ch. Schmitt

Madrid, Spain, Instituto de Estructura de la Materia, CSIC M.J.G. Borge, L.M. Fraile, E. Garrido, O. Tengblad

Mainz, Germany, Johannes Gutenberg Universität O. Kiselev, J.V. Kratz

Manchester, UK, University of Manchester D. Cullen, S. Freeman

Moscow, Russia, Kurchatov Institute L. Chulkov, B. Danilin

Moscow, Russia, Institute for Nuclear Research, Russian Academy of Sciences A Botvina

> Mumbai, India, Tata Institute of Fundamental Research R. Palit

München, Germany, TU München M. Böhmer, T. Faestermann, J. Friese, R. Gernhäuser, T. Kröll, R. Krücken

> Obninsk, Russia, IPPE Obninsk A. Ignatyuk

Orsay, France, IN2P3/IPN Orsay Ch.-O. Bacri, Y. Blumenfeld, E. Khan, F. Rejmund, J.A. Scarpaci

> Paisley, UK, University of Paisly R. Chapman, M. Labiche, X. Liang, K. Spohr

Pyhäsalmi, Finland, CUPP project

T. Enqvist

RIKEN, Japan R. Kanungo

Santiago de Compostela, Spain, Univers. of SdC J. Benlliure, D. Cortina-Gil, I. Duran

> Valencia, Spain, CSIC-University B. Rubio, J.L. Tain

Yale University, USA A. Heinz

York, UK, University of York Ch. Barton

E-Mail: t.aumann@gsi.de Spokesperson: T. Aumann E-Mail: bjn@fy.chalmers.se Deputy:

■ 186 physicists

■ 50 institutes

■ 19 countries

R³B Hall in the FAIR complex

The NuSTAR radioactive beam facility Nuclear Structure, Astrophysics, and Reactions

Reactions with Relativistic Radioactive Beams R^3B fully exclusive reactions measurements

-The R3B experiment, applicable to a wide class of reactions:

exclusive measurements of the final state identification and momentum analysis of fragments

Large acceptance mode: Δp/p~10⁻³, High-resolution mode: Δp/p~10⁻⁴

- Coincident measurements of neutrons, protons, gamma-rays, light recoil particles

GLAD magnet challenges

Specifications from the physics of R³B:

Active shielding superconducting magnet design

- Field integral 4,8 $T.m \rightarrow$ 18 deg of bending power for ¹³²Sn ions at 1 GeV per nucleon
- Fringe field < 0.02 T around the target point
- Free detection volume around the target point: a **sphere of radius** R = 1 m

- Opening angles: +/- 80 mrad, horizontal & vertical for the neutrons and the charged fragments
- Allowing the detection in coincidence of 1 GeV protons, neutrons and ions
- Possibility of inverting the bending angle
- With detection, overall momentum & angle resolution (10⁻³, 1 mrad)

R³B large acceptance magnet design

- Magnetic field integral: ~ 4.8 T.m
- Choices for the design of the magnet
 - Superconducting magnet
 - \Rightarrow Full linearity of the field with the current
 - ⇒ Lower operational cost (power consumption)
 - Active shielding technique:

 $B \rightarrow o$ rapidly outside the magnet

One main feature of this butterfly-like magnet with graded, tilted and trapezoidal racetrack coils is the **active shielding**:

It makes it possible to decreasing the field by two orders of magnitude within a 1.2 m length, despite the large opening on the outlet side of the magnet (around 0.8 square meters).

R³B large acceptance magnet design

- Grading of the coils
 - Goal: Minimize the stored energy
 - \Rightarrow active magnetic volume as efficient as possible

(i.e. as close as possible to the particle trajectories)

 While: Keeping as flat as possible the field profile along the symmetry axis of the magnet

Magnetic design study

The magnetic optimisation \rightarrow final design of the coils (24 MJ)

Different criteria were taken into account:

- -reduction of the max field on the conductor below 6.5 T
- → to increase the stability margin of the magnet,
- minimising the fringe field at the entrance & exit of the magnet
- maximising the dipolar component of the magnetic field on four different transverse planes
- minimising the dispersion of particle trajectories with the same momentum, in order to get the specified resolution
- keeping the field integral value equal to 4.8 Tm
- maintaining a reasonable size to the magnet.

Magnetic design study - Results

Active shielding: Blimit ~ 0.02 T

Irfu

Main characteristics of the design

First,

a high level of magnetic forces

(300 to 400 tons per meter), with little place to block the coils, requiring a very specific mechanical structure.

The coils are embedded in strong Al alloy (5083) boxes.

Main characteristics of the design

Then, the **magnet protection system** based on an external dump resistor, coupled to a strong quenchback effect, to prevent any damage of the coils which could be caused by the **24 MJ** of stored energy.

I = 3700 A

Main current 3700 A

Dump resistance 270 mW

Maximum Voltage +/- 500 V

Stored Energy 24.3 MJ Inductance 3.56 H

Quench: time const. 13.3 s
Tmax < 150 K max

Conductor peakfield 6.35 T

Temperature margin ~ 1.5 K

Main characteristics of the design

lastly, the **indirect cooling** of the cold mass with **two-phase helium thermosiphon** @ 4.4 K

~ 20 parallel pipes; Thermal screen @ 50-80 K

Coils: 28 double pancakes, ~30 joints, 2 current leads;

The overall size of the conical cryostat will be around

3.5 m long, 3.8 m high and 7 m broad.

Total weight 50 t : conductor 4.5 t, cold mass 20 t

The superconducting cable

- The 4,5 tons of superconducting cable were ordered.
 - Test lengths were accepted by CEA after qualification tests in May.
 - The complete length of cable necessary for the coil winding has been delivered in January 2008.

Conductor cable: Cu/NbTi = 2.6, Current density 75 A/mm2,

Main current 3700 A

Rutherford cable, 21 strands cross-section 15 x 2.6 mm²

Stack of cables after impregnation

Mechanical concerns

Estimated thermal shrinkage coefficients of the coil:

in the winding direction of the coil (x)

$$\int_{300 \text{ K}-4 \text{ K}} \alpha_{x} = 3.3 \pm ? \text{ mm/m},$$

in the transverse direction of the coil (y)

$$\int_{300 \text{ K} - 4 \text{ K}} \alpha_{\text{v}} = 5.5 \pm ? \text{ mm/m},$$

in the vertical direction of the coil

$$\int_{300 \text{ K}-4 \text{ K}} \alpha_z = 6.8 \pm ? \text{ mm/m}.$$

The orthotropic material properties of the coils (Cu stabilized, Cu/non-Cu = 2.6) are estimated by theoretical approach. Some assumptions have to be made during the homogenization process. Such as: the real shape of each strand inside the cable, the thickness of the insulation, etc.

Comparing with the $\int_{300\,\mathrm{K}-4\,\mathrm{K}}\alpha$ values of the isotropic metals :

Al alloy (5083)

Cu

Stainless steel (316L)

4.29 mm/m

3.37 mm/m

3.05 mm/m

Activities in 2008

Mechanical measurements

Views of the thermal mock-up

Tests on a thermal mockup of the coils:

Measuring the thermal shrinkage on a coil of realistic dimensions

Test of the coil integration in realistic situation

In the test facility cryostat

Activities in 2008

R&D programme on Thermosiphon cooling system with "quasi" Horizontal cooling tubes

Delivery to GSI

The delivery of R3B-GLAD is planned for 2011, Q2.

Thank you for your attention.

