

First LHCb Results

Patrick Robbe, LAL Orsay, 10/05/2011

- LHCb: What is it, what makes it special and different from ATLAS/CMS?
- <u>Status</u>: Running experience from the first months of LHC operation
- First physics: Results from the 2010 data, published and preliminary
- <u>Discovery potential</u>: Plans for 2011 and beyond

Overview

"Indirect" Search for NP

- LHCb performs <u>precision measurements</u> of CP violating phases and rare heavy-quark hadron decays
- New Physics enters through contributions from virtual heavy particles in <u>loop-mediated</u> processes
- sensitivity to New Physics is highest in processes that are <u>strongly suppressed in the</u> <u>Standard Model</u>
- discovery potential for New Physics extends to mass scales <u>far in excess of the LHC</u> <u>centre-of-mass energy</u>
- pattern of observed deviations from Standard Model predictions will <u>hint at the nature</u> of the New Physics
- in continuation of long history of "indirect discoveries"
 - suppression of FCNC \rightarrow prediction of 2nd quark family
 - CP violation \rightarrow prediction of 3rd quark family
 - strong BB mixing \rightarrow prediction of large top-quark mass

- explore FCNC processes with large sensitivity to New Physics, in particular b→s transitions
- improve measurements on CKM elements and challenge the Standard Model by over-constraining the unitarity triangles
- LHCb roadmap document: [arXiv:0912.4179v2 [hep-ex]]
 - tree-level determination of CKM angle γ
 - charmless charged two-body B decays
 - B_s mixing phase ϕ_s from $B_s \rightarrow J/\psi \phi$
 - branching fraction of $B_s \rightarrow \mu^+ \mu^-$
 - angular distributions in $B^0 \rightarrow K^* \mu^+ \mu^-$
 - $B_s \rightarrow \varphi \gamma$ and other radiative decays

LHCb = Forward Spectrometer

- LHCb covers forward region: 1.9 < η < 4.9
- optimized for the strongly forward peaked heavy quark production at the LHC
- covers only ~4% of solid angle but captures ~40% of heavyquark production cross section

LHCb = "Day-1 Experiment"

- LHCb designed to operate at an instantaneous luminosity of 2 x 10³²cm⁻²s⁻¹
- corresponds to an average of 0.4 visible interactions per bunch-crossing, maximizes fraction of single-interaction bunch crossings (for nominal operation with 2622 colliding bunches)
- single primary vertex: no ambiguity associating B decay vertex to its production vertex (required e.g. for time-dependent CP asymmetries)

 for several of LHCb's core measurements expect first significant results from 2010/2011 LHC run

LHCb Detector

- bb cross section is less than 1 % of the total inelastic cross section
- interesting B decay channels have typical branching fractions of 10⁻⁵
- exploit generic B decay signature: decay products with large p_τ ("large" = few GeV) and high impact-parameter, well separated B decay vertex

Hardware level (LO):

high-p_T <u>μ, e, γ, or hadron</u> candidates
 in muon system and calorimeters

Software level (HLT):

- multi-processor farm (14000 CPU cores)
- access to full detector data
- HLT1: cuts on impact parameter and lifetime
- HLT2: global event reconstruction
 + selections for specific channels

software trigger: flexible → adjust to running conditions

Running Experience

Extreme conditions compared to design:

	Nominal @ LHCb	2010
Number of colliding bunches	2622	344
Instantaneous luminosity	2x10 ³² cm ⁻² .s ⁻¹ (average)	1.7x10 ³² cm ⁻² .s ⁻¹ (max)
Normalized emittance	3.75 mm	2.4 mm
β*	30 m	3.5 m
μ (number of visible interaction per crossing)	0.4	2.5
pile-up	1 interaction/bb event	3.1 interactions/bb event
Integrated luminosity	2 fb ⁻¹ /year	37.7 pb ⁻¹

Data Taking & Running Conditions

- LHCb fully operational on first day of LHC collisions, running smoothly since
- recorded 37.7 pb^{-1} at $\sqrt{s} = 7 TeV$
- data taking efficiency > 90%

- at beginning of fill: up to more than 2.5 interactions per crossing on average
- significantly harsher conditions than design
 - multiple primary vertices
 - high occupancies, track multiplicities

- main limitation found: HLT reconstruction time for very busy events

Typical Event at $\langle \mu \rangle = 2.5$

LHCb Event Display

Trigger

- trigger settings continuously adapted to rapidly increasing luminosity and changing running conditions.
- <u>early running (1)</u>: low intensity, small number of bunches:
 - minimum bias trigger, require single track in VELO.
- with increasing number of bunches and μ (2):
 - loose p_{τ} cuts at L0, start to use HLT, adjust settings to fully exploit available bandwidth and CPU.
- <u>at highest μ (3)</u>: give priority to muon triggers, reduce hadron trigger lines when needed:
 - increase cuts on transverse momentum / energy
 - *"global event cuts" on hit multiplicities to reject very busy events that require lots of CPU*
- trigger efficiencies determined on data using "tag-and-probe" methods
- results in good agreement with simulation

- (1) loose L0 cuts, HLT in pass-through
- (2) L0 + HLT1
- (3) full LO-HLT1-HLT2

	Muon Trigger (J/ψ)	Hadron Trigger (D ^o , p _T >2.6 GeV)	
Data	(94.9 ± 0.2) %	(60 ± 4) %	
Simulation	(93.3 ± 0.2) %	66 %	

Vertex Reconstruction

- excellent vertex resolution crucial for high-level triggers and most physics analyses
- VELO detectors inside LHC vacuum pipe
- only 8mm from beam during data taking
- retracted by ±3 cm at end of each fill,
 re-inserted when stable beams declared

• internal alignment better than 5 μ m, fill-to-fill variations also < 5 μ m

Tracking

- excellent momentum resolution for invariant mass resolution, rejection of combinatorial backgrounds
- spatial resolutions approaching values expected from simulation

- small differences remaining from residual mis-alignments
- note: no alignment from cosmics (acceptance too small)
- reconstruction efficiencies > 90 % for tracks above few GeV
- estimated using "tag-and-probe" methods on $K_s^0 \rightarrow \pi^+\pi^-$

$\mu^+\mu^-$ Invariant Mass Resolutions

$\psi(2S) \rightarrow \mu^+ \mu^-$

$Y(1S,2S,3S) \rightarrow \mu^+\mu^-$

$b \rightarrow J/\psi X$ lifetime measurements

(from 36 pb⁻¹)

- Already large samples available with very low background, using lifetime unbiased triggers.
- Very good proper-time resolution, ~50 fs.
- Conservative systematics assigned for the moment, dominated by time acceptance.
- Measurements compatible with PDG
- Indicates good understanding of the detector for time-dependant studies, like CP violation.

Channel	Yield	Lifetime (ps)	PDG (ps)
B⁺ → J/ψ K⁺	6741 ± 85	$1.689 \pm 0.022 \pm 0.047$	1.638 ± 0.011
$B^0 \rightarrow J/\psi \ K^{*0}$	2668 ± 58	$1.512 \pm 0.032 \pm 0.042$	1.525 ± 0.009
$B^0 \rightarrow J/\psi K_S^0$	838 ± 31	$1.558 \pm 0.056 \pm 0.022$	1.525 ± 0.009
$B_s^0 \rightarrow J/\psi \phi$	570 ± 24	$1.447 \pm 0.064 \pm 0.056$	1.477 ± 0.046
$\Lambda_{\rm b} \rightarrow {\rm J}/\psi ~\Lambda$	187 ± 16	1.353 ± 0.108 ± 0.035	1.391 ± 0.038

(from 36 pb⁻¹)

- Mass measurements are very challenging tasks
- Need to control precisely (at the per mille level to be competitive) :
 - Magnetic field / absolute field scale → momentum scale
 - Alignment of subdetectors
- <u>Momentum scale calibration</u>: done using $J/\psi \rightarrow \mu^+ \mu^-$ decays, and checked on 2-body decays and $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$.

Decay Mode	Measured mass (MeV/c ²)	PDG average (MeV/c ²)
$Y \rightarrow \mu^+ \mu^-$	9459.90 ± 0.54	9460.30 ± 0.26
ψ(2S) → J/ψ π⁺ π⁻	3686.12 ± 0.06	3686.09 ± 0.04
$J/\psi \rightarrow \mu^+ \mu^-$	3096.97 ± 0.01	3096.916 ± 0.011
$D^0 \rightarrow K-\pi+$	1864.75 ± 0.07	1864.83 ± 0.14
$K_S^0 \rightarrow \pi^+ \pi^-$	497.62 ± 0.01	497.61 ± 0.02

• Systematic uncertainty of 0.15 MeV/c² for B mass measurement.

- <u>Alignment</u>: depend on a lot of parameters → time dependant alignment.
- Before alignment: (central value of J/ ψ mass)

• Systematic uncertainty of 0.10 MeV/c² for B mass measurement

$b \rightarrow J/\psi X$ mass measurements

State	Measured mass (MeV/c ²	PDG average (MeV/c ²)
B ⁰	5279.54 ± 0.15 ± 0.16	5279.48 ± 0.47
B ⁺	$5279.27 \pm 0.11 \pm 0.20$	5279.10 ± 0.39
B _s ⁰	$5366.60 \pm 0.28 \pm 0.21$	5365.97 ± 0.87
Λ_{b}	$5619.49 \pm 0.70 \pm 0.19$	5620.19 ± 1.60
B _c ⁺	$6268.0 \pm 4.0 \pm 0.6$	6277.13 ± 6.00
CDF CLEO2 CDF average 5279.48 \pm 0.47 Cb Preliminary (J/ ψ K [*]) Cb Preliminary (J/ ψ K _s) v average 5279.55 \pm 0.17 5277	5278 5279 5280 5281 5282 5283 B ⁰ mass [MeV/c ²]	CDF CLEO2 CDF PDG Average 5279.10 ± 0.39 LHCb Preliminary New average 5279.23 ± 0.19 5276 5277 5278 5279 5280 5281 $5B+ mass [MeV/c$
	B ⁰	B ⁺

$b \rightarrow J/\psi X$ mass measurements

Muon Identification Performance

- efficiency determined from data using tag-and-probe method on $J/\psi \rightarrow \mu^+\mu^-$
- found to be > 90 % for p > 10 GeV
- mis-ID probabilities $K \rightarrow \mu$, $\pi \rightarrow \mu$, $p \rightarrow \mu$ determined from data using tag-and-probe method on ϕ $\rightarrow KK$, $K_s \rightarrow \pi\pi$, $\Lambda \rightarrow p\pi$
- all found to be < 2 % for p > 10 GeV
- good agreement between data and simulation

J/ψ cross-section measurement

- Important calibration mode for LHCb, and proof of absolute cross-section / branching fractions capabilities.
- Measurement released in December, with 5pb⁻¹, accepted for publication in EPCJ (arXiv:1103.0423 [hep-ex]).
- Measure separately:
 - Prompt J/ ψ (direct J/ ψ + J/ ψ from χ_c feeddown)
 - J/ψ from *b* decays,
- Using to separate them the J/ ψ pseudo proper time:

• Total bb cross-section:

$$\sigma(pp \to b\overline{b}X) = 288 \pm 4 \pm 48\,\mu b$$

 d_z

Differential cross-sections in 70 bins (p_T and rapidity, y)

Comparison with theory (prompt J/ ψ):

Comparison with theory (J/ ψ from b):

Comparison with other experiments:

Search for $B_{d,s} \rightarrow \mu^+ \mu^-$ decays

- One of the early benchmark channels for LHCb (arXiv:1103.2465): search of New Physics entering in loops that would enhance the Branching fraction compared to Standard Model expectations (which are very small).
- These decay modes are very sensitive to new scalar and / or pseudo-scalar interactions. In the MSSM, the Branching fraction is proportional to $\tan^6\beta/M_A^4$.

$$BR(B_q \to l^+ l^-) \approx \frac{G_F^2 \alpha^2 M_{B_q}^3 f_{B_q}^2 \tau_{B_q}}{64\pi^3 \sin^4 \theta_W} |V_{tb} V_{tq}^*|^2 \sqrt{1 - \frac{4m_l^2}{M_{B_q}^2}} \\ \left\{ M_{B_q}^2 \left(1 - \frac{4m_l^2}{M_{B_q}^2} \right) c_S^2 + \left[M_{B_q} c_P + \frac{2m_l}{M_{B_q}} (c_A - c_A') \right]^2 \right\}.$$

• Standard Model Predictions:

Mode	Branching Fraction	A. J. Buras	
$B_s^0 \rightarrow \mu^+ \mu^-$	(3.2 ± 0.2) x 10 ⁻⁹	[arXiv:1012.1447]	
$B^0 \rightarrow \mu^+ \mu^-$	$(0.10 \pm 0.01) \times 10^{-9}$	E. Gamiz et al. [PRD80 (2009) 014503]	

Search for $B_{d,s} \rightarrow \mu^+ \mu^-$ decays

Signal and background candidates are discriminated by a 2D likelihood: **multivariate discriminant variable** (Geometrical Likelihood) and **invariant mass**, with both probabilities obtained <u>from data ($B \rightarrow hh'$)</u>:

• Three complementary normalization channels: $B^+ \rightarrow J/\psi K^+$, $B_s^0 \rightarrow J/\psi \phi$ and $B^0 \rightarrow K^+\pi^-$.

Search for $B_{d,s} \rightarrow \mu^+ \mu^-$ decays

Prospects for 2011/2012 (expected luminosity from 500 pb⁻¹ to 2 fb⁻¹):

• LHCb will either find signs of NP or exclude most of the tan β vs M_A plane with 2011/2012 data.

- crucial for flavour tagging and for separation of B decays with identical topology, e.g. $B^{0} \rightarrow \pi^{+}\pi^{-} \leftrightarrow B^{0} \rightarrow K^{\pm}\pi^{\mp} \leftrightarrow B_{\varsigma} \rightarrow K^{+}K^{-}$
- two RICH detectors with three radiators
- efficiencies and mis-ID determined from data using tag-and-probe methods on $\phi \rightarrow KK$, $K_s \rightarrow \pi\pi$, $\Lambda \rightarrow p\pi$

 performance found to be close to simulation over full momentum range from few GeV (tagging) to 100 GeV (two-body hadronic decays)

K/π Identification

Study of direct CP violation in $B_{d,s} \rightarrow K\pi$

- Direct CP asymmetry in $B^0 \rightarrow K\pi$ is well established (9 σ) but not yet significantly observed for $B_s^0 \rightarrow K\pi$.
- <u>Detector asymmetries</u>: controlled using clean samples of $D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+}) \pi^{+}$, comparing data taken with both magnet polarities: $A_{D} = -0.004 \pm 0.004$.
- Production asymmetries: constrained using $B^+ \rightarrow J/\psi K^+$: $A_P = -0.024 \pm 0.016$.

Decay mode	A _{CP} LHCb preliminary	HFAG Average
$B^0 \rightarrow K^- \pi^+$	-0.077 ± 0.033 ± 0.007	-0.098 ± 0.012
$B_s^{0} \rightarrow K^- \pi^+$	$0.15 \pm 0.19 \pm 0.02$	0.39 ± 0.17

- Requires flavour tagging, several methods used:
 - <u>Opposite Side Tagging</u>: flag the flavour of the B opposite to the signal with sign of e, μ , K or the total inclusive charge of the secondary vertex.
 - <u>Same Sign Tagging</u>: charge of π or K coming from the same vertex than signal, exploiting hadronization process of the signal B or decays of excited $B^{**} \rightarrow B_{signal} \pi/K$
 - <u>Performances</u>: Mistag rate $\omega \approx 33\%$, Tagging power $\varepsilon_{eff} \approx 2.5\%$.

B⁰, B_s⁰ Mixing

ϕ_{s} from $B_{s}^{0} \rightarrow J/\psi \phi$

- One of the main LHCb first measurement, "golden mode" for CP Violation studies in the B_s system. ϕ_D
- Interference of mixing and decay: CPV phase $\phi_s = \phi_M + 2\phi_D$

• In the Standard Model:

- Precise (and small) Standard Model prediction: $\phi_s^{SM} = -0.0363 \pm 0.0017$ rad
- Possible New Physics contribution: $\phi_s = \phi_s^{SM} + \Delta \phi_s^{NP}$
- Tagged, Time-Dependant, Angular analysis !

- Tagged, Time-Dependant analysis.
- Result can be compared to the very precise value from B-factories.
- Selection of 280 tagged $B^0 \rightarrow J/\psi K_s$ in 35pb⁻¹ (only tagged events are sensitive to sin(2 β))

LHCb Preliminary:

 $\sin(2\beta) = 0.53^{+0.28}_{-0.29}(stat) \pm 0.08(syst)$

World average:

 $sin(2\beta) = 0.673 \pm 0.023$

Polarization amplitudes in $B^0 \rightarrow J/\psi K^{*0}$

- Angular analysis, in transversity basis:
- Measurement of the distributions of the 3 angles: θ , ϕ , ψ
- Detector geometry distorts efficiency to reconstruct these angles: 3-dimensional corrections obtained from full Monte Carlo simulation.

• 2668 ± 58 signal events.

Parameter	LHCb result (preliminary)	BaBar PRD 76, 031002	Systematics:
$ A_{\parallel} ^2$	$0.252 \pm 0.020 \pm 0.016$	$0.211 \pm 0.010 \pm 0.006$	• S-wave
$ A_{\perp}^{''} ^2$	$0.178 \pm 0.022 \pm 0.017$	$0.233 \pm 0.010 \pm 0.005$	Background
δ_{\parallel} [rad]	$-2.87 \pm 0.11 \pm 0.10$	$-2.93 \pm 0.08 \pm 0.04$	Angular accent
δ_{\perp} [rad]	$3.02 \pm 0.10 \pm 0.07$	$2.91 \pm 0.05 \pm 0.03$	

- Good agreement with BABAR measurement
- But not yet competitive

- Tagged, Time-Dependant, Angular analysis.
- With 836 ± 60 tagged reconstructed candidates, not enough statistics to have a meaningful point-estimate : confidence contours using Feldman-Cousins method.
- Statistical errors only, but systematic effects are negligible at this point.

Standard Model P-value: 22%

 $\varphi_s \in$ [-2.7, -0.5] rad at 68% CL $\varphi_s \in$ [-3.5, 0.2] rad at 95% CL

ϕ_{s} from $B_{s}^{0} \rightarrow J/\psi \phi$

- Prospects for 2011/2012 running (500pb⁻¹ to 2 fb⁻¹ of data):
 - With current performances, and only using Opposite Side tagging, expected sensitivity on ϕ_s is 0.13 rad, assuming Standard Model ϕ_s value [will be world's best measurement already end of 2011].
 - Adding Same Side Tagging will improve the sensitivity significantly.
 - Adding other decay modes will also help:

- From detector point of view:
- Trigger Computer Farm for HLT will be upgraded to reach 1500 CPU nodes, additional data links will be needed to increase current bandwidth.
- LHCb has been designed to run for 10 years at 2-5x10³² cm⁻².s⁻¹: limit of the instantaneous luminosity that the detectors can support to have stable operation.
- From trigger point of view:
- Global event cuts have a large price on luminosity when $\boldsymbol{\mu}$ is high.
- Crucial to improve CPU time consumption per event in the HLT.
- From analysis point of view:
- No significant gain when μ >2.5.
- Spill-over with 50 ns bunch spacing also add complexity !
- LHCb future running strategy:
- Maximum instantaneous luminosity: ~3x10³² cm⁻².s⁻¹
- Maximum μ of 2.5, lower than ATLAS/CMS
- LHC displace beams to reduce luminosity at beginning of fill and readjust them to follow beam

lifetime, e	very hour.
-------------	------------

30-Apr-2011 06:40:13	Fill #: 1748	Energy: 3500 GeV	l(B1): 7.63e+13	l(B2): 7.49e+13
	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	STANDBY	PHYSICS	PHYSICS
Instantaneous Lumi (ub.s)^-1	751.157	0.361	669.685	159.418
BRAN Luminosity (ub.s)^-1	676.029	0.673	669.710	45.261
Fill Luminosity (nb)^–1	145.8	0.1	190.5	46.1
BKGD 1	0.130	0.000	12.642	0.535
BKGD 2	36.204	0.702	1.967	1.398
BKGD 3	0.000	0.000	0.003	0.650
LHCb VELO Position 🛛 Ga	p: 10.0 mm	STABLE BEAMS	TOTEM	: on
Performance over the last 24 Hrs Updated: 06:40:10 44/				

• LHCb has a unique potential for the

INDIRECT DISCOVERY

of New Physics

- the experiment is performing very well, under harsher conditions than it was designed for
- the good agreement between simulation and early measurements indicates that estimated physics reaches seem realistic
- in some areas we are already getting close to being competitive with exisiting results with only a small sample of data.
- A lot of other results not covered here.
- 2011 will see a lot of results from LHCb.