Measuring Σm_{ν} with drilled plates ## Contributing persons: > J. Baur, A. Borde, J. Leslourgues, J-M Le Goff, Ch. Magneville, N. Palanque-Delabrouille, J. Rich, G. Rossi, M. Viel and Ch. Yèche. SPP Apero Saclay February 13, 2015 # Why do we need plates? ## SDSS/BOSS ## SDSS Survey - \geq 2.5m Sloan telescope with a wide FoV \sim 7 deg² - $> (\alpha, \delta)$ positions: 5 filter camera - > z position: Spectrograph ~1000 simultaneous spectra ## **BOSS** tracers - > 1.5 millions of Luminous Red Galaxies (light emitted 6 billions years ago, z~0.6) - > 180 000 quasars (light emitted 11 billions years ago, $z\sim2.4$) with Ly- α forests ## Ly- α forests, matter tracers ## 1D power spectrum Correlation between the pixels of a line of sight Proxy of the matter down to scale 1 Mpc ## Principles - > Use Ly- α forests of quasars (2.2<z<4) - > HI absorption in IGM along the line of sight of Q50s - > We expect low density gas (IGM) to follow the dark matter density # BOSS Observation Strategy # Plug and Observe ## Several steps (~3 months) - > Target selections (~40 Q50s deg-2 and ~150 galaxies deg-2) - > Drill plates (1000 holes per plate) - > Plug plates on cartridges during day ## Observations at APO ## Cartridges - > Plugged during day - > 30 mns to 45 mns per cartridge - > Observation of 5-9 cartridges per night. Cartridges stored for night observations # Observations at APO # Measuring neutrinos masses # Matter power spectrum - > Analogy with sound: higher at certain frequencies - \triangleright Real space \Rightarrow k-space (Mpc⁻¹) - > First observation of "total" power spectrum with different tracers of the matter # Impact of neutrino masses Small scales Large scales - Free-streaming \Rightarrow suppression of small scales - Suppression factor $\Leftrightarrow \Sigma m_{\nu}$ - Independent measurements (CMB, Galaxies, 1D Ly- α) - Suppression is z-dependent Ly-α: - Access to small scales (max effect) - Large z-range [2.1; 4.5] - - Caveat: non-linear regime and power spectrum of flux (not mass density) - ⇒ Hydro/N body simulations # 1D Power Spectrum - > First year of observation: 14000 QSOs selected out of 60000 - > Detailed study of spectrograph resolution, noise, lines of sky, correlation with other absorbers... - Need simulations to come back to linear matter power spectrum # Hydro-dynamical simulations - > 3 Species: dark matter + baryons - + 3 degenerate-mass neutrinos - > Methodology: - Linear (CAMB) to z=30 - Simulations from z=30 to z=2.0 - Hydro/N-body simulations Hydro-dynamical simulations $$z = 15 \rightarrow 0$$ 3 species - Baryons - Dark matter - Neutrinos Stars formed from baryons # Constraint on Σm_n ## Limits: \triangleright With Ly- α alone: $\Sigma m_v < 1.1 \text{ eV } @95\%CL$ > With CMB alone: Σm_{v} < 0.66 eV @95%CL > Combined with CMB (Planck 2013 + ACT + SPT + WMAP polarization) $\Sigma m_v < 0.15 \text{ eV}$ @95%CL | Parameter | Ly- $\alpha + H_0^{\text{gaussian}}$ | Ly-α + Planck | Ly- α + CMB | $Ly-\alpha + CMB$ | |---------------------|--------------------------------------|-------------------|--------------------|-------------------| | | $(H_0 = 67.4 \pm 1.4)$ | | | + BAO | | n_s | 0.928 ± 0.012 | 0.958 ± 0.006 | 0.953 ± 0.005 | 0.954 ± 0.005 | | H_0 (km/s/Mpc) | 67.2 ± 1.4 | 67.9 ± 1.0 | 68.0 ± 1.0 | 67.8 ± 0.5 | | $\sum m_{\nu} (eV)$ | < 1.1 (95%) | < 0.22 (95%) | < 0.15 (95%) | < 0.14 (95%) | | σ_8 | 0.846 ± 0.039 | 0.822 ± 0.018 | 0.832 ± 0.009 | 0.837 ± 0.011 | | Ω_m | 0.296 ± 0.017 | 0.296 ± 0.016 | 0.303 ± 0.014 | 0.308 ± 0.007 | # Neutrino mass hierarchy - Particle physics experiments measure the Δm^2 with mixing - Cosmology measures Σm_v - Two possible ordering (NH / IH) - ⇒ Measurement of absolute ### masses Direct measurement with β -decays: KATRIN: ${}^{3}H \rightarrow {}^{3}He + e^{-} + v_{e}$ With $\Sigma m_v < 0.15 \text{ eV } @95\%CL$ - > NH is favored - \triangleright Prediction for m_{β} below KATRIN sensitivity: 0.2eV # Dark radiation - Neff $$ho_{ m R} = ho_{\gamma} + ho_{ u} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{ m eff}\right] ho_{\gamma}$$ ## Sensitivity to the number of neutrino species - > Full degeneracy in Lya data alone - > Constraint when combining Lya and CMB $$N_{eff} = 2.91^{+0.21}_{-0.22} (95\% CL)$$ $$\Sigma m_{v} < 0.15 \text{ eV}$$ (95% CL) $$\Rightarrow$$ N_{eff} = 4 excluded at > 5σ # The future is already here! Results with Planck 2015 ## Limits on Σm_{ν} > Ly-α with Planck 2013 + ACT + SPT + WMAP polarization) $\Sigma m_v < 0.15 \text{ eV}$ @95%CL > New Ly- α analysis with Planck 2015 $\Sigma m_{v} < 0.11 \text{ eV } @95\%CL$ ## New research fields: - > WDM with sterile neutrinos - Inflation with n_s running