Measuring Σm_{ν} with drilled plates

Contributing persons:

> J. Baur, A. Borde, J. Leslourgues, J-M Le Goff, Ch. Magneville, N. Palanque-Delabrouille, J. Rich, G. Rossi, M. Viel and Ch. Yèche.

SPP Apero Saclay February 13, 2015

Why do we need plates?

SDSS/BOSS

SDSS Survey

- \geq 2.5m Sloan telescope with a wide FoV \sim 7 deg²
- $> (\alpha, \delta)$ positions: 5 filter camera
- > z position: Spectrograph ~1000 simultaneous spectra

BOSS tracers

- > 1.5 millions of Luminous Red Galaxies (light emitted 6 billions years ago, z~0.6)
- > 180 000 quasars (light emitted 11 billions years ago, $z\sim2.4$) with Ly- α forests

Ly- α forests, matter tracers

1D power spectrum

Correlation between the pixels of a line of sight
 Proxy of the matter down to scale 1 Mpc

Principles

- > Use Ly- α forests of quasars (2.2<z<4)
- > HI absorption in IGM along the line of sight of Q50s
- > We expect low density gas (IGM) to follow the dark matter density

BOSS Observation Strategy

Plug and Observe

Several steps (~3 months)

- > Target selections (~40 Q50s deg-2 and ~150 galaxies deg-2)
- > Drill plates (1000 holes per plate)
- > Plug plates on cartridges during day

Observations at APO

Cartridges

- > Plugged during day
- > 30 mns to 45 mns per cartridge
- > Observation of 5-9 cartridges per night.

Cartridges stored for night observations

Observations at APO

Measuring neutrinos masses

Matter power spectrum

- > Analogy with sound: higher at certain frequencies
- \triangleright Real space \Rightarrow k-space (Mpc⁻¹)
- > First observation of "total" power spectrum with different tracers of the matter

Impact of neutrino masses

Small scales

Large scales

- Free-streaming \Rightarrow suppression of small scales
- Suppression factor $\Leftrightarrow \Sigma m_{\nu}$
- Independent measurements (CMB, Galaxies, 1D Ly- α)
- Suppression is z-dependent

Ly-α:

- Access to small scales (max effect)

- Large z-range [2.1; 4.5] -

- Caveat: non-linear regime and power spectrum of flux (not mass density)
- ⇒ Hydro/N body simulations

1D Power Spectrum

- > First year of observation: 14000 QSOs selected out of 60000
- > Detailed study of spectrograph resolution, noise, lines of sky, correlation with other absorbers...
- Need simulations to come back to linear matter power spectrum

Hydro-dynamical simulations

- > 3 Species: dark matter + baryons
- + 3 degenerate-mass neutrinos
- > Methodology:
 - Linear (CAMB) to z=30
 - Simulations from z=30 to z=2.0
 - Hydro/N-body simulations

Hydro-dynamical simulations

$$z = 15 \rightarrow 0$$

3 species

- Baryons
- Dark matter
- Neutrinos

Stars formed from baryons

Constraint on Σm_n

Limits:

 \triangleright With Ly- α alone:

 $\Sigma m_v < 1.1 \text{ eV } @95\%CL$

> With CMB alone:

 Σm_{v} < 0.66 eV @95%CL

> Combined with CMB (Planck 2013

+ ACT + SPT + WMAP polarization)

 $\Sigma m_v < 0.15 \text{ eV}$ @95%CL

Parameter	Ly- $\alpha + H_0^{\text{gaussian}}$	Ly-α + Planck	Ly- α + CMB	$Ly-\alpha + CMB$
	$(H_0 = 67.4 \pm 1.4)$			+ BAO
n_s	0.928 ± 0.012	0.958 ± 0.006	0.953 ± 0.005	0.954 ± 0.005
H_0 (km/s/Mpc)	67.2 ± 1.4	67.9 ± 1.0	68.0 ± 1.0	67.8 ± 0.5
$\sum m_{\nu} (eV)$	< 1.1 (95%)	< 0.22 (95%)	< 0.15 (95%)	< 0.14 (95%)
σ_8	0.846 ± 0.039	0.822 ± 0.018	0.832 ± 0.009	0.837 ± 0.011
Ω_m	0.296 ± 0.017	0.296 ± 0.016	0.303 ± 0.014	0.308 ± 0.007

Neutrino mass hierarchy

- Particle physics experiments measure the Δm^2 with mixing
- Cosmology measures Σm_v
- Two possible ordering (NH / IH)
- ⇒ Measurement of absolute

masses

Direct measurement with β -decays: KATRIN: ${}^{3}H \rightarrow {}^{3}He + e^{-} + v_{e}$

With $\Sigma m_v < 0.15 \text{ eV } @95\%CL$

- > NH is favored
- \triangleright Prediction for m_{β} below KATRIN sensitivity: 0.2eV

Dark radiation - Neff

$$ho_{
m R} =
ho_{\gamma} +
ho_{
u} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{
m eff}\right]
ho_{\gamma}$$

Sensitivity to the number of neutrino species

- > Full degeneracy in Lya data alone
- > Constraint when combining Lya and CMB

$$N_{eff} = 2.91^{+0.21}_{-0.22} (95\% CL)$$

$$\Sigma m_{v} < 0.15 \text{ eV}$$
 (95% CL)

$$\Rightarrow$$
 N_{eff} = 4 excluded at > 5σ

The future is already here! Results with Planck 2015

Limits on Σm_{ν}

> Ly-α with Planck 2013 + ACT + SPT + WMAP polarization)

 $\Sigma m_v < 0.15 \text{ eV}$ @95%CL

> New Ly- α analysis with Planck 2015

 $\Sigma m_{v} < 0.11 \text{ eV } @95\%CL$

New research fields:

- > WDM with sterile neutrinos
- Inflation with n_s running