Les expériences à la recherche des axions

- •Stratégies pour la recherche des axions
- •Axions Solaires : CAST
- •Expériences avec des faisceaux polarisés : PVLAS
- Perspectives

Esther Ferrer Ribas DAPNIA/SEDI

Séminaire Commun SPhT-SAP-SPhN-SPP 30 mai 2006

Propriétés des axions

Pseudoscalaires neutres

Particules stables

Interagissant très peu avec la matière Masse: $m_a \simeq 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a}$ f_a échelle de brisure de la symétrie

Effet Primakoff Conversion des photons en axions (ou l'inverse)

Avec
$$g_{a\gamma\gamma} \approx \frac{\alpha}{2\pi f_a} < 10^{-10} \text{GeV}^{-1}$$

Comment cherche-t-on les axions?

Selon leur origine...

Axions Galactiques

Haloscopes (ADMX, CARRACK)

Axions de laboratoire

•Regéneration "Light shinning through wall"

• Polarisation (PVLAS)

laser + champ magnétique

g Bext E'Y

cavités microondes + champ magnétique

Axions produits dans le soleil

•Helioscopes (CAST, TOKYO)

•Détecteurs cristallins (SOLAX, COSME, DAMA)

soleil + champ magnétique/électrique

Comment cherche-t-on les axions?

Axions de laboratoire

"Light shinning through wall"

Polarisation (PVLAS)

Laser polarisé traverse un vide avec un champ magnétique intense

Mesure de l'état de polarisation de la lumière qui sort de la région où règne le vide

Axions produits dans le soleil

Hélioscopes (CAST, TOKYO)

Détecteurs cristallins (SOLAX, COSME, DAMA)

Primakoff + condition de Bragg

Détecteurs utilisés pour la recherche de WIMPS

Moins sensibles que les hélioscopes

- Haloscopes & Hélioscopes [Sikivie, PRL 51 (83)]
- Polarisation [Maiani et al., PLB 175 (86)]
- Régénération [Van Bibber et al., PRL 59 (87)]
- Flux axions solaires [Van Bibber PRD 39 (89)]
- Axions solaires avec des cristaux [Paschos et Zioutas, PLB 323 (94)]

L'historique

- 1987 Rochester-Fermilab-Brookhaven/cavités microondes [PRL 64 (87)]
 - 1990 Rochester experiment /polarisation laser [PRL 64 (90)]
 - 1992 BNL/photorégénération [Z Phys 56 (92)] Lazarus/hélioscope [PRL 69 (92)]
 - 1994 PVLAS/polarisation laser
 - 1997 CARRACK/cavités microondes
 1998 ADMX/cavités microondes, SOLAX/germanium, TOKYO/ hélioscope
- 2000 COSME/germanium
 2003 CAST/hélioscope
 - 2006 ADMX, CAST, PVLAS

CAST : CERN AXION SOLAR TELESCOPE

LHC dipôle : L = 9.3 m, B = 9 T Plateforme tournante : mouvement vertical 16° mouvement horizontal de 100° « Tracking » du soleil ~3 h/jour, reste du temps bruit de fond Trois détecteurs de rayons X

Signal:

excès de rayons X lorsque l'on pointe vers le soleil

Production et détection

Principe de détection

Probabilité de conversion :

$$\mathbf{P}_{a \to \gamma} = 1.7 \times 10^{-17} \left(\frac{\mathbf{B} \cdot \mathbf{L}}{9.0 \mathrm{T} \cdot 9.3 \mathrm{m}} \right)^2 \left(\frac{\mathbf{g}_{a \gamma \gamma}}{10^{-10} \mathrm{GeV}^{-1}} \right)^2$$

Nombre de photons attendus :

 $\mathbf{N}_{\gamma} = \mathbf{\Phi}_{a} \cdot \mathbf{A} \cdot \mathbf{P}_{a \to \gamma}$

 \approx 7 evts/jour avec $g_{a\gamma\gamma}$ = 10^{-10} GeV^{-1} et A = 14 cm^2

DETECTEURS A RAYONS X

CALENDRIER

PHASE I

PHASE II

- Fin 2002 : « commissioning » aimant+ détecteurs
- 2003 : Prise des données 6 mois
 Résultats publiés : PRL 94 (2005) 121301
- 2004 : Prise des données 6 mois
 Améliorations aimant, système de tracking et détecteurs
 Résultats préliminaires conf. Hiver
- 2005 : « upgrade » de l'aimant pour la 2^{eme} phase de l'expérience
 Premier run 2^{eme} phase Novembre-Décembre
- 2006 : Prise des données PHASE II
- 2007 : Prise des données PHASE II

RESULTATS 2003 PUBLIES

Pas d'excès Zioutas et al., PRL 94 (2005) 121301

Limite combiné à 95 % CL: g_{aγ}< 1.16 x 10⁻¹⁰ GeV⁻¹

RESULTATS 2004 PRELIMINAIRES

 $g_{a\gamma} < 9 \times 10^{-11} \text{ GeV}^{-1}$ pour $m_a < 0.02 \text{ eV}$

Première fois que l'on dépasse la limit venant des clusters globulaires

Cohérence

Dans le vide : $P_{a \to \gamma} = 1.74 \times 10^{-17} \left(\frac{B \cdot L}{9.0 \text{ T} \cdot 9.26 \text{ m}}\right)^2 \left(\frac{g_{a\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \cdot |M|^2$ $|\vec{q}| = |\frac{m_a^2}{2E_a}| \qquad |M|^2 = \frac{2(1 - \cos(qL))}{(qL)^2} \quad qL \ll 1 \Longrightarrow |M|^2 = 1$

Pour $m_a > 10^{-2} \text{ eV/c}^2$ la cohérence est perdue

Dans un gaz : $P_{a \to \gamma} = \left(\frac{Bg_{a\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL)\right]$ $|\vec{q}| = |\frac{m_a^2 - m_\gamma^2}{2E}|$ Condition de cohérence : $rL < \pi$

Condition de cohérence : $qL < \pi$

En remplissant l'aimant avec un gaz le photon acquiert une masse

Condition de coherence est récuperée pour un intervale de masse autour de m_v

Les masses sont ajustées en changeant la pression du gaz

Г

CAST PHASE II

CAST PHASE II

L'aimant a du subir des modifications pour pouvoir fonctionner avec de l'He 4 et He 3 :

- Sytème pour controller la temperature et le gaz dans le tube de l'aimant
 Implementation de fenetres froides pour isoler le gaz de l'extérieur et minimiser les fuites thermiques
- •Système de gaz pour stocker l' He⁴ et He³

NOUVELLE LIGNE MICROMEGAS

Blindage et collimateur

Le blindage est composé de 5 mm Cu +25 mm Pb + 1 mm Cd entouré de blocks de polyéthylène dans un flux de N_2

A partir de l'expérience de la TPC, on peut s'attendre à une réduction de bruit de fond d'environ un facteur 4.

- •Distance focal 1.3 m
- •14 coquilles polycarbonées recouvertes d'Iridium
- Un spot de 2 mm avec une efficacité de 36%

15 cm² ~1.6 mm² facteur ~100 en bruit de fond

Nouveau détecteur

Montage à blanc de la ligne

Caractérisation de l'ensemble (détecteur + collimateur) : Septembre Prise des données avant la fin de l'année

PVLAS : Polarizzazione del Vuoto con LASer

- Faisceau laser polarisé traversant un champ magnétique de 5 T.
- But : mesurer les modifications de polarisation de la lumière.
- QED prédit une interaction entre les photons et le champ B –ellipticité.
- Ellipticité due à la biréfringence du vide (changement d'index de réfraction pour différents vecteurs de polarisation) qui dépend de B² et du chemin optique

Polarisation linéaire à 45° wrt champ Les deux composantes du vecteur de polarisation vont se propager à des vitesses différentes et seront pas en phase.

Polarisation change de linéaire à elliptique

Expérience PVLAS

•Dipôle supraconducteur 1 m long tournant à une fréquence de 0.33 Hz •B = 6.5 T •Résonateur Fabry-Perot avec deux miroirs M1, M2 (chemin optique $\sim 60 \text{ km}$) •Laser Nd:YAG IR $\lambda = 1064$ nm •PEM: « Photo Elastic Modulator » pour mesurer des ellipticités très petites

PVLAS : effets mesurés

Production réelle d'une particule : rotation du plan de polarisation (dichroïsme)

PVLAS Résultats/Interprétation

- Ellipticité mesuré Ψ = 5 ×10⁻⁷
- Ellipticité prédit par QED Ψ = 5 ×10⁻¹¹
- Mesure de dichroïsme (pas prédit par QED)
- Erreurs systématiques
- Production des nouvelles particules?

Pas compatible avec les précédents résultats expérimentaux

 $\begin{array}{l} m_a {\sim} 1 \ meV \\ g_{a\gamma} {\sim} 3 \ {\times} \ 10^{-6} \ GeV^{-1} \end{array}$

[Zavattinni et al., PRL 96 (06)]

Le futur

- BMV project: Biréfringence Magnétique du Vide project (Toulouse, Lyon)
- B²L = 30 T²m
- Données fin 2006
- Pugnat et al. : CERN
- Expériences de laboratoire avec des aimants LHC (2007) Polarisation et régénération de photons. Premiers résultats 2008
- Ringwald et al.: DESY
- Large scale Axion Photonregeneration Experiment
- Dipôles de HERA
- Fin : 2006 Etude de faisabilité avec 2 dipôles HERA B=5 T et L=5 m (Test du résultat PVLAS)
- « Large scale » 400 dipôles après le decommissioning de HERA en 2007

Conclusions

• Une grande variété d'expériences avec des techniques expérimentales très différentes

Décembre 2005 au CERN : http://cast.mppmu.mpg.de/axion-training-2005/axion-training.php Mai 2006 a Patras (Grèce)

Une com

•

• Toutes les différentes stratégies ont besoin d'un champ magnétique intense dans un volume le plus grand possible