Le survey XMM-LSS

et ses applications cosmologiques

Marguerite PIERRE – Florian PACAUD P.A Duc, J. Berge, A. Refregier (SAP) J.P. Le Fevre, J.L. Starck (SEDI)

	Plan de l'exposé
n	Les amas de galaxies et la cosmologie
n	XMM
n	Le survey XMM-LSS
n	Comment détecter les amas?
n	Résultats • L'echantillon
	 Modéliation Lois d'échelle et évolution

La cosmologie

Branche de l'astrophysique qui étudie l'univers en tant que "tout"

(densité, fini-infini, structure, topologie, nature et quantité de matière noire, etc...)

ⁿ Science des "champs vides"

Un champ vide:

Longues poses avec un grand télescope =>

Le ciel dans la bande optique

Clusters of galaxies

Center of Abell 2218 viewed by HST

z = 0.176

Dark matter: Zwicky 1933

X-ray emission from clusters

- MASS fractions:
- Dark matter : 80%
- Hot gas : 15%
- Galaxies : 5%

 <u>Theory's pov</u>
 A cluster of galaxies = an object with a MASS of ~10¹⁴ Mo

Orders of Magnitude

Dark matter:

Total Mass	=	10^{13} - 10^{16} M
Virial radius	=	1 Mpc/h

Diffuse gas:		
Density	=	1 ion/liter
Temperature	=	6.10 ⁶ -2.10 ⁸ K
		0.5-15 keV
Distribution	=	β-model
Core radius	=	200 kpc/h
L _x (bremsstrahlung)	=	10 ⁴² -10 ⁴⁶ erg/s

~ 5 times emptier than the emptiest artificial vacuum yet hotter than the center of the sun

Petits paradoxes : résumé

 Dans les amas de galaxies la masse des galaxies est negligeable

 Avec un atome par litre, le milieu intra-amas est
 5 fois plus vide que le vide le plus parfait obtenu sur terre...mais la masse de l'IGM d'un amas est
 ~10¹⁴ Mo

 Nous collectons ~ 1 photon de l'IGM par minute pour nos amas avec XMM
 i.e. ~ 100-400 photons en 2h30
 i.e. moins de photons que de galaxies par amas!

Cosmology with clusters 0 < z < 2

Clusters are the most massive entities of the universe ⇒Trace the nodes of the cosmic structure = potential wells (much better than galaxies !)

Constraints on cosmology from clusters are complementary to those provided from the CMB and the SN: They do not rely on the same physical phenomena

Images from the Virgo simulations (Jenkins et al 1998)

The history of cluster fomation depends strongly on the cosmological model

Credits: Joerg Colberg

How does it work?

- Assuming gaussian initial fluctuations, growth of structures can be computed analytically in the linear regime.
- Non-linearities can be included using simplified models
 - \Rightarrow Mass and spatial distribution of clusters

Very well tested over numerical simulations but ... We don't directly observe mass what is M/L ?

Scaling relations

If gravitation only is acting: clusters are scaled versions of each other (self-similarity)

Before XMM/Chandra ROSAT All Sky Survey (1990-1997): ⇒ Several flux limited samples: Wide and shallow : e.g. REFLEX (450 clusters up to z~0.3) Narrow and deep: e.g. RDCS (150 clusters to z~0.8)

 \Rightarrow almost no groups above z~0.2

GINGA (1988-1991) / ASCA (1993-2000) / BeppoSAX (1996-2002): ⇒ First estimates of scaling relations, but many pending questions

Before XMM/Chandra

Mostly relaxed systems Spherically symetric Smooth distribution Cooling flows in massive ones

Image: Thomas Reiprich from DSS + ROSAT PSPC

R.A.

XMM/Chandra era

z=0.3

1E 0657-56

0.5 Mpc

Chandra photon image

1E0657-56 Markevitch et al. 2002

Collecting and focussing X-ray photons: grazing incidence => Wolter telescope

Focal length: 7.5 m

58 nested mirror shells

3 X-ray telescopes

Launched: Dec 1999

XMM sensitivity

XMM field of view = 30 arcmin

Extragalactic fields ...

The XMM eye

FoV = 30 arcminon-axis PSF ~ 6" FWHM=> Clusters detected as extended sources out to z ~ 1-2

=> A high galactic latitude field observed by XMM is clean

Only two types of objects:

- QSOs: pointlike
- Clusters: extended

Thanks to its
unrivalled sensitivity
large field of view
good PSF

XMM opens a new area for cluster LSS

From galaxy maps (optical) to X-ray clusters the deep potential wells of the universe

3. The XMM-LSS survey

Primary science goals

GOAL

Map the evolution of LSS of the universe out to z = 1-2with the galaxy cluster and QSO populations

For the first time !

The new generation of X-ray cluster LSS surveys

So far : the REFLEX sample from the ROSAT All Sky Survey . $S = 3 \ 10^{-12} \ \text{erg/s/cm}^2$ (Böhringer et al)

z < 0.2

=> the cluster correlation function with ~ 450 clusters

 S Our goal : determine the cluster correlation function : in two redshift bins 0 < z < 0.5
 0.5 < z < 1 each bin containing 450 clusters.

A European/Chilean Consortium PI : Saclay, France

Birmingham
Birstol
Milano (AOB)
Dublin
Milano (IFCTR)
ESO/ Santiago
Munich (MPA)
Leiden
Paris (IAP)
Santiago (Uni. Cato.)

MegaCam at CFHT

Building the mosaic at CEA

The CFHT-LS

1deg FOV Camera for CFHT

Several patches at various depths.

The one centered on XMM-LSS will cover 8 x 9 deg² in :

 $u^* = 25.5$ g' = 26.5 r' = 25.7 i' = 25.5 z' = 24.0

Data reduction by

Terapix at IAP/Paris
Numbers of objects

At the survey sensitivity: ~ 3E-15 erg/s/cm2 in [0.5-2] keV

n 300 QSO/AGN (40% z < 1)
 n 15 clusters z < ~1
 n Galaxies + stars

Current multi- λ coverage

X-ray data status: - Received - received - received - (5deg²)

- AO5 Large Program - accepted - (10 deg2)

(See of the XMM-LSS mossic (S x 1 deg²)

10 ks exp. red [0.3-1] keV green [1-2.5] keV blue [2.5-10]keV

The problem of cluster detection

. . .

critical for cosmological interpretation !

What's the problem ?

For z in [0.1-1], 20'' < Rc < 100'' \Rightarrow Detecting extended sources (PSF ~ 6'')

For a typical source, we receive 1 photon / min. ⇒ Detection is a very specific task as we are in the Poisson regime

Exp. time : 10^4 s

The XMM LSS pipeline

-1- Image filtering in wavelet space Ł source detection at a low level

-2- Maximum likelihood analysis
 E Test 2 source models: point & β-profile
 Final catalogue:

 Count-Rate and Extent
 Detection Likelihood
 Extent Likelihood
 I... etc

 Designed and tested using extensive in-situ simulations

Pacaud et al 2006

The cluster selection process

3 classes of extended sources

 $\sim 7/deg^2$ no contamination n Class 2 (C2): ~ 5 more / deg^2 + 5 false det. 50% contamination n Class 3 (C3): other clusters

Illustration: with limiting cases!

<u>3 clusters</u> core radius = 50" <u>nb of photons</u> 200 , 300, 500 x vignetting

Result of the likelihood fit

Detection rates

Pacaud et al 2006

The source is confirmed with optical spectroscopy

Spectral analysis

When possible we measure a **temperature** by fitting a thermal plasma model to the source emission

~ possible for C1 sample

Willis, Pacaud, Valtchanov et al. (2005)

For XLSSC-025 using fixed abundance (0.3 solar): T = 2.02 keV ([1.73-2.51] at 1σ)

Luminosity estimate

We measure F_x by fitting a surface brightness profile ~ possible for C1-C2 sources

Pierre, Pacaud, Duc et al. (2006)

The cluster sample

The cluster Catalogue Results over the first 5deg² (~4.1 usable): 29 C1, 41 C2 candidates

Result of 3 seasons of spectroscopic follow-up: (2002,2003,2004@NTT,VLT,Magellan) => ~ 60 confirmed clusters (26, 8)

Some 20 more candidates (3, 4) being processed

n

The C1 cluster sample (z < 0.3) Small volume, high sensitivity \Rightarrow low T

The C1 cluster sample (z ~ 0.3) ... and 1 < T < 3 keV bulk of XMM-LSS population

The C1 cluster sample (0.3 < z < 1.0)... finally detecting clusters

The C1 cluster sample (z > 1.0)

Pending sources

Distant cluster search (example)

XLSSC-046 (C2)

I (CFHT) K (NTT) $3.6 \mu m$ (Spitzer) measured z = 1.22

Modele cosmologique

Cosmological modeling

The C1 redshift distribution ... compared with WMAP 1st and 3rd year

Self-similar evolution
No scaling evolution

Constraining the cluster scaling laws ... over the D1 sub-sample

The D1 sub-sample

1 deg² - 20ks **CFHTLS Deep VVDS** 8 C1 **1 C2** 4C3

Pierre, Pacaud, Duc et al. 2006

The D1 L-T relation

The first L-T relation for intermediate redshift groups

FUTURE

Insights from other wavelengths: Weak lensing Sunyaev-Zel'dovich effect

Measures the distortion of background galaxy shapes due to foreground matter distribution

Enables direct reconstruction of the projected mass map

Theory -

Jain, Seljak & White 1997, 25'x25', SCDM

I (aremin)

Shapelet shear map with wavelet mass inversion

By Joel Bergé

Starck, Pires & Refregier 2005

X-ray: 8 C1 1 C2 4 C3

Lensing:

Sunyaev-Zel'dovich versus X-ray $S-Z: \Delta T_{CMB} \approx \int n_e T_e dl$ (independent of z – integrated pressure)

ⁿ X-ray luminosity : $L_X \approx \int n^2 T^{1/2} dV$

Courtesy of J. Carlstrom et al.

S-Z observations of the XMM-LSS field

- n APEX-SZ survey :
 - Resolution: 50" @ 150 GHz
 - Coverage: 4 clus./deg² over the whole field
 - Sensitivity: $10\mu K$ (y = 5.10⁻⁴ arcmin²)

n OCRA :

- Resolution: 70" @ 30 GHz
- Coverage: pointed observations

n AMIBA (interferometer):

- Resolution: ~ 10" @ 95 GHz
- Coverage: pointed observations

All about to start !

Combining XMM and Apex

XMM: $12 / deg^2$ APEX: $4 / deg^2$ Lensing:few / deg^2

Courtesy: Rüdiger Kneissl

Combining wavelengths

 Joint analysis of number density and space distribution of clusters using all three methods (i.e. with differing selection process)

ⁿ Use the joint X-ray/S-Z data sets to get insights into the evolution of the ICM physics

n Get mass information from the weak lensing survey on the CFHTLS data

The redundancy between the various observables allows:
Calibration of the mass-observables relations AND

Constraints on the cosmology

Conclusions

Résumé

- Avec 10⁴s d'XMM on détecte ~ 12 clusters per deg² (3 fois plus que les DS ROSAT)
 - Bientôt ~120 amas dans la région SWIRE (10deg²⁾
 - Contraintes cosmologiques données par la distribution des amas jusqu'a z~1
- On détecte les groupes a 0.3 < z < 0.5 pour la première fois (pièces des amas z~0)
 La relation L-T est une source d'information sur la physique des baryons

Perspectives

Etudes multi-λ avec APEX-SZ et CFHTLS weak lensing

- 払
- Meilleure comprehension de la physique de l'ICM
- vers la cosmologie de précision ...

