

Motivation

Neutrino Mixing

• For three generations of massive neutrinos, the weak eigenstates are not the same as the mass eigenstates: $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$

Parametrize the PMNS matrix as:

Majorana phases

$$\begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{12} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} e^{i\delta_{1}} & 0 & 0 \\ 0 & e^{i\delta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} \text{solar } \nu \\ \text{reactor } \overline{\nu} \\ \text{reactor } \overline{\nu} \\ \text{accelerator LBL } \nu \end{array} \quad \begin{array}{c} \text{atmospheric } \nu \\ \text{accelerator LBL } \nu \\ \text{double-}\beta \\ \text{decay} \end{array}$$

Six parameters: 2 Δm^2 , 3 angles, 1 phase + 2 Majorana phases

October 2006

Evidence for neutrino oscillations

Unconfirmed: LSND: $\Delta m^2 \sim 0.1$ -10 eV²

 $|\Delta m_{32}^2| = (2.4^{+0.4}_{-0.3}) \times 10^{-3} eV^2$ $\theta_{23} = (45_{-11})^2$

```
\Delta m_{21}^2 = (7.8^{+0.6}_{-0.5}) \times 10^{-5} \text{ eV}^2
\theta_{12} = (32^{+4}_{-3})^{\text{m}}
```

 $\begin{array}{l} \Delta m_{31}^2 \approx \Delta m_{32}^2 >> \Delta m_{21}^2 \\ \theta_{12} \text{ and } \theta_{23} \text{ are large} \\ \theta_{13} \text{ is small}, \\ \delta \text{ and sign of } \Delta m_{32}^2 \text{ unknown} \end{array}$

Current Knowledge of θ_{13}

Direct search

3ν oscillation parameter bounds on ϑ_{13} 3 $\Delta m^2 \, (eV^2)$ Palo Verde (excluded) CHOOZ (excluded) 10 SK 90% CL (allowed) sigma 10⁻²_ of number 10⁻³ At $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $sin^{2}2\theta_{13} < 0.17$ $sin^2 2\theta_{13} < 0.11$ (90% CL) 10 0.1 0 0.02 0.04 0 allowed region sin² v₁₃ $\sin^2 2\theta_{13} = 0.04$ Best fit value of $\Delta m^2_{~32}$ = 2.4 \times 10^{-3} eV^2

Global fit

October 2006

David E. Jaffe

0.1

0.08

0.06

Fogli etal., hep-ph/0506083

Determining θ_{13}

Method 1: Accelerator Experiments

$$\mathsf{P}_{\Box e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta \mathsf{m}_{31}^2 \mathsf{L}}{4\mathsf{E}_v} \right) + \dots$$

- $v_{\parallel} \rightarrow v_{e}$ appearance experim Disagreement between
- need other mixing parameter
- baseline *O(100-1000 km),* m
- expensive

appearance and disappearance experiments would be more evidence of new physics

Method 2: Reactor Experiments

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- $\cdot \overline{v}_e \rightarrow X$ disappearance experiment
- baseline O(1 km), no matter effect, no ambiguity
- relatively cheap

Reactor v_{e}

• Fission processes in nuclear reactors produce huge number of low-energy v_e :

 $1 \, \text{GW}_{\text{thermal}}$ generates $2 \times 10^{20} \, \overline{v_{\text{e}}}$ per sec

Ve

Detecting $\overline{\nu}$ in liquid scintillator: Inverse β Decay

The reaction is the inverse β -decay in 0.1% Gd-doped liquid scintillator:

$$\begin{array}{c} + p \rightarrow e^{+} + n \\ & 0.3b \\ \Rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) \quad (\tau \sim 180 \mu s) \\ & 50,000b \\ & \Rightarrow + Gd \rightarrow Gd^{*} \\ & & \downarrow \rightarrow Gd + \gamma's(8 \text{ MeV}) \quad (\tau \sim 30 \mu s) \end{array}$$

• Energy of \overline{v}_e is given by:

 \mathcal{V}

~30 µs

$$E_{\overline{v}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$$

10-40 keV

to detect $\overline{v_e} + p \rightarrow e^+ + n$

Rate:

~5 evts/day/ton (full power) including 0.2-0.4 bkg/day/ton

parameter	relative uncertainty (%)
reaction cross section	1.9
number of protons	0.8
detection efficiency	1.5
reactor power	0.7
energy released per fission	0.6
combined	2.7

How To Reach A Precision of 0.01 in $sin^2 2\theta_{13}$?

- Increase statistics:
 - Use more powerful nuclear reactors
 - Utilize larger target mass
- Suppress background:
 - Go deeper underground to gain overburden for reducing cosmogenic background
- Reduce systematic uncertainties:
 - Reactor-related:
 - Optimize baseline for best sensitivity and smaller residual reactorrelated errors
 - Use near and far detectors to minimize reactor-related errors
 - Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive program in calibration/monitoring of detectors
 - Interchange near and far detectors (optional)

Where To Place The Detectors ?

• Since reactor \overline{v}_e are low-energy, it is a disappearance experiment:

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

A 45cm buffer provides ~20cm of shielding against PMT glass

Event Rates and Signal

Antineutrino Interaction Rate (events/day per 20 ton module)

Daya Bay near site 960 Ling Ao near site 760 Far site 90

Prompt Energy Signal

		C	13		
Baselines (meters)					
Sites	DYB	LA	Far		
DYB cores	363	1347	1985		
LA cores	857	481	1618		

1307

1613

526

Delayed Energy Signal

LA II cores

Shield and veto system

•Surround detectors with at least 2.5m of active water shield

- •Water shield also serves as a Cherenkov counter for tagging muons
- Water Cherenkov modules along the walls and floor
- •Augmented with a muon tracker: RPCs

•Combined efficiency of Cherenkov and tracker > 99.5% with error measured to better than 0.25%

Assuming 99.5% muon veto, even with delayed coincidence event signature, the following backgrounds remain:

- Fast neutrons (prompt recoil, delayed capture)
- ${}^{9}\text{Li}/{}^{8}\text{He}$ (T_{1/2}= 178 msec, β decay w/neutron emission, delayed capture)
- Accidental coincidences

(Other smaller contributions can be neglected)

All three are small (Bkgd/signal <1%) and can be measured and/or constrained using data.

Fast neutrons and ⁹Li/⁸He are produced by cosmic muons, so we need to simulate muons

October 200

Detailed topo map, modified Gaisser formula, and MUSIC

	DYB site	LA site	Mid site	Far site
Vertical overburden (m)	98	112	208	355
Muon Flux (Hz/m ²)	1.16	0.73	0.17	0.041
Muon Mean Energy (GeV)	55	60	97	138

Fast Neutron Simulations

October 2006

Rates per day per 20T module

	I: missed veto rate	II: rock neutron rate	Total/Signal
DYB	0.10	0.5	6x10-4
LA	0.07	.35	6×10-4
Far	0.01	.03	4×10-4

⁹Li
$$\rightarrow e^{-} + \overline{v}_{e} + {}^{9}Be^{*} \rightarrow {}^{8}Be + n$$

Q=13 MeV
T_{1/2}= 178 msec

(Long $T_{1/2}$ & poor spatial correlation with \Box track make rejection problematic.)

Rates computed from CERN measurements (Hagner et al.,)

	DYB site	LA site	Far site
(⁸ He+ ⁹ Li)/day/module	3.7	2.5	0.26

Note: Background/Signal ~ 0.3% for all sites

Strategy: measure rate and statistically subtract from event sample.

Can measure time of e⁺ candidate since time of muon passage through antineutrino detector for candidate events:

Projected results: $\sigma(B/S) = 0.3\%$ (near), 0.1%(far)

David E. Jaffe

Photon energy spectrum of radioactive background

Measured energy spectrum in Aberdeen tunnel (Hong Kong). Site has similar rock composition as Daya Bay.

	DYB site	LA site	Far site
Accidental/signal	<0.2%	<0.2%	<0.1%
Fast n / signal	0.1%	0.1%	0.1%
⁹ Li- ⁸ He / signal	0.3%	0.2%	0.2%

- B/S ~ same for near and far sites
- constrained by measurements to required precision
- input to sensitivity calculations (assume 100% uncertainty)

Systematic Uncertainties

Two types:

- Reactor-related
- Detector-related

Reactor Uncertainties

- Power levels of each reactor core
 - thermal power measurements: 2% correlated,
 2% uncorrelated errors
- Non-trivial arrangement of reactor cores
- Relative location of each reactor core and each detector (i.e. baseline)

Reactor Power Measurements

Coolant flow rate, steam enthalpy, temperatures

Category	Error Type	Error Value	Error Value
		(Externally	(Chordal
		Mounted LEFM)	LEFM)
Hydraulics	Systematic	0.35%	0.15%
	Random	nil	nil
Acoustics	Systematic	0.15%	nil
	Random	0.10%	nil
Geometry	Systematic	0.075%	Imbedded in
	Random	0.075%	Hydraulics
Time	Systematic	0.055%	0.055%
Measurements	Random	0.016%	0.09%
Total Volumetr	ic Flow	0.44%	0.19%
Uncertainty			
Density Uncert	ainty	0.075%	0.075%
Including Temp).		
Uncertainty			
Total Mass Flo	w	0.45%	0.205%
Uncertainty			

Z. Djurcic, U. Alabama, KamLAND

(Note CHOOZ and Palo Verde quote 0.6% and 0.7% *absolute* power uncertainty.)

There is great (financial) interest in reactor power measurements for the power company

TABLE 4.2. Typical uncertainties in the water flow for two plane externally mounted LEFM and four plane chordal system. For each category, random and systematic errors are listed at 68.3% confidence level. These data have been obtained from [85].

Future studies with DB NPP collaborators will determine the level of precision we can achieve for the DB reactors.

Exactly cancels relative power deviations

For Daya Bay, 4 cores $\alpha = 0.34$

- Symmetric case \Rightarrow perfect cancellation
- Realistic case \Rightarrow adjust weight of near sites
 - 4 cores: Factor 50 cancellation: $2\% \rightarrow 0.035\%$
 - 6 cores: Factor 20 cancellation: $2\% \rightarrow 0.1\%$
- Can preserve cancellation under swapping

We estimate that relative locations of detectors and cores can be determined to 30 cm.

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Controlling Detector Systematics

- Careful fabrication, measurements of vessels
- Fill modules in pairs from common scintillator tank with common precision instrumentation, then split the pairs and deploy 1 module at a near site and 1 module at far site to provide cancellation of LS differences.
- Calibrate and monitor status of each module.
- Swap detectors between near and far site (option)

- Survey walls using many "targets" before filling
- <0.1mm \rightarrow 0.01% volume measurement
- Goal is 0.1% volume uncertainty when vessel is full

- Fill pair of detectors from a single tank of Gd-LS
 - (deploy one detector at near site and one detector at far site, thus no chemical differences between near and far sites)
- Use high precision flow devices

flowmeters (0.02% repeatable) mass flow meters (0.1% repeatable)

• Load cell measurements of filling tank

- Initial commissioning of detector module:
 - complete characterization of detector properties
- After moving/swapping module or if a significant change occurs:
 - simplified procedure to assess condition and decide whether commissioning procedure is necessary
- Routine monitoring of detector modules:
 - weekly or daily procedure
 - automated system

Routine Monitoring Goals

- Establish 8 MeV energy scale
 - \rightarrow neutron efficiency (~0.1%)
- Determine 1 MeV threshold energy \rightarrow positron efficiency (~0.02%)
- Monitor different scintillator regions
- Overall detector health and status
 - optical attenuation
 - scintillation yield
 - reflectivity, transmission of surfaces
 - dead PMT's
- Provide input to corrections

\rightarrow All detectors should have "identical", "constant" response

Basic Requirements

- Identical radioactive sources
 → energy stability = "perfect"
- >10,000 counts per measurement \rightarrow energy precision of ~0.1%
- Automatic insertion and removal of several sources, 1 MeV < E < 10 MeV.

Source deployment

Outer radius of target region Central axis Gamma catcher region

Fixed point source measurements combined with uniform cosmogenic data to realize high precision over complete central region of detector module.

October 2006

 ⁶⁸Ge (T_{1/2}=271 days) EC → ⁶⁸Ga (T_{1/2}=68 min), β⁺, Q=2.921 MeV → 2 x 0.511 MeV γ 's, E_{total}=1.022 MeV (e⁺ threshold!)

•
$${}^{60}Co (T_{1/2}=5.3 \text{ yrs}) \rightarrow 2 \gamma's, E_{total} = 2.505 \text{ MeV}$$

•
$$^{252}Cf(T_{1/2}=2.6 \text{ yrs})$$

Fission $\rightarrow \sim 4 \times 2 \text{ MeV}$ neutrons (neutron efficiency)

Comparison of estimated cosmogenic data and signal rates

	Near Site	Far Site
	(per 20T module)	(per 20T module)
Spallation	9000/day	400/day
neutrons		
¹² B(β source, τ =29.1ms, Q=13.4MeV)	300/day	28/day
Reactor signal	1000/day	90/day

Notes: - ~1000 events needed to monitor 8 MeV energy to 0.1% - <u>Uniform</u> distribution in detector

Summary and comparison of detector-related systematic uncertainties

Source of uncertainty		Chooz		Daya Bay	aya Bay (relative)	
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons	H/C ratio \rightarrow	0.8	0.2	0.1	0	
	Mass 🗸	-	0.2	0.02	0.006	
Detector	Energy cuts 🗸	0.8	0.2	0.1	0.1	
Efficiency	Position cuts 🗸	0.32	0.0	0.0	0.0	
	Time cuts \rightarrow	0.4	0.1	0.03	0.03	
	H/Gd ratio \rightarrow	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	< 0.01	< 0.01	
Total detect	or-related uncertainty	1.7%	0.38%	0.18%	0.12%	

H/C ratio options

- Combustion analysis (<0.3%?)
- Neutron capture/scattering (needs R&D)
- Filling detector pairs from common batch

I.) Tagged n source at center (^{252}Cf or AmBe) \rightarrow direct measurement (>10⁶ events) II.) Measure components of neutron detection efficiency ϵ_n

Thermal neutron capture rate:

$$\Gamma = \Gamma_{Gd} + \Gamma_H = \left\langle [n_{Gd}\sigma_{Gd} + n_H\sigma_H]v \right\rangle$$
$$P_{Gd} = \frac{1}{1 + \Gamma_H/\Gamma_{Gd}}$$

- N(t) = N₀ exp(- Γt); t > 10 []sec
- \rightarrow Measure Γ to <1% for each module during commissioning (need ~10⁵ captures)
- $\Gamma(\text{meas.}) \Gamma_H \rightarrow \Gamma_{Gd} \rightarrow \delta P_{Gd} < 0.1\%$

These cut times must be the same to ~10ns for all modules \rightarrow use common clock

 $\rightarrow 0.05\%$ contribution to neutron efficiency

Energy cut and 2- or 3-zone detector

• 2-zones implies simpler design/construction, some cost reduction but with increased risk to systematic effects (neutron ϵ and E_v spectrum)

• 3-zones provides increased confidence in systematic uncert. associated with detection efficiency and fiducial volume, but smaller volume

n capture on Gd yields 8 MeV with 3-4 γ 's(2.2MeV γ from n capture on H not shown)

4 MeV cut can reduce the error by x2, but residual radioactivity in LS volume does not allow us to do so

Simulated response as a function of radial location of a 1 MeV e⁻ energy deposit. The mineral oil volume is removed and the PMTs are directly outside the γ -catcher.

October 2006

Systematics Summary

- Reactor-related systematics ~0.1%
- Detector-related systematics ~0.38%/module
 - could be reduced to 0.18% or lower (R&D)
 - requires care in construction, assembly, calibration, and monitoring

- χ^2 with pull terms to take into account the correlation of systematic errors. (SK, PRL81 (1998) 1562)
 - Raster scan in $\Delta m^2 sin^2 2\theta_{13}$
 - Minimize χ^2 at each point
 - $\Delta \chi^2 = 2.71 \rightarrow 90\%$ CL contour

Feb 09 Daya Bay near & mid halls complete Nov 09 Ling Ao near & far halls complete Sept 09 Begin Daya Bay near, mid data taking Jun 10 Begin data taking with far & near halls Mar 13 Measure $\sin^2 2\theta_{13}$ to ≤ 0.01 Daya Bay experiment versatility 54

- The Daya Bay reactor neutrino experiment is designed to reach a sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$ and have the versatility to perform internal systematic checks of a sin²2 θ_{13} measurement.
- The Daya Bay project has been approved by the Chinese Academy of Science, Natural Science Foundation and Ministry of Science and Technology for 150M RMB.
- The US DOE has provided 0.8M\$ for R&D for FY06. We have passed the first step toward becoming a US project starting in FY08.
- We are seeking new collaborators
- Will complete preliminary design of detectors and detailed design of tunnels and underground facilities in early 2007.
- Plan to start with the near-mid data taking in 2009, and begin full operation in 2010.

Thanks to my Daya Bay colleagues for help in preparing this presentation. October 2006

EXTRAS

What do we learn from the past?

CHOOZ 1 1 1 optical veto barrier steel containment neutrino region target acrylic Vesse low activity gravel shielding 2 5 0 6 m

5t 0.1% Gd-loaded scintillators

- Not stable Gd-loaded scintillator (L ~ 2 - 5 m) → turned yellow after few months of deployment (0.4% degradation per day)
- Homogeneous detector → n capture peak at 8 MeV
- Detector Efficiency ~70%

Palo Verde

12t 0.1% Gd-loaded scintillators

- Good Gd-loaded scintillator (L ~
 11 m) → deterioration with time (0.03% degradation per day)
- Segmentation detector → n capture peak < 6MeV
- Detector Efficiency ~10%

Past Problems in Reactor Experiments with Gd-LS

CHOOZ, 5t 0.1% Gd-LS in a homogeneous detector

- Used "brute force" chemical method to load Gd into LS: dissolved Gd(NO₃)₃ in Alcohol, which was then dissolved into aromatic (benzene-like) liquid.
- To a chemist, nitrates plus organics is not a good choice.
- The resulting Gd-LS ($\mathcal{L}(attenuation) \sim 2 5 m$) was not stable,
- Turned yellow after few months of deployment (0.4% degradation per day)

Palo Verde, 12t 0.1% Gd-LS in a segmented detector

- Obtained Gd-LS, BC-521, from Bicron.
- Was prepared by making an Gd-organic complex, a carboxylate (of 2-ethylhexanoic acid) that was soluble in pseudocumene, PC.
- Diluted it with mineral oil. (L(attenuation) ~ 11 m).
- Reported that PV had deterioration with time (0.03% degradation per day)
- However, users (e.g., Gratta) say that there was some initial deterioration but then the Gd-LS stabilized. It is still usable today (Bernstein at San Onofre), several years after PV ended.

BNL Gd-LS Optical Attenuation: Stable So Far ~700 days

- -Gd-carboxylate in pseudocumene(PC)-based LS stable for ~2 years.
- Attenuation Length >15m
- Promising alternative LS: Linear Alkyl Benzene.

Chooz Data

Monitoring Detector Changes/Differences

Simulation Studies to date:

- Scintillation yield (inner /outer relative)
- Optical attenuation
- Acrylic transmission
- Dust on bottom of acrylic vessel
- Loss of PMT's
- SS Tank reflectivity

Change of Attenuation Length

n-Gd capture signal vs position for two att. len.

"uniform"/"center" yield ratio can be used as a measure of the attenuation length

Effect of Attenuation on Neutron Detection Efficiency

Effect of Attenuation on e⁺ efficiency

L (m)	R	e^+ Eff. (scaled Ge cut)(%)	e^+ Efficiency (unscaled Ge cut)(%)
9	0.8	99.78	99.83
6	0.8	99.82	99.89
12	0.8	99.82	99.86

Very Stable!

Easy to detect dead PMTs: no hits in N events.

The "dentist" approach: filling the holes with adjacent good tubes.

zPMT:xPMT:yPMT {iPMT<200}

E.g., kill 25 PMTs at the bottom, and try measure e⁺ rates

Condition	Total	Above thresh.	e⁺ eff. (%)
All tubes good	24920	24874	99.82(0.03)
Bottom 25 dead	24920	24766	99.38(0.05)
"dentist" correction	24920	24877	99.82(0.03)

(Similar results for neutron efficiency)

Use a fixed 116 PE cut based on ⁶⁸Ge calibration

"Modeling" of a layer of "Dirt" at the bottom of acrylic

Add 1cm layer of absorbing (λ =1cm) acrylic at bottom of central region

"Dirty" Acrylic Effect

With 2000 Co60 center events

Method A

Upper	123(1)	
Lower	114(1)	
Upper/Lower	1.079(0.014)	
"No Dirt"	1	

	"8/7" (top)	0.843(6)
Method B	"1/2" (bottom)	0.739(7)
	"8/7"/"1/2"	1.141(0.014)
	"No Dirt"	1

Positron efficiency changes $99.8\% \rightarrow 98.9\%$

October 2006

"Dirty" Acrylic Effect

- Simple fixes restore positron efficiency to ~99.6%, (vs. 99.8% w/o dirt)
- Further studies in progress.

