DARK MATTER EXISTENCE AND OTHER RESULTS FROM A COLLISION OF GALAXY CLUSTERS

M. MARKEVITCH (CFA) NOVEMBER 2006

ø

Galaxy clusters contain:

- 1–3% of mass in stars
- 10–20% in hot gas (~ 10 keV, ~ 10^{-3} cm⁻³, optically thin for X-rays)
- 80–90% in dark matter (~ $10^{15} M_{\odot}$)

Plasma contains:

- magnetic fields $B \sim 1 \mu G \rightarrow$ plasma collisionless, but "hot" ($\beta \equiv p/p_B \gg 1$)
- ultrarelativistic particles ($\gamma \sim 10^4$)

Cluster mass function $N(M_{tot})$ and baryon fraction M_{gas}/M_{tot} — sensitive cosmological probes

Cluster mergers

The most energetic events since the Big Bang: two $10^{15} M_{\odot}$ clusters carry $E_{\rm kin} \sim 10^{63-64}$ ergs

Laboratory for studying intracluster plasma: shocks, instabilities, ram pressure stripping, transport processes, relativistic particle accelertion, magnetic fields

Chandra X-ray Observatory

ACIS detector:

- 0.3 8 keV energy band
- 16' × 16' FOV
- 1" on-axis angular resolution

Shock front in 1E 0657–56

ø

Textbook example of a shock front:

 $M = 3.0 \pm 0.4$, shock $v = 4700 \text{ km s}^{-1}$

Testing alternative dark matter theories

Modified Gravity

MOND, TeVeS, others (Milgrom 1983, Bekenstein 2004):

• No need for dark matter — gravity laws modified to mimic effects of DM

Modified Gravity

MOND, TeVeS, others (Milgrom 1983, Bekenstein 2004):

• No need for dark matter — gravity laws modified to mimic effects of DM

Can be falsified: find an object where visible mass and center of gravity are spatially separated

Gravitational lensing

1E0657-56 HST image weak lensing mass contours (Clowe 06) (strong lensing confirms, Bradač 06)

weak lensing mass contours (Clowe 06)

(strong lensing confirms, Bradač 06)

1E 0657-56

Offset between gas and mass peaks → Dark Matter exists!) (Clowe 04, 06)

weak lensing mass contours (Clowe 06)

(strong lensing confirms, Bradač 06)

Other examples of gas – lensing mass offsets:

Gas mass — lensing mass offset:

- proves that dark matter exists
- does not say anything about the nature of DM
- does not prove that gravity is Newtonian

Self-interacting Dark Matter

SIDM with $\sigma/m \sim 0.5 - 5 \text{ cm}^2 \text{g}^{-1}$ was proposed to explain problems in standard CDM:

- Absence of central cusps in dwarf galaxies
- Too many surviving small-mass subhalos within large halos

(Spergel & Steinhardt 2000; Davé et al. 2001)

Upper limits on σ/m from cluster mass peaks, evaporation of elliptical galaxy halos, ...

Direct constraint on cross-section from 1E 0657–56

Observational evidence:

- 1. Offset between gas and dark matter clump
- 2. No offset between dark matter and galaxies
- 3. Subcluster's velocity not less than free-fall velocity
- 4. Subcluster's M/L ratio close to universal

Direct constraint on cross-section from 1E 0657–56

Observational evidence:

- 1. Offset between gas and dark matter clump
- 2. No offset between dark matter and galaxies
- 3. Subcluster's velocity not less than free-fall velocity
- 4. Subcluster's M/L ratio close to universal

The best constraint comes from method 4 (Markevitch et al. 2004; Randall in prep.)

$$\frac{\sigma}{m} < 0.7 \text{ cm}^2 \text{g}^{-1}$$

Excludes almost all of interesting range — unless σ velocity-dependent

Direct constraint on cross-section from 1E 0657–56

Our limit: $\sigma/m < 0.7 \text{ cm}^2 \text{g}^{-1}$

- $m = m_p \rightarrow \sigma < 2 \times 10^{-24} \text{ cm}^{-2}$ • strong interactions ~ 10^{-24} cm^{-2}
- $m = 1 \text{ eV} \rightarrow \sigma < 2 \times 10^{-33} \text{ cm}^{-2}$

• neutrino-neutrino interaction from SN 1987a: $\sigma < 10^{-35} - 10^{-25} \text{ cm}^{-2}$

Sterile neutrinos as Warm DM

- Does not interact with ordinary matter
- If $m_s \sim 1 10$ keV, can explain cores in dwarf galaxies and deficit of small halos
- Decays into active neutrino and photon $E_{\gamma} = m_s/2$
 - → constraints from X-ray observations of CXB and clusters

Sterile neutrinos as Warm DM

Abazajian & Koushiappas (2006)

Sterile neutrinos as Warm DM

Abazajian & Koushiappas (2006)

Summary on exotic theories

MOND

SIDM

Sterile neutrino DM

Summary on exotic theories

SIDM

Sterile neutrino DM

Summary on exotic theories

SIBM (or σ is velocity-dependent)

Sterile neutrino DM

Summary on exotic theories

SIBM (or σ is velocity-dependent)

Sterile neutrino DM still alive

Summary on exotic theories

SIBM (or σ is velocity-dependent)

Sterile neutrino DM still alive

(Persistent strong / weak lensing mass discrepancy?)

Mainstream physics from cluster mergers

Electron-proton temperature equilibration

ens a52

tron-i 🖃

At shock, protons <mark>heated dissipatively</mark>

In magnetized plasma, is electron-proton equilibration Coulomb?

- Cluster outer regions \rightarrow errors in cluster masses?
- Supermassive black holes in AGN: advection-dominated accretion?

Temperature across shock front in 1E 0657–56

Model predictions for shock in 1E 0657–56

Model predictions for shock in 1E 0657–56

• 95% confidence: $\tau_{ep} \ll$ Coulomb

Typical Earth's bow shock:

Electrons are not heated at shock

Typical Earth's bow shock:

Electrons are not heated at shock

 \rightarrow fast $T_e - T_p$ equilibration outside shocks

Summary

- Dark matter exists!
- DM self-interaction cross-section $\sigma/m < 0.7 \text{ cm}^2 \text{g}^{-1}$

• Excludes astrophysically interesting range (for velocity-independent σ)

• Sterile neutrino DM: improved constraints

Electron-proton equilibration in plasma faster than Coulomb
First such test for any astrophysical plasma