

Double Chooz

Guillaume MENTION (post-doc 2^{ème} année)

Séminaire SPP

18 décembre 2006

Sommaire

I. Les enjeux scientifiques du domaine

II. Double Chooz le concept les points clefs de l'expérience

III. Les contributions de Saclay

Bilan sur θ_{13}

$$\mathbf{U}_{\mathrm{MNSP}} = \mathbf{U}_{\mathrm{atm}} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\mathrm{cp}}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{\mathrm{cp}}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \mathbf{U}_{\mathrm{sol}} \times \mathbf{U}_{\mathrm{Maj}}^{\mathrm{diag}}$$

Analyses globales + Δm² meilleur ajustement

parameter	$bf \pm 1\sigma$	1σ acc.	2σ range	3σ range
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	7.9 ± 0.3	4%	7.3 - 8.5	7.1 - 8.9
$ \Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2 \right]$	$2.5^{+0.20}_{-0.25}$	10%	2.1 - 3.0	1.9 - 3.2
$\sin^2 heta_{12}$	$0.30^{+0.02}_{-0.03}$	9%	0.26 - 0.36	0.24 - 0.40
$\sin^2 heta_{23}$	$0.50^{+0.08}_{-0.07}$	16%	0.38 - 0.64	0.34 - 0.68
$\sin^2 heta_{13}$	_	_	≤ 0.025	≤ 0.041

(Ajustement aux données globales, T. Schwetz, hep-ph/0606060)

Limite de CHOOZ : $sin^2 2\theta_{13} \lesssim 0.14$

Le site, le concept de l'expérience

Le canal $\overline{v}_{e} \rightarrow \overline{v}_{e}$: pur, simple mais toujours porteur (50 ans de physique...)

- Mesure « propre » de θ_{13} : $P_{ee} \simeq 1 \sin^2 (2 \theta_{13}) \sin^2 \left(\frac{\Delta m^2 L}{4 E}\right)$
- Identification des \overline{V}_{ρ} : en coïncidence (permet de réduire fortement les bruits de fond)

Conception des détecteurs

Le signal et les bruits de fond

Les systématiques

Données-Théorie

métł	node <i>pal</i>	ramétrique	$\chi^2 = m$ $\{\alpha\}$	$\sum_{k,k}^{D}$	$\sum_{i=1}^{N}$	$\int_{a}^{b} \left[\left(\Delta_{i}^{D} - \sum_{k=1}^{K} \alpha_{i,k}^{D} S_{i,k}^{D} \right)^{2} + \sum_{k=1}^{K} c_{i,k}^{D} \right]$	$\left(\alpha_{i,k}^{D} \right)^{2}$
Error Source	Error Type	Error Description	CHOOZ	DC	DC	Ponderation	
Reactor		Reactor Production Cross Section Core Powers Energy per Fission Solid Angle/Bary. Displct.	Absolute 1.90% 0.70% 0.60%	Absolute 1.90% 0.70% 0.60%	Relative 0.20%	\sim	
Detector	Free H in TG	Detector Detection Cross Section Volume Fiducial Volume Density H/C (Chemical Composition)	0.30% 0.30% 0.20%) 0.80%	0.10% 0.20% 0.20% 0.10% 0.80%	0.20% 0.01% 0.10%	 normalisation absolute " relative forme spectre combustible usagé 	e
Analysis	Electronics	Dead Time Analysis	0.25%		0.00%	 puissance des réacte composition des coel 	eurs urs
	Particle ld Positron Neutron	Escape Capture Identification Cut Escape Capture (% Gd)	0.10% 0.00% 0.80% 1.00% 0.85%	0.10%	0.10%	 soustraction bruits de connaissance du Δm 	e fond
	Anti-neutrino	Identification Cut Time Cut Distance Cut Unicity (neutron multiplicity) Efficiency uncert due to bkg	0.40% 0.40% 0.30% 0.50%	0.10%	0.10% 0.10%	normalisation relative	8
Tetel			0.000/	0.040/	0.400/		

Biais systématiques

- relative
- forme spectre
- combusitible usagé puissance des réacteurs
- composition des coeurs
- soustraction bruits de fond

normalisation relative

Sensibilité

Potentiel de découverte

La collaboration (proposal hep/0606025)

(physiciens, ingénieurs, techniciens)

Progression sur le site proche

EDF a donné son accord en juin 2005 pour :

- la mise à disposition du site lointain
- du site proche
- des données techniques liées
- les autorisations de travaux liées à la construction

APS (Avant Projet Sommaire) en cours

étude géologique des sols en cours

1-2 forages en février 2007

Répartition des tâches

Porte-parole : H. de Kerret (APC) Coordinatrice technique : F. Ardellier (Saclay)

- Mécanique → <u>Saclay</u>, APC, CIEMAT
- PM, support, blindage PM → Japon, CIEMAT, Angleterre
- Intégration & interfaces -> <u>Saclay</u>
- Veto interne → Tübingen
- Veto externe \rightarrow ANL
- LS dopé en Gd → Heidelberg, Gran Sasso, Russia
- Autres liquides, manipulations/tests → Heidelberg, Munich, <u>Saclay</u>, Tübingen
- Compatibilité des matériaux → <u>Saclay</u>
- Radiopureté, propreté → Sandia
- Électronique & DAQ → APC, Drexel, Aachen
- Calibration → Alabama, Russie, Angleterre
- Slow control → Kansas
- Simulation & Off-Line → <u>Saclay</u>, APC, Kansas, Notredame, Alabama, Tübingen
- Non prolifération & physique réacteur → <u>Saclay</u>, Nantes, LLNL

Les effectifs

Les physiciens

- SPP 4 permanents
 - Th. LASSERRE (Chef)
 - M. CRIBIER (non-prolifération, scintillateurs)
 - A. MILSZTAJN (# de protons)
 - D. MOTTA (simulation, scintillateurs)
 - 1 physicien invité (fin = février 2007) V. SINEV (non-prolifération, physique des réacteurs)
 - 1 post-doc (fin = septembre 2007)
 - G. MENTION (simulations, compatibilité des matériaux, scintillateurs)
- SPhN
 - 2 permanents
 - A. LETOURNEAU (spectre antineutrinos)
 - D. LHUILLIER (spectre antineutrinos)

Les services techniques

- SEDI
 - F. ARDELLIER (Coord. technique)
 - J. BELTRAMELLI
 - S. HERVE
 - C. JEANNEY
 - F. MEIGNER (Assurance produit)
 - P. STARZYNŠKI
- SIS
 - J. C. BARRIERE
 - S. CAZAUX
 - J. F. MILLOTP. PERRIN
 - L. SCOLA
- SENAC
 - L. LATRON
 - STL
 - J. M. ARZUL

Conception technique/Intégration

Double enceinte acrylique

Conception enceintes acryliques épaisseur 12 mm

- Simulations de contraintes dans les cas critiques (acrylique/acier) :
 - en phase de remplissage
 - différence de densité : cible/collecteur gamma/buffer

Marge sécurité : Les contraintes doivent rester < 5 Mpa confirmé par des tests d'échantillons (Δ H ~ 2 cm pour le remplissage)

Tests d'échantillons

Nombreux tests de résistance/rupture : Saclay, Röhm, Mines de Douai (20, 50 °C)

acrylique : rupture flexion à $\sim 12 \pm 1$ Mpa légère dépendance en température avec colle : test traction : ~ 19 Mpa

Contact avec liquide : pas d'altération

Photo lumière polarisée

La maquette 1/5^{ème}

Buffer acier inox

Conception

Réalisation

Intégration

				_
Dad			Mo f	á.
	10)		геі	e
		-		

- Réception fin octobre 2006 de 9 tonnes d'acier inox 304 L en plaques de 3 mm prêtes à être courbées et découpées délivrées en 2 lots
- échantillons → 3 labos souterrains pour mesure radiopureté

		Modane	Gran Sasso	Oroville	Contraintes MC
Lot 1	Co-60 (mBq/kg)	13,6±2	19±2	5,5	15
	U-238 (10^-10 g/g)	5±2	20±5	< 1	10 - 100
	Th-232 (10^-10 g/g)	5,5±1,3	< 8,1	< 1	5 – 50
	K-40 (mBq/kg)	<15	<11		
Lot 2	Co-60 (mBq/kg)	11,2±2,5	9,6±1,2	12,6±1,2	15
	U-238 (10^-10 g/g)	< ?	< 3	< 2	10 - 100
	Th-232 (10^-10 g/g)	< ?	< 15	<6	5 – 50
	K-40 (mBq/kg)	< 15	< 9,8		

Le contrôle du nombre de protons dans la cible

Nombre de protons de la cible

L'une des systématiques dominantes sur le plan de la normalisation relative des deux détecteurs

On veut cette incertitude la plus petite possible

Mesures les plus performantes = par pesées (+ mesures gravimétrie, ~ 20 points autour du site)

prototype tests

Systématique

Systématique ~ 0,2 %

= peser 8,3 t à mieux que 16 kg près en relatif sachant qu'il peut y avoir des pertes dans les tubes de circulation du liquide

Tests des liquides scintillants dopés en Gd Transport optique, absorbance

Requis : 1 g/l de Gd dans solvant stable et robuste, optique ok Deux families developées pendant la R&D de Double Chooz :

- les carboxylates (+ stabilisateurs)
- les beta-diketonates (i,e. Gd-DPM)

Tests des liquides scintillants dopés en Gd Rendement lumineux/temps de réponse

Mesure et suivi

- rendement lumineux *TP DEA, mini-stages associés* propagation lumière
- temps de réponse du scintillateur

Simulation

-0.2

0.4

Les expériences concurrentes

- Nécessite 160 t de LS dopé en Gd stable (10 x la production de Double Chooz !)
- Que faire si un des LS dans les détecteurs montre une instabilité ?
 - 1 ou 2 x 20 t sur chaque site
 proche
 - => ne change pas la sensibilité
 - site lointain en 1 an

	1 x 20 t	2 x 20 t	3 x 20 t	4 x 20 t
LA 2 OFF	0,023	0,018	0,015	0,014
LA 2 ON	0,021	0,017	0,015	0,014

 LA 2 « ON » dégrade légèrement la sensibilité (en tout cas pas d'impact positif du supplément de puissance).

RENO

- Site étendu (ligne de 1,5 km de réacteurs)
- Les détecteurs « ne voient pas » le mêmé flux de chacun des réacteurs :

	R1	R2	R3	R4	R5	R6
Proche	3,00%	8,00%	39,00%	39,00%	8,00%	3,00%
Loin	15,00%	17,00%	18,00%	18,00%	17,00%	15,00%

 La sensibilité dépend des incertitudes sur les puissances et les composition de chacun des coeurs

	Compo	sition	Puissance		
Incertitude	5% 10%		1%	3%	
Sensibilité	0,022	0,028	0,021	0,024	
	Puissance	à 2%	Compos	sition à 5%	

La non-prolifération (AIEA)

Précision (1-2 %) sur # d'antineutrinos émis par un réacteur nucléaire en fonction de sa puissance thermique.

Puissance thermique : les moyens classiques - bilan thermique circuits refroidissement

- mesure des neutrons sortant du cœur.

antineutrinos : une manière très complémentaire d'accéder à la puissance thermique.

Possiblité exploitation différence spectrale entre U235 et Pu239

Protoype mesure puissance thermique

235U=0.47, 239Pu=0.37, 238U=0.08, 241Pu=0.08 235U=0.66, 239Pu=0.24, 238U=0.08, 241Pu=0.02

Conclusion

Financement détecteurs => Ok.

Intégration détecteur lointain automne 2007, début prise de données fin 2008

Intégration détecteur proche 2009-2010 ?

