The θ_{13}
 Panorama...

DAPNIA-CEA Saclay
February 2007

Anatael Cabrera

Marie Curie Fellow @ Double Chooz APC (IN2P3) - Paris (PhD in MINOS/Oxford)
overview:

- v status \& MINOS
- Why θ_{13} important?
- θ_{13}-beams exp.
- θ_{13}-reactor \exp.
- Complementarity
- Conclusions...
- impact of $\theta_{\mid 3}$:"angle of PMNS leptonic mixing matrix"
- impact of $\theta_{\mid 3}$:"angle of PMNS leptonic mixing matrix"
- physics related issues: high precision $O(1 \%)$ experiments
- impact of θ_{13} :"angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(I\%) experiments
- experimental panorama limited to next $\sim 5-10$ years
- impact of $\theta_{\mid 3: ~ " a n g l e ~ o f ~ P M N S ~ l e p t o n i c ~ m i x i n g ~ m a t r i x " ~}^{\text {" }}$
- physics related issues: high precision $O(1 \%)$ experiments
- experimental panorama limited to next $\sim 5-10$ years
- two experimental approaches: beams and reactors

- physics related issues: high precision $O(1 \%)$ experiments
- experimental panorama limited to next $\sim 5-10$ years
- two experimental approaches: beams and reactors
- more on MINOS [as requested]

- physics related issues: high precision $O(1 \%)$ experiments
- experimental panorama limited to next $\sim 5-10$ years
- two experimental approaches: beams and reactors
- more on MINOS [as requested]
- OPERA,T2K,NOVA,Double Chooz,Daya Bay,(...)

- physics related issues: high precision $O(1 \%)$ experiments
- experimental panorama limited to next $\sim 5-10$ years
- two experimental approaches: beams and reactors
- more on MINOS [as requested]
- OPERA,T2K,NOVA,Double Chooz,Daya Bay,(...)
- complementarity: all experiment has input into global coherent(!) picture

V oscillations reminder

neutrino oscillations summary

- flavour-Vs (interact) while mass-Vs (propagate)
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- no lepton-flavour number conservation on SM
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- no lepton-flavour number conservation on SM
- mixing in lepton sector: PMNS matrix
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- no lepton-flavour number conservation on SM
- mixing in lepton sector: PMNS matrix
- prediction: leptonic CP violation (in-built on PMNS)
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- no lepton-flavour number conservation on SM
- mixing in lepton sector: PMNS matrix
- prediction: leptonic CP violation (in-built on PMNS)
- non-degenerate mass spectrum of 3(?) active Vs
- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to $>10 \%$
- oscillation means:
- no lepton-flavour number conservation on SM
- mixing in lepton sector: PMNS matrix
- prediction: leptonic CP violation (in-built on PMNS)
- non-degenerate mass spectrum of 3(?) active Vs
- "mirroring" lepton-quark mixing => beyond SM?
$\left(v_{e}, v_{1}, v_{T}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, v_{3}\right)^{\top}$
$\left(V_{e}, v_{1}, v_{1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, v_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase
$\left(v_{e}, v_{1}, v_{1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, v_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase
$\left(V_{e}, v_{1}, V_{1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, V_{2}, v_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

$\left(V_{e}, v_{1}, V_{1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, V_{2}, v_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

$$
\begin{aligned}
& \binom{\left.v_{e}\right)}{v_{\mu} \div=\left(\begin{array}{ccc}
\text { atmospheric } v \\
v_{\tau} \dot{广} & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)} \\
& \theta_{13} \& \text { dirac- } \delta_{C P} \\
& \text { solar V } \\
& \mathrm{P}\left(\mathrm{v}_{\mu} \rightarrow \mathrm{v}_{\mu}\right) \\
& P\left(\text { anti- } V_{e} \rightarrow V_{x}\right) \& P\left(V_{\mu} \rightarrow V_{e}\right) \\
& P\left(v_{e} \rightarrow v_{x}\right)
\end{aligned}
$$

$\left(V_{e}, V_{1}, V_{1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, V_{2}, v_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

Mass Spectrum...

$\left(V_{e}, V_{1}, V_{-1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, V_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

Mass Spectrum...

V-Osc. sensitive only to Δm^{2} 's:
Δm^{2} (atm)
Δm^{2} (solar)

$\left(V_{e}, V_{1}, V_{-1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, V_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

Mass Spectrum...

V-Osc. sensitive only to Δm^{2} 's:
Δm^{2} (atm)
Δm^{2} (solar)

$\left(V_{e}, V_{1}, V_{-1}\right)^{\top}=\boldsymbol{U}\left(v_{1}, v_{2}, V_{3}\right)^{\top}$
U must be unitary \& 3×3 => PMNS: 3 angles \& I complex phase

Mass Spectrum...

V-Osc. sensitive only to Δm^{2} 's:
Δm^{2} (atm)
Δm^{2} (solar)

2V oscillation probability equation:

2V oscillation probability equation:

$$
\mathrm{P}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{1.27 \Delta m^{2} \underline{L}}{E}\right)
$$

Disappearance...

2V oscillation probability equation:

Disappearance...

E/L modulation unique feature!

Matter effects in a nut-shell

- Earth made of matter (no anti-matter): e-, p+, n
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- new effective masses
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- new effective masses
- new effective mixing angles
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- new effective masses
- new effective mixing angles
- break degeneracy (CPT) between anti-v/V
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- new effective masses
- new effective mixing angles
- break degeneracy (CPT) between anti-v/V
- modify oscillation equations
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti- V / v due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- new effective masses
- new effective mixing angles
- break degeneracy (CPT) between anti-v/V
- modify oscillation equations
- explicit "L" dependence (not only E/L)

The most fascinating demonstration so far...

The most fascinating demonstration so far...

PMNS: large mixing (unlike CKM)...

parameter	$\mathrm{bf} \pm 1 \sigma$	1σ acc.	2σ range	3σ range
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	7.9 ± 0.3	4%	$7.3-8.5$	$7.1-8.9$
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$	$2.5_{-0.25}^{+0.20}$	10%	$2.1-3.0$	$1.9-3.2$
$\sin ^{2} \theta_{12}$	$0.30_{-0.03}^{+0.02}$	9%	$0.26-0.36$	$0.24-0.40$
$\sin ^{2} \theta_{23}$	$0.50_{-0.07}^{+0.08}$	16%	$0.38-0.64$	$0.34-0.68$
$\sin ^{2} \theta_{13}$	-	-	≤ 0.025	≤ 0.041

- 736km baseline
- 2 detectors
- magnetised
- beam physics
- cosmic physics
- $\sim 7 \times 10^{20}$ pot
- I 20 GeV protons strike graphite target
- Magnetic horns focus produced pions and kaons, pions and kaons decay into muons and neutrinos
- Target position adjusts to change beam energy
- $10 \mu \mathrm{~s}$ spills as fast as once every 2 seconds
- $2.5 \times 10^{20} \mathrm{POT} / \mathrm{year}$

5.4 kton mass, $8 \times 8 \times 30 \mathrm{~m}$

484 steel/scintillator planes
VA electronics

282 steel and 153 scintillator planes
Robust QIE electronics

B ~I.2T
Multi-pixel (MI6,M64) PMTs
GPS time-stamping to synch FD data to ND/Beam
Continuous untriggered readout of whole detector (only during spill for the ND)
Interspersed light injection (LI) for calibration
Software triggering in DAQ PCs (Highly flexible : plane, energy, LI triggers in use)
Spill times from FNAL to FD trigger farm

Design
sampling calorimeter: showers

sampling calorimeter: showers
I.3T Bfield+tracker: μ-spectrometer

sampling calorimeter: showers
I.3T Bfield+tracker: μ-spectrometer

Light collection \& Readout:

sampling calorimeter: showers
I.3T Brield+tracker: μ-spectrometer

Light collection \& Readout:

- simple \& cheap: many channels!

sampling calorimeter: showers
I.3T Bfield+tracker: μ-spectrometer

Light collection \& Readout:

- simple \& cheap: many channels!
- scintillation + wave-shifting fiber

sampling calorimeter: showers
I.3T Bfield+tracker: μ-spectrometer

Light collection \& Readout:

- simple \& cheap: many channels!
- scintillation + wave-shifting fiber
- strips form modules (one view)

sampling calorimeter: showers
I.3T $\mathrm{B}_{\text {field }}+$ tracker: μ-spectrometer

Light collection \& Readout:

- simple \& cheap: many channels!
- scintillation + wave-shifting fiber
- strips form modules (one view)
- photons detected by multi-anode PMs with mu-metal shielding (I6 or 64 per PM: optimal!)

sampling calorimeter: showers
I.3T Bfield+tracker: μ-spectrometer
 Light collection \& Readout:
- simple \& cheap: many channels!
- scintillation + wave-shifting fiber
- strips form modules (one view)
- photons detected by multi-anode PMs with mu-metal shielding (I6 or 64 per PM: optimal!)

$$
\mathrm{P}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(\frac{1.2 才 \Delta m^{2} L}{E}\right)
$$

Additional Physics Chanuels

- high statistics neutrino o measurements @ ND
- high statistics neutrino o measurements @ ND
- MINERVA, etc...
- high statistics neutrino o measurements @ ND
- MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{13}\right)$
- high statistics neutrino o measurements @ ND
- MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\text {। }}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- high statistics neutrino o measurements @ ND - MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\text {। }}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $\sin ^{2}\left(2 \theta_{23}\right)$ [statistics very limited]
- high statistics neutrino o measurements @ ND - MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\text {। }}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $\sin ^{2}\left(2 \theta_{23}\right)$ [statistics very limited]
- atmospheric neutrinos: [B-field]
- high statistics neutrino o measurements @ ND - MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\mid 3}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $\sin ^{2}\left(2 \theta_{23}\right)$ [statistics very limited]
- atmospheric neutrinos: [B-field]
- CPT test: measure $\Delta m^{2} v / \Delta m^{2}$ anti-v
- high statistics neutrino o measurements @ ND - MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\text {। }}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $\sin ^{2}\left(2 \theta_{23}\right)$ [statistics very limited]
- atmospheric neutrinos: [B-field]
- CPT test: measure $\Delta m^{2} v / \Delta m^{2}$ anti-v
- cosmic ray: $\mu+/ \mu$ - ratio [B-field]
- high statistics neutrino o measurements @ ND - MINERVA, etc...
- improve CHOOZ limit by $\sim 2 x$ on $\sin ^{2}\left(2 \theta_{\text {। }}\right)$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $\sin ^{2}\left(2 \theta_{23}\right)$ [statistics very limited]
- atmospheric neutrinos: [B-field]
- CPT test: measure $\Delta m^{2} v / \Delta m^{2}$ anti-v
- cosmic ray: $\mu+/ \mu$ - ratio [B-field]

Atmospheric Physics

- Sample of V-induced $\mu \mathrm{s}$: I 30 up and IO horizontal
- Sample of V-induced $\mu \mathrm{s}$: I 30 up and IO horizontal
- use the cosmic veto shield (top and sides)
- Sample of V-induced $\mu \mathrm{s}: I 30$ up and 10 horizontal
- use the cosmic veto shield (top and sides)
- good single track events: vertex within fiducial-V
- Sample of V -induced $\mu \mathrm{s}: 130$ up and 10 horizontal
- use the cosmic veto shield (top and sides)
- good single track events: vertex within fiducial-V
- good timing (I/ β distribution)

- Sample of V-induced $\mu \mathrm{s}$: I 30 up and IO horizontal
- use the cosmic veto shield (top and sides)
- good single track events: vertex within fiducial-V
- good timing (I/ β distribution)
- $\pm \mathrm{p} \mu$ (anti-v/V) measured by curvature (B-field)

- Sample of V-induced $\mu \mathrm{s}$: I 30 up and IO horizontal
- use the cosmic veto shield (top and sides)
- good single track events: vertex within fiducial-V
- good timing (I/ $/ \beta$ distribution)
- $\pm \mathrm{P} \mu$ (anti-V/V) measured by curvature (B-field)
- Results...
$\mathcal{R}=\frac{R_{L / H+U}^{d a t a}}{R_{L / H+U}^{M C}}=0.65_{-0.12}^{+0.15}($ stat $) \pm 0.09($ syst $)$
$\hat{\mathcal{R}}_{C P T}=0.72_{-0.18}^{+0.24}(\text { stat })_{-0.04}^{+0.08}($ syst $)$

~850 days: $140 \mathrm{~V}_{\mu} \mathrm{S}$

Beam Physics

Event Selection

- PID parameter: event interaction selection
- PID parameter: event interaction selection
- observed μ-: CC-quasielastic and low-" "y"

- PID parameter: event interaction selection
- observed μ-: CC-quasielastic and low-"y"
- NC contamination: pattern-ID hard $<1.5 \mathrm{GeV}$

MINOS measurement:

MINOS measurement: - relative comparison ND/FD

MINOS measurement: - relative comparison ND/FD

BUT...

- MINOS measurement:
- relative comparison ND/FD

BUT...

Extended V-source @ I-decay

- MINOS measurement:
- relative comparison ND/FD
- BUT...
- Extended V-source @ π-decay
- ND more low E Vs (high angle)

- MINOS measurement:
- relative comparison ND/FD
- BUT...
- Extended V-source @ π-decay
- ND more low E Vs (high angle)
- ND-vs $\neq F D-v s!!!$

ND to FD extrapolation

- Beam Matrix:

Beam Matrix:

- beam MC
- beam MC
- pion production
- beam MC
- pion production
- decay kinematics
- beam MC
- pion production
- decay kinematics

Detector MC:

- beam MC
- pion production
- decay kinematics

Detector MC:

- acceptances \& responses
- beam MC
- pion production
- decay kinematics

Detector MC:

- acceptances \& responses

Predict VND $=>$ VFD

Beam Matrix:

- beam MC
- pion production
- decay kinematics

Detector MC:

- acceptances \& responses

Predict $V_{N D}=>V_{F D}$
Verify with 3 more methods

- Fitting ND PDFs
- More direct extrapolation

Data sample	observed	expected	ratio
v_{μ} only $(<30 \mathrm{GeV})$	215	336.0 ± 14.4	0.64 ± 0.05
v_{μ} only $(<10 \mathrm{GeV})$	122	238.7 ± 10.7	0.51 ± 0.05
v_{μ} only $(<5 \mathrm{GeV})$	76	168.4 ± 8.8	0.45 ± 0.06

- Energy dependent deficit of events
- 49\% deficit below $10 \mathrm{GeV}-6.2 \sigma$ (stat+sys)

$$
\chi^{2}=\sum_{\mathrm{i}=1}^{\text {nbins }}\left[2\left(\mathrm{e}_{\mathrm{i}}-\mathrm{o}_{\mathrm{i}}\right)+2 \mathrm{o}_{\mathrm{i}} \ln \left(\mathrm{o}_{\mathrm{i}} / \mathrm{e}_{\mathrm{i}}\right)\right]+\sum_{\mathrm{j}=1}^{\sum_{\text {systems }}^{\text {nsys }} \Delta \mathrm{s}_{\mathrm{j}}^{2} / \sigma_{\mathrm{s}_{\mathrm{j}}}^{2}} \underset{\text { Penalty terms for uncertainties }}{ }
$$

E/L modulation

$\left|\Delta \mathrm{m}_{32}^{2}\right|=2.74_{-0.26}^{+0.44}($ stat + syst $) \times 10^{-3} \mathrm{eV}^{2}$ $\sin ^{2} 2 \theta_{23}=1.00_{-0.13}$ (stat + syst)
Normalization $=0.98$

I d.o.f.: $\sin ^{2}\left(2 \theta_{23}\right)=\mid$

$2 x \sigma_{\text {syst }} \sim \sigma_{\text {stat }}$ potential $\sim 5 \%$ measurement

$$
\text { looking for } \theta_{13 . . .}
$$

today's "to-do-list"

- neutrino oscillation, therefore:
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{c P}$
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{\mathrm{CP}}$
- E/L dependence of the signal: Δm^{2} sol, Δm^{2} atm
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{c P}$
- E/L dependence of the signal: Δm^{2} sol, Δm^{2} atm
- $\pm \Delta m^{2}$ atm $\&+\Delta m^{2}$ sol [matter effects]
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{\mathrm{CP}}$
- E/L dependence of the signal: Δm^{2} sol, Δm^{2} atm
- $\pm \Delta m^{2}$ atm $\&+\Delta m^{2}$ sol [matter effects]
\star MINOS: $\Delta \mathrm{m}^{2}=2.7 \mathrm{e}-3 \mathrm{eV}^{2} \pm 10 \%$
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{c P}$
- E/L dependence of the signal: Δm^{2} sol, Δm^{2} atm
- $\pm \Delta m^{2}$ atm $\&+\Delta m^{2}$ sol [matter effects]
\star MINOS: $\Delta \mathrm{m}^{2}=2.7 \mathrm{e}-3 \mathrm{eV}^{2} \pm 10 \%$
$\star \sin ^{2}\left(2 \theta_{13}\right)<0.12-0.20$
CHOOZ @ 90\%CL
- neutrino oscillation, therefore:
- PMNS matrix: $\theta_{12}, \theta_{23}[$ max? $], \theta_{13}, \delta_{c P}$
- E/L dependence of the signal: Δm^{2} sol, Δm^{2} atm
- $\pm \Delta m^{2}$ atm $\&+\Delta m^{2}$ sol [matter effects]
\star MINOS: $\Delta \mathrm{m}^{2}=2.7 \mathrm{e}-3 \mathrm{eV}^{2} \pm 10 \%$
$\star \sin ^{2}\left(2 \theta_{13}\right)<0.12-0.20$
CHOOZ@ 90\%CL
$\star \sin ^{2}\left(2 \theta_{13}\right)<0.12$
Global Analysis @ 90\%CL

Physics behind the θ_{13} effiort...

- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{cP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- $\theta_{13}>0$ necessary to measure dirac- $\delta \mathrm{cp} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{cP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{cP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV, etc...
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{cP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV, etc...
- unified flavour symmetry?
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{cP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV, etc...
- unified flavour symmetry?
- quark-lepton relation?
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{c P} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV, etc...
- unified flavour symmetry?
- quark-lepton relation?
- mass hierarchy (also input from dirac- δ_{CP}):
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{c P} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV, etc...
- unified flavour symmetry?
- quark-lepton relation?
- mass hierarchy (also input from dirac- δ_{CP}):
- normal: favoured by GUTs
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{CP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV,etc...
- unified flavour symmetry?
- quark-lepton relation?
- mass hierarchy (also input from dirac- δ_{CP}):
- normal: favoured by GUTs
- inverted: better for $0 v \beta \beta$ (maybe within reach)
- $\theta_{13}>0$ necessary to measure dirac- $\delta_{\mathrm{CP}} \& \pm \Delta \mathrm{m}^{2}(\mathrm{~atm})$
- high precision leptonic mixing sector:
- test PMNS unitarity (a la B-physics)
- physics beyond V-oscillations: decay, LFV,etc...
- unified flavour symmetry?

Lindner@NOW2006

- quark-lepton relation?
- mass hierarchy (also input from dirac- δ_{CP}):
- normal: favoured by GUTs
- inverted: better for $0 v \beta \beta$ (maybe within reach)

Complementarity

two approaches

- reactor: disappearance => high statistics
- reactor: disappearance => high statistics
- no NC BG or matter effects
- reactor: disappearance => high statistics
- no NC BG or matter effects
- sensitive to θ_{13} Only:

$$
1-P_{\bar{\varepsilon} \bar{e}} \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta+\alpha^{2} \Delta^{2} \cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} .
$$

- reactor: disappearance => high statistics
- no NC BG or matter effects
- sensitive to θ_{13} Only:

$$
1-P_{\bar{\epsilon} \bar{e}} \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta+\alpha^{2} \Delta^{2} \cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} .
$$

- beams: appearance $=>$ low statistics $(<150 \mathrm{vs}$ Phase-l)
- reactor: disappearance => high statistics
- no NC BG or matter effects
- sensitive to $\theta_{l 3}$ Only:

$$
1-P_{\bar{\varepsilon} \bar{e}} \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta+\alpha^{2} \Delta^{2} \cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} .
$$

- beams: appearance $=>$ low statistics ($<150 \mathrm{Vs}$ Phase-I)
- BG: Π° production and beam ve contamination
- reactor: disappearance $=>$ high statistics
- no NC BG or matter effects
- sensitive to $\theta_{l 3}$ Only:

$$
1-P_{\bar{e} \bar{e}} \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \Delta+\alpha^{2} \Delta^{2} \cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12}
$$

- beams: appearance $=>$ low statistics $(<150 \mathrm{Vs}$ Phase-I)
- BG: π^{O} production and beam ve contamination
- correlation: $\delta_{c P}, \theta_{13}, \theta_{23}$ degeneracy and matter effects*

$$
\begin{aligned}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & \simeq \sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23} \sin ^{2} \Delta \\
& \mp \alpha \sin 2 \theta_{13} \sin \delta_{\mathrm{CP}} \sin 2 \theta_{12} \sin 2 \theta_{23} \Delta \sin ^{2} \Delta \\
& +\alpha \sin 2 \theta_{13} \cos \delta_{\mathrm{CP}} \sin 2 \theta_{12} \sin 2 \theta_{23} \Delta \cos \Delta \sin \Delta \\
& +\alpha^{2} \cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{123} \Delta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \equiv \Delta m_{31}^{2} L /\left(4 E_{\nu}\right) \\
& \alpha \equiv \Delta m_{21}^{2} / \Delta m_{31}^{2}
\end{aligned}
$$

beam sensitivity illustration
appearance

- $p \propto$ signal (statistics) 0.04
0.035
0.03
$\lambda^{\cup} 0.025$
- BG ~ constant(E/L)
$P \propto \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$
- $p \propto$ signal (statistics)
- BG ~ constant(E/L)
- $\delta_{c p: ~ c a u s e s ~ m o d u l a-~}^{\text {c }}$ dion of p: use...

$\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{13}=0.05$ $\sin ^{2} 2 \theta_{23}=0.95$

 $\lambda^{0} 0.015$| 0.005 |
| ---: |
| 0 |

probability
$P \propto \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$

- $p \propto$ signal (statistics)
- BG ~ constant(E/L)
$\delta_{c p: ~ c a u s e s ~ m o d u l a-~}^{\text {a }}$ tion of p: use...
- anti-V/V: -T phase

$\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{13}=0.05$ $\sin ^{2} 2 \theta_{23}=0.95$

$P \propto \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$

- $p \propto$ signal (statistics)
- BG ~ constant(E/L)
- $\delta_{c p: ~}$ causes modulation of p: use...
- anti-v/v: -ा phase
- $\sin ^{2}\left(2 \theta_{13}\right)$ reactor

$\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{13}=0.05$ $\sin ^{2} 2 \theta_{23}=0.95$

- $p a \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$
- $p \propto$ signal (statistics)
- BG ~ constant(E/L)
- $\delta_{c p:}$ causes modulation of p: use...
- anti-V/v: -ा phase
- $\sin ^{2}\left(2 \theta_{13}\right)$ reactor

$\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{13}=0.05$ $\sin ^{2} 2 \theta_{23}=0.95$

$P \propto \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$

- $P \propto$ signal (statistics)
- BG ~ constant(E/L)
$\delta_{c p: ~ c a u s e s ~ m o d u l a-~}^{\text {a }}$ dion of p: use...
- anti-V/V:-T phase
- $\sin ^{2}\left(2 \theta_{13}\right)$ reactor
$\pm \Delta \mathrm{m} 2$ causes shift with
L dependence: eff. mass and mixing
- $p \propto \sin ^{2}\left(2 \theta_{13}\right)[<10 \%]$
- $\mathrm{P} \propto$ signal (statistics)
- BG ~ constant(E/L)
- $\delta_{c p:}$ causes modulation of p: use...
- anti-V/V: -T phase
- $\sin ^{2}\left(2 \theta_{13}\right)$ reactor $\pm \Delta \mathrm{m} 2$ causes shift with L dependence: eff. mass and mixing

0.04

$\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta_{13}=0.05$
$\sin ^{2} 2 \theta_{23}=0.95$

beam + reactor experiments combination

beam + reactor experiments combination

$\delta_{\mathrm{CP}}=90, \sin ^{2}\left(2 \theta_{13}\right)=0.1$ (large), $\Delta \mathrm{m}^{2}>0, \Delta \mathrm{~m}^{2}<0(\mathrm{~V}$ only $)$

$\delta_{\mathrm{CP}}=90, \sin ^{2}\left(2 \theta_{13}\right)=0.1($ large $), \Delta \mathrm{m}^{2}>0, \Delta \mathrm{~m}^{2}<0(\mathrm{~V}$ only $)$

Reactor-II: Projection

Needs all to disentangle

experinents θ_{13} (next 5 years)

beam experiments

MINOS \& OPERA

("conventional beams")

MINOS: measure Dm2: E/L tuning!

- Statistically limited (full set by 2010)
- If no observation: improved by $\sim 2 x$ the CHOOZ limit
- BGopera: DIS \& lower E from signal
- BGMINOs: from ND extrapolation

Off-axis: lower BG

θ_{13}	signal	$\tau \rightarrow \mathrm{e}$	$v_{\mu} \mathrm{CC}$	$v_{u} \mathrm{NC}$	$v_{\mathrm{e}} \mathrm{CC}$ beam
9°	9.3	4.5	1.0	5.2	18
8°	7.4	4.5	1.0	5.2	18
7°	5.8	4.6	1.0	5.2	18
5°	3.0	4.6	1.0	5.2	18
Efficiency	0.31	0.032	0.34×10^{-4}	7.0×10^{-4}	0.082

$$
\begin{aligned}
& \text { T2K \& NOVA } \\
& \text { ("off-axis beams") }
\end{aligned}
$$

Why off-axis beams?

Off-axis: narrow band aimed to oscillation maximum

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{v}

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{v}
- less sensitive to beam modeling

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{v}
- less sensitive to beam modeling
- Less BG: NC HE-tail and V_{e} intrinsic contamination

$72 k$

- 0.6 GeV beam $(0.75 \mathrm{~kW}): 80 \%$ quasi-elastic Vs

0.6 GeV beam (0.75 kW): 80% quasi-elastic Vs

On-axis beam monitoring detectors: beam centre profile

0.6 GeV beam (0.75 kW): 80% quasi-elastic Vs

On-axis beam monitoring detectors: beam centre profile
ND (280m off-axis): σ_{v} factory and normalisation

0.6 GeV beam (0.75 kW): 80% quasi-elastic Vs

On-axis beam monitoring detectors: beam centre profile
ND (280m off-axis): σ_{v} factory and normalisation

- Middle Detector: match the off-axis spectrum of FD

0.6 GeV beam (0.75 kW): 80% quasi-elastic Vs

On-axis beam monitoring detectors: beam centre profile
ND (280m off-axis): σ_{v} factory and normalisation

- Middle Detector: match the off-axis spectrum of FD
- SuperKamiokande III (fine resolution: Π° taggings)

- 0.6 GeV beam (0.75 kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile
- ND (280 m off-axis): σ_{v} factory and normalisation
- Middle Detector: match the off-axis spectrum of FD
- SuperKamiokande III (fine resolution: Π° taggings)
- Impressive progress \& future...
- $\sin ^{2}\left(2 \theta_{13}\right)$ \& dirac- $\delta_{C P}$ (harder during phase-I)
- $\sin ^{2}\left(2 \theta_{23}\right)$ to $1 \% ~ \& \Delta m 2$ to 1%
- critical input to world neutrino community
- more upon updates (4MW beam \& HK)

- $\sin ^{2}\left(2 \theta_{13}\right)$ \& dirac- $\delta_{C P}$ (harder during phase-I)
- $\sin ^{2}\left(2 \theta_{23}\right)$ to 1% \& $\Delta m 2$ to 1%
- critical input to world neutrino community
- more upon updates (4MW beam \& HK)

NOVA

NOVA Detector

- physics: $\theta_{\mid 3} \&\left(\delta_{c P}, \pm \Delta \mathrm{m}^{2}\right)$
- physics: $\theta_{I 3} \&\left(\delta_{c P, \pm \Delta m^{2}}\right)$
- V_{e} detector: EM showers

- physics: $\theta_{\mathrm{l} 3} \&\left(\delta_{\mathrm{cP}, \pm \Delta \mathrm{m}^{2}}\right)$
- V_{e} detector: EM showers
- tracking too: muons

- physics: $\theta_{\mathrm{l} 3} \&\left(\delta_{\mathrm{cP}, \pm \Delta \mathrm{m}^{2}}\right)$
- V_{e} detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$

- physics: $\theta_{\mathrm{l} 3} \&\left(\delta_{\mathrm{cP}, \pm \Delta \mathrm{m}^{2}}\right)$
- Ve detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume

- physics: $\theta_{\mathrm{l} 3} \&\left(\delta_{\mathrm{cP}, \pm \Delta \mathrm{m}^{2}}\right)$
- V_{e} detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...

- physics: $\theta_{\mathrm{l} 3} \&\left(\delta_{\mathrm{cP}, \pm \Delta \mathrm{m}^{2}}\right)$
- V_{e} detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...
- liquid scintillator

- physics: $\theta_{\mathrm{I} 3} \&\left(\delta_{\left.\mathrm{cP}, \pm \Delta \mathrm{m}^{2}\right)}\right.$
- V_{e} detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...
- liquid scintillator
- no B-field

- physics: $\theta_{\mathrm{I} 3} \&\left(\delta_{\left.\mathrm{cP}, \pm \Delta \mathrm{m}^{2}\right)}\right.$
- V_{e} detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...
- liquid scintillator
- no B-field
- photodetection:APD

- physics: $\theta_{I 3} \&\left(\delta_{\left.\mathrm{cP}, \pm \Delta \mathrm{m}^{2}\right)}\right.$
- Ve detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...
- liquid scintillator
- no B-field
- photodetection:APD
- 3m overburden: EM shower
- physics: $\theta_{I 3} \&\left(\delta_{\left.\mathrm{cP}, \pm \Delta \mathrm{m}^{2}\right)}\right.$
- Ve detector: EM showers
- tracking too: muons
- longest baseline: $\sim 810 \mathrm{~km}$
- 20-25kT full active volume
- MINOS-like but...
- liquid scintillator
- no B-field
- photodetection:APD
- 3m overburden: EM shower Feldman@WIN05
Howaroft@NuFact.06

Physics reach

- Correlation among $\theta_{13,} \delta_{\mathrm{cp}, \pm} \pm \mathrm{m}^{2}=>$ to disentangle

- Correlation among $\theta_{13}, \delta \mathrm{cp}, \pm \Delta \mathrm{m}^{2}=>$ to disentangle

- Correlation among $\theta_{13}, \delta_{c P}, \pm \Delta m^{2}=>$ to disentangle - anti-v/V running helps self-disentangle

- anti-V/V running helps self-disentangle
- comparison with T2K and reactors

Measure $\sin ^{2}\left(2 \theta_{23}\right)$ to $\sim 1 \%$ and $\Delta m^{2}(a t m)$ to $\sim 2 \%$

- April 2006: DOE CD1 review. Recommends approval
- Early 2007: DOE CD2 review
- Oct 2007: DOE CD3 and begin Far Detector building construction.
- Late 2007: completion of an small Integration Prototype at FNAL.
- Oct 2008: First construction of Far Detector Scintillator modules.
- June 2009: Completion of Far Detector building.
- Nov 2010: First 5 kT completed, start of data taking
- Nov 2011: Far Detector completed, 25 kT.
- April 2006: DOE CD1 review. Recommends approval
- Early 2007: DOE CD2 review
- Oct 2007: DOE CD3 and begin Far Detector building construction.
- Late 2007: completion of an small Integration Prototype at FNAL.
- Oct 2008: First construction of Far Detector Scintillator modules.
- June 2009: Completion of Far Detector building.

NuMI upgrade I (700kW): duty cycle better (~2009)

- Nov 2010: First 5 kT completed, start of data taking
- Nov 2011: Far Detector completed, 25 kT.

NuMI upgrade II (I.2MW): higher intensity (~20| I)

Reactor Experiments:

Double Chooz Daya Bay RENO

- make flux uncertainty negligible: multi-detector
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- make flux uncertainty negligible: multi-detector
- S/BG> I00: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- make flux uncertainty negligible: multi-detector
- S/BG> 100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- reduce \& understand backgrounds
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- reduce \& understand backgrounds
- overburden \& detector design [DC]
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- reduce \& understand backgrounds
- overburden \& detector design [DC]
- reduce \& understand experimental systematics
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- reduce \& understand backgrounds
- overburden \& detector design [DC]
- reduce \& understand experimental systematics
- inter-detector normalisation: <0.6\%
- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
- large (or many) detectors: S/B ~ f(radius)
- although few reactors may be nice:"reactor off"
- reduce \& understand backgrounds
- overburden \& detector design [DC]
- reduce \& understand experimental systematics
- inter-detector normalisation: <0.6\%
- inter-detector energy calibration: $<1 \%$
θ_{13} dedicated detector $=>$ systematics well $<1 \%$

Volume for v-interaction ($0.1 \% \mathrm{Gd}$)
θ_{13} dedicated detector $=>$ systematics well $<1 \%$

Volume for v-interaction ($0.1 \% \mathrm{Gd}$)
: Extra-volume for v-interaction

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

V-target: Volume for v-interaction ($\mathbf{0 . 1 \%} \mathbf{G d}$)
γ-catcher: Extra-volume for v-interaction

Acrylic vessels and «hardware» definition of fiducial volume
: oil no
scintillator to isolate PMs from target area
Muon tinner-VETO: Traversing muon and fast-n tagging (by proton recoil)
Inert Shielding: Reduce rock radioactivity from U,Th chains and K

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

V-target: Volume for v-interaction ($\mathbf{0 . 1 \%} \mathbf{~ G d}$)
γ-catcher: Extra-volume for v-interaction

Acrylic vessels and «hardware» definition of fiducial volume
: oil no
scintillator to isolate PMs from target area
Muon tinner-VETO: Traversing muon and fast-n tagging (by proton recoil)
Inert Shielding: Reduce rock radioactivity from U,Th chains and K

Muon Outer-VETO: Tag near-passing $\mu \mathrm{s}$ causing fast-n (\& μ-entry point?)

θ_{13} dedicated detector $=>$ systematics well $<1 \%$

V-target: Volume for v-interaction ($\mathbf{0 . 1 \%} \mathbf{G d}$)
γ-catcher: Extra-volume for v-interaction

Acrylic vessels and «hardware» definition of fiducial volume
: oil no
scintillator to isolate PMs from target area
Muon tinner-VETO: Traversing muon and fast-n tagging (by proton recoil)
Inert Shielding: Reduce rock radioactivity from U,Th chains and K

Muon Outer-VETO: Tag near-passing $\mu \mathrm{s}$ causing fast-n (\& μ-entry point?)

What to remember?

Competitive \& overlapping coverage by both techniques!

Similar time scale
no time for...

- Angra (reactor): θ_{13} [hep-ex/05 I I 059]
- Angra (reactor): θ_{13} [hep-ex/05 I |059]
- KASKA (reactor): $\theta_{13}, \theta_{12}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06070 13$]$
- Angra (reactor): $\theta_{\mid 3}$ [hep-ex/05 I |059]
- KASKA (reactor): $\theta_{13}, \theta_{12}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06070 I 3]
- β-beam (beam): $\theta_{13}, \Delta \mathrm{~m}^{2}($ atm $)[$ hep-ph/0605033]
- Angra (reactor): $\theta_{\mid 3}$ [hep-ex/05 I |059]
- KASKA (reactor): $\theta_{13}, \theta_{12}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06070 I 3]
- β-beam (beam): $\theta_{13, \Delta m^{2}(\text { atm })}[$ hep-ph/0605033]
- NuFact (beam): $\theta_{13}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ph/02|0|92]
- Angra (reactor): θ_{13} [hep-ex/05 I I 059]
- KASKA (reactor): $\theta_{13}, \theta_{12}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06070 13$]$
- β-beam (beam): $\theta_{\mathrm{I} 3, \Delta \mathrm{~m}^{2}(\text { atm })}[$ hep-ph/0605033]
- NuFact (beam): $\theta_{13}, \Delta \mathrm{~m}^{2}$ (atm) [hep-ph/02|0|92]
- Hanohano (reactor): $\theta_{13}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06I 2022]
- Angra (reactor): θ_{13} [hep-ex/05 I I 059]
- KASKA (reactor): $\theta_{13}, \theta_{12}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06070 13$]$
- β-beam (beam): $\theta_{\mathrm{I} 3, \Delta \mathrm{~m}^{2}(\text { atm })}[$ hep-ph/0605033]
- NuFact (beam): $\theta_{13}, \Delta \mathrm{~m}^{2}$ (atm) [hep-ph/02|0|92]
- Hanohano (reactor): $\theta_{13}, \Delta \mathrm{~m}^{2}(\mathrm{~atm})$ [hep-ex/06I 2022]
- And more...

