The θ₁₃ Panorama...

DAPNIA-CEA Saclay

February 2007

Anatael Cabrera Marie Curie Fellow @ Double Chooz APC (IN2P3) - Paris (PhD in MINOS/Oxford) overview:

- v status & MINOS
- Why θ_{13} important?
- θ₁₃-beams exp.
- θ_{13} -reactor exp.
- Complementarity
- Conclusions...

• impact of θ_{13} : "angle of PMNS leptonic mixing matrix"

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments
- experimental panorama limited to next ~5-10 years

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments
- experimental panorama limited to next ~5-10 years
- two experimental approaches: beams and reactors

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments
- experimental panorama limited to next ~5-10 years
- two experimental approaches: beams and reactors
 - more on MINOS [as requested]

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments
- experimental panorama limited to next ~5-10 years
- two experimental approaches: beams and reactors
 - more on MINOS [as requested]
 - OPERA, T2K, NOvA, Double Chooz, Daya Bay, (...)

- impact of θ_{13} : "angle of PMNS leptonic mixing matrix"
- physics related issues: high precision O(1%) experiments
- experimental panorama limited to next ~5-10 years
- two experimental approaches: beams and reactors
 - more on MINOS [as requested]
 - OPERA, T2K, NOvA, Double Chooz, Daya Bay, (...)
- complementarity: all experiment has input into global coherent(!) picture

v oscillations reminder

flavour-vs (interact) while mass-vs (propagate)

- flavour-Vs (interact) while mass-Vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:
 - no lepton-flavour number conservation on SM

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:
 - no lepton-flavour number conservation on SM
 - mixing in lepton sector: PMNS matrix

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:
 - no lepton-flavour number conservation on SM
 - mixing in lepton sector: PMNS matrix
 - prediction: leptonic CP violation (in-built on PMNS)

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:
 - no lepton-flavour number conservation on SM
 - mixing in lepton sector: PMNS matrix
 - prediction: leptonic CP violation (in-built on PMNS)
 - non-degenerate mass spectrum of 3(?) active Vs

- flavour-vs (interact) while mass-vs (propagate)
- "mechanism" causing a non-diagonal free-Hamiltonian
 => explain experimental fact: (dis)appearance
- oscillations dominates experimental evidence to > 0%
- oscillation means:
 - no lepton-flavour number conservation on SM
 - mixing in lepton sector: PMNS matrix
 - prediction: leptonic CP violation (in-built on PMNS)
 - non-degenerate mass spectrum of 3(?) active Vs
 - "mirroring" lepton-quark mixing => beyond SM?

$$(\mathbf{V}_{\mathbf{v}},\mathbf{V}_{\mathbf{u}},\mathbf{V}_{\mathbf{v}})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

leptonic mixing sector

5

Т

$$\mathbf{v}_{e}, \mathbf{v}_{\mu}, \mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3})^{\mathsf{T}}$$

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{$$

$$(\mathbf{v}_{e},\mathbf{v}_{\mu},\mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

$$\begin{array}{c} \text{atmospheric V} \\ \begin{pmatrix} v_{e} \\ \vdots \\ v_{\mu} \\ \div \\ v_{\tau} \\ \end{array} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \\ \end{array} \\ \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \\ \end{pmatrix} \\ \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ \end{array} \\ \begin{pmatrix} v_{1} \\ \vdots \\ v_{2} \\ \cdot \\ v_{3} \\ \end{pmatrix} \\ \hline P(v_{\mu} \rightarrow v_{\mu}) \end{array}$$

$$(\mathbf{v}_{e}, \mathbf{v}_{\mu}, \mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3})^{\mathsf{T}}$$

$$(\mathbf{v}_{e},\mathbf{v}_{\mu},\mathbf{v}_{\tau})^{\mathsf{T}} = \boldsymbol{U} (v_{1},v_{2},v_{3})^{\mathsf{T}}$$

$$(\mathbf{v}_{e},\mathbf{v}_{\mu},\mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

Mass Spectrum...

$$(\mathbf{v}_{e},\mathbf{v}_{\mu},\mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

Mass Spectrum...

v-Osc. sensitive only to Δm^2 's:

 $\Delta m^2(atm)$ $\Delta m^2(solar)$

$$(\mathbf{v}_{e},\mathbf{v}_{\mu},\mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

Mass Spectrum...

v-Osc. sensitive only to Δm^2 's:

 $\Delta m^2(atm)$ $\Delta m^2(solar)$

$$(\mathbf{v}_{e}, \mathbf{v}_{\mu}, \mathbf{v}_{\tau})^{\mathsf{T}} = \mathbf{U} (\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3})^{\mathsf{T}}$$

Mass Spectrum...

v-Osc. sensitive only to Δm^2 's:

 $\Delta m^2(atm)$ $\Delta m^2(solar)$

2v oscillation probability equation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

2v oscillation probability equation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

Disappearance...

2v oscillation probability equation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

Disappearance...

E/L modulation unique feature!

• Earth made of matter (no anti-matter): e-, p+, n

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
 - new effective masses

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
 - new effective masses
 - new effective mixing angles

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
 - new effective masses
 - new effective mixing angles
 - break degeneracy (CPT) between anti-V/V

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
 - new effective masses
 - new effective mixing angles
 - break degeneracy (CPT) between anti- ν/ν
 - modify oscillation equations

- Earth made of matter (no anti-matter): e-, p+, n
- free-Hamiltonian is different for anti-V/V due to interaction with matter by V only (through W)
- i.e. modification of mass spectrum and mixing...
 - new effective masses
 - new effective mixing angles
 - break degeneracy (CPT) between anti-V/V
 - modify oscillation equations
 - explicit "L" dependence (not only E/L)

Believing in V-oscillations?

The most fascinating demonstration so far...

SOLAR (ALL) P=0.3 (N_{obs}/N_{exp}) (matter effects)

KamLAND P=0.6 (N_{obs}/N_{exp}) (vacuum osc.)

Believing in V-oscillations?

The most fascinating demonstration so far...

SOLAR (ALL) P=0.3 (N_{obs}/N_{exp}) (matter effects)

KamLAND P=0.6 (N_{obs}/N_{exp}) (vacuum osc.)

E/L modulation...?

PMNS: large mixing (unlike CKM)...

summary

Schwetz hep-ph/0606060

parameter	$bf \pm 1\sigma$	1σ acc.	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.9 ± 0.3	4%	7.3 - 8.5	7.1 - 8.9
$ \Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	$2.5^{+0.20}_{-0.25}$	10%	2.1 - 3.0	1.9 - 3.2
$\sin^2 heta_{12}$	$0.30^{+0.02}_{-0.03}$	9%	0.26 - 0.36	0.24 - 0.40
$\sin^2 heta_{23}$	$0.50\substack{+0.08\\-0.07}$	16%	0.38 - 0.64	0.34 - 0.68
$\sin^2\theta_{13}$	_	_	≤ 0.025	≤ 0.041

hep-ph/0607088 MINOS@Nu06 MINOS@NOW06

- 736km baseline
- 2 detectors
- magnetised
- beam physics
- cosmic physics
- ~7x10²⁰pot

- 120 GeV protons strike graphite target
- Magnetic horns focus produced pions and kaons, pions and kaons decay into muons and neutrinos
- Target position adjusts to change beam energy
- I0 μs spills as fast as once every 2 seconds
- 2.5 x 10²⁰ POT/year

Far Detector (FD)

Near Detector (ND)

5.4 kton mass, 8×8×30m 484 steel/scintillator planes VA electronics

I kton mass 3.8×4.8×15m 282 steel and 153 scintillator planes Robust QIE electronics

B~I.2T

Multi-pixel (M16,M64) PMTs

GPS time-stamping to synch FD data to ND/Beam

Continuous untriggered readout of whole detector (only during spill for the ND)

Interspersed light injection (LI) for calibration

Software triggering in DAQ PCs (Highly flexible : plane, energy, LI triggers in use)

Spill times from FNAL to FD trigger farm

sampling calorimeter: showers

- sampling calorimeter: showers
- I.3T B_{field}+tracker: µ-spectrometer

- sampling calorimeter: showers
- I.3T B_{field}+tracker: μ-spectrometer
- Light collection & Readout:

- sampling calorimeter: showers
- I.3T B_{field}+tracker: μ-spectrometer
- Light collection & Readout:
 - simple & cheap: many channels!

 ν_{μ}

Design

- sampling calorimeter: showers
 - I.3T B_{field}+tracker: μ-spectrometer
- Light collection & Readout:
 - simple & cheap: many channels!
 - scintillation + wave-shifting fiber

Design

- sampling calorimeter: showers
- I.3T B_{field}+tracker: μ-spectrometer
- Light collection & Readout:
 - simple & cheap: many channels!
 - scintillation + wave-shifting fiber
 - strips form modules (one view)

- sampling calorimeter: showers
- I.3T B_{field}+tracker: μ-spectrometer
- Light collection & Readout:
 - simple & cheap: many channels!
 - scintillation + wave-shifting fiber
 - strips form modules (one view)
 - photons detected by multi-anode PMs with mu-metal shielding (16 or 64 per PM: optimal!)

13

- sampling calorimeter: showers
- 1.3T B_{field}+tracker: µ-spectrometer
- Light collection & Readout:
 - simple & cheap: many channels!
 - scintillation + wave-shifting fiber
 - strips form modules (one view)
 - photons detected by multi-anode PMs with mu-metal shielding (16 or 64 per PM: optimal!)

13

Golden Channel: ∆m²

$$P(\nu_{\alpha} \to \nu_{\beta}) = \frac{1}{\sin^2 2\theta} \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

• high statistics neutrino σ measurements @ ND

- high statistics neutrino σ measurements @ ND
 - MINERvA, etc...

- high statistics neutrino σ measurements @ ND
 MINERvA, etc...
- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$

• high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]

• high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $sin^2(2\theta_{23})$ [statistics very limited]

• high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $sin^2(2\theta_{23})$ [statistics very limited]
- atmospheric neutrinos: [B-field]

high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $sin^2(2\theta_{23})$ [statistics very limited]
- atmospheric neutrinos: [B-field]

• CPT test: measure $\Delta m^2 v / \Delta m^2_{anti-v}$

• high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $sin^2(2\theta_{23})$ [statistics very limited]
- atmospheric neutrinos: [B-field]

• CPT test: measure $\Delta m^2 v / \Delta m^2_{anti-v}$

• cosmic ray: μ+/μ- ratio [B-field]

• high statistics neutrino σ measurements @ ND

• MINERvA, etc...

- improve CHOOZ limit by $\sim 2x$ on $sin^2(2\theta_{13})$
- test sterile admixture through NC disappearance (a la SK) [statistics limited]
- measure $sin^2(2\theta_{23})$ [statistics very limited]
- atmospheric neutrinos: [B-field]

• CPT test: measure $\Delta m^2 \sqrt{\Delta m^2_{anti-v}}$

hep-ex/0701045

• cosmic ray: μ+/μ- ratio [B-field]

$$\nu_{\lambda} + N \xrightarrow{W^{\pm}} \lambda + X : CC Interaction$$

 $\nu_x + N \xrightarrow{Z^o} \nu_x + X : NC Interaction$

Event Topology Monte Carlo

Atmospheric Physics

Oscillations and a CPT test...

hep-ex/0701045

Oscillations and a CPT test....

• Sample of v-induced μ s: 130 up and 10 horizontal

Oscillations and a CPT test...

- Sample of v-induced μ s: 130 up and 10 horizontal
 - use the cosmic veto shield (top and sides)
- Sample of v-induced μ s: 130 up and 10 horizontal
 - use the cosmic veto shield (top and sides)
 - good single track events: vertex within fiducial-V

- Sample of v-induced µs: 130 up and 10 horizontal
 - use the cosmic veto shield (top and sides)
 - good single track events: vertex within fiducial-V
 - good timing $(I/\beta$ distribution)

- Sample of v-induced µs: 130 up and 10 horizontal
 - use the cosmic veto shield (top and sides)
 - good single track events: vertex within fiducial-V
 - good timing $(I/\beta$ distribution)
- $\pm p_{\mu}$ (anti-V/V) measured by curvature (B-field)

- Sample of v-induced µs: 130 up and 10 horizontal
 - use the cosmic veto shield (top and sides)
 - good single track events: vertex within fiducial-V
 - good timing (1/ β distribution)
- $\pm p_{\mu}$ (anti-V/V) measured by curvature (B-field)
- Results...

 $\mathcal{R} = \frac{R_{L/H+U}^{data}}{R_{L/H+U}^{MC}} = 0.65^{+0.15}_{-0.12}(\text{stat}) \pm 0.09(\text{syst})$

 $\hat{\mathcal{R}}_{CPT} = 0.72^{+0.24}_{-0.18} (\text{stat})^{+0.08}_{-0.04} (\text{syst})$

v Energy Distribution

~850 days: 140 vµs

zenithal distribution

hep-ex/0701045

Beam Physics

PID parameter: event interaction selection

• PID parameter: event interaction selection

observed μ-: CC-quasielastic and low-"y"

- PID parameter: event interaction selection
 - observed μ-: CC-quasielastic and low-"y"
 - NC contamination: pattern-ID hard <1.5GeV

• MINOS measurement:

• MINOS measurement:

• relative comparison ND/FD

• MINOS measurement:

• relative comparison ND/FD

• BUT...

- MINOS measurement:
 - relative comparison ND/FD
- BUT...
- Extended ν-source @ π-decay

- MINOS measurement:
 - relative comparison ND/FD
- BUT...
- Extended ν-source @ π-decay
- ND more low E vs (high angle)

- MINOS measurement:
 - relative comparison ND/FD
- BUT...
- Extended ν-source @ π-decay
- ND more low E vs (high angle)
- ND- $vs \neq$ FD-vs!!!

• Beam Matrix:

- Beam Matrix:
 - beam MC

- Beam Matrix:
 - beam MC
 - pion production

- Beam Matrix:
 - beam MC
 - pion production
 - decay kinematics

- Beam Matrix:
 - beam MC
 - pion production
 - decay kinematics
- Detector MC:

- Beam Matrix:
 - beam MC
 - pion production
 - decay kinematics
- Detector MC:
 - acceptances & responses

- Beam Matrix:
 - beam MC
 - pion production
 - decay kinematics
- Detector MC:
 - acceptances & responses
- Predict $V_{ND} => V_{FD}$

- Beam Matrix:
 - beam MC
 - pion production
 - decay kinematics
- Detector MC:

- acceptances & responses
- Predict $V_{ND} => V_{FD}$
- Verify with 3 more methods
 - Fitting ND PDFs
 - More direct extrapolation

MINOS: rate information

Data sample	observed	expected	ratio
ν _µ only (< 30 GeV)	215	336.0 ± 14.4	0.64 ± 0.05
v_{μ} only (< 10 GeV)	122	238.7 ± 10.7	0.51 ± 0.05
ν _µ only (< 5 GeV)	76	168.4 ± 8.8	0.45 ± 0.06

• Energy dependent deficit of events

• 49% deficit below 10 GeV - 6.2σ (stat+sys)

hep-ph/0607088 MINOS@Nu06

Δm^2 Measurement

$$\chi^{2} = \sum_{i=1}^{nbins} \left[2(e_{i} - o_{i}) + 2o_{i} ln(o_{i}/e_{i}) \right] + \sum_{j=1}^{nsys} \Delta s_{j}^{2} / \sigma_{s_{j}}^{2}$$
Penalty terms for
systematic uncertainties

E/L modulation

(also @: K2K, SK and KamLAND)

0.004 ∆m23

MINOS Sensitivity as a function of Integrated POT

looking for θ_{13} ...

• neutrino oscillation, therefore:

• neutrino oscillation, therefore:

• PMNS matrix: θ_{12}, θ_{23} [max?], θ_{13}, δ_{CP}

• neutrino oscillation, therefore:

- PMNS matrix: θ_{12}, θ_{23} [max?], θ_{13}, δ_{CP}
- E/L dependence of the signal: Δm^2_{sol} , Δm^2_{atm}
- neutrino oscillation, therefore:
 - PMNS matrix: θ_{12}, θ_{23} [max?], θ_{13}, δ_{CP}
 - E/L dependence of the signal: Δm^2_{sol} , Δm^2_{atm}
 - $\pm \Delta m^2_{atm} \& \pm \Delta m^2_{sol}$ [matter effects]

• neutrino oscillation, therefore:

- PMNS matrix: θ_{12}, θ_{23} [max?], θ_{13}, δ_{CP}
- E/L dependence of the signal: Δm^2_{sol} , Δm^2_{atm}
- $\pm \Delta m^2_{atm} \& \pm \Delta m^2_{sol}$ [matter effects]

★ MINOS: $\Delta m^2 = 2.7e-3eV^2 \pm 10\%$

• neutrino oscillation, therefore:

- PMNS matrix: θ_{12}, θ_{23} [max?], θ_{13}, δ_{CP}
- E/L dependence of the signal: Δm^2_{sol} , Δm^2_{atm}
- $\pm \Delta m^2_{atm} \& \pm \Delta m^2_{sol}$ [matter effects]

★ MINOS: $\Delta m^2 = 2.7e-3eV^2 \pm 10\%$ ★ $sin^2(2\theta_{13}) < 0.12-0.20$ CHOOZ @ 90%CL

• neutrino oscillation, therefore:

- PMNS matrix: θ_{12} , θ_{23} [max?], θ_{13} , δ_{CP}
- E/L dependence of the signal: Δm^2_{sol} , Δm^2_{atm}

• $\pm \Delta m_{atm}^2 \& \pm \Delta m_{sol}^2$ [matter effects]

★ MINOS: $\Delta m^2 = 2.7e-3eV^2 \pm 10\%$ ★ $sin^2(2\theta_{13}) < 0.12-0.20$ CHOOZ @ 90%CL ★ $sin^2(2\theta_{13}) < 0.12$ Global Analysis @ 90%CL

• θ_{13} >0 necessary to measure dirac- δ_{CP} & $\pm \Delta m^2$ (atm)

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:

• test PMNS unitarity (a la B-physics)

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?

- θ_{13} >0 necessary to measure dirac- δ_{CP} & $\pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?
 - quark-lepton relation?

- θ_{13} >0 necessary to measure dirac- δ_{CP} & $\pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?
 - quark-lepton relation?
- mass hierarchy (also input from dirac-δ_{CP}):

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?
 - quark-lepton relation?
- mass hierarchy (also input from dirac-δ_{CP}):
 - normal: favoured by GUTs

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?
 - quark-lepton relation?
- mass hierarchy (also input from dirac-δ_{CP}):
 - normal: favoured by GUTs
 - inverted: better for $0\nu\beta\beta$ (maybe within reach)

- $\theta_{13} > 0$ necessary to measure dirac- $\delta_{CP} \& \pm \Delta m^2$ (atm)
- high precision leptonic mixing sector:
 - test PMNS unitarity (a la B-physics)
 - physics beyond v-oscillations: decay, LFV,etc...
 - unified flavour symmetry?
 - Lindner@NOW2006
 - quark-lepton relation?
- mass hierarchy (also input from dirac-δ_{CP}):
 - normal: favoured by GUTs
 - inverted: better for $0\nu\beta\beta$ (maybe within reach)

Complementarity

two approaches

• no NC BG or matter effects

• no NC BG or matter effects

• sensitive to θ_{13} Only:

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$

- no NC BG or matter effects
- sensitive to θ_{13} Only:

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$

• beams: appearance => low statistics (<150vs Phase-I)</p>

- no NC BG or matter effects
- sensitive to θ_{13} Only:

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$

• beams: appearance => low statistics (<150vs Phase-I)

• BG: π^{o} production and beam Ve contamination

- no NC BG or matter effects
- sensitive to θ_{13} Only:

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$

- beams: appearance => low statistics (<150vs Phase-I)</p>
 - BG: π^o production and beam Ve contamination
 - correlation: δ_{CP}, θ₁₃, θ₂₃ degeneracy and matter effects*

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta$$

$$\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \sin^{2} \Delta$$

$$+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \cos \Delta \sin \Delta$$

$$+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{123} \Delta^{2}$$

$$\Delta \equiv \Delta m_{21}^{2}$$

$$\Delta \equiv \Delta m_{21}^{2}$$

 $/(4E_{\nu})$

 $/\Delta m^2_{31}$

• appearance

• $p \propto sin^2(2\theta_{13})$ [<10%]

- appearance
- $p \propto \sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)

- appearance
- $p \propto \sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)

- appearance
- p α sin²(2θ₁₃) [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...

- appearance
- $p \propto sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...
 - anti- ν/ν : - π phase

beam sensitivity illustration $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2, \sin^2 2\theta_{13} = 0.05$ $\sin^2 2\theta_{23} = 0.95$ 0.04
0.035
T2K/JParc E=.65 GeV, L=295 km

- appearance
- $p \propto sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...
 - anti-V/V: - Π phase
 - $sin^2(2\theta_{13})$ reactor

- appearance
- $p \propto sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...
 - anti-V/V: - Π phase
 - $sin^2(2\theta_{13})$ reactor

- appearance
- $p \propto sin^2(2\theta_{13})$ [<10%]
 - p α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...
 - anti- ν/ν : - π phase
 - $sin^2(2\theta_{13})$ reactor
- ±∆m2 causes shift with L dependence: eff. mass and mixing

- appearance
- $P \propto sin^2(2\theta_{13})$ [<10%]
 - $p \alpha$ signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: causes modulation of p: use...
 - anti-V/V: - Π phase
 - $sin^2(2\theta_{13})$ reactor
- $\pm \Delta m2$ causes shift with L dependence: eff. mass and mixing

complementarity illustration

beam + reactor experiments combination

hep-ex/0409028

complementarity illustration

beam + reactor experiments combination

hep-ex/0409028
$\frac{\text{Reactor+T2K+NOVA}}{\delta_{CP}=90, \sin^2(2\theta_{13})=0.1 (\text{large}), \Delta m^2>0, \Delta m^2<0 (v \text{ only})}$

 $\frac{\text{Reactor+T2K+NOVA}}{\delta_{CP}=90, \sin^2(2\theta_{13})=0.1 (\text{large}), \Delta m^2>0, \Delta m^2<0 (v \text{ only})}$

Another way to complement...

experiments θ₁₃ (next 5 years)

beam experiments

MINOS & OPERA ("conventional beams")

Conventional Beams (running)

- MINOS: measure Dm2: E/L tuning!
- Statistically limited (full set by 2010)
- If no observation: improved by ~2x the CHOOZ limit
- BG_{OPERA}: DIS & lower E from signal
- BG_{MINOS}: from ND extrapolation
- Off-axis: lower BG

OPERA@NOW06

FDR (ald

θ_{13}	signal	τ→е	ν _μ CC	$v_{\mu}NC$	v _e CC beam
9°	9.3	4.5	1.0	5.2	18
8°	7.4	4.5	1.0	5.2	18
7°	5.8	4.6	1.0	5.2	18
5°	3.0	4.6	1.0	5.2	18
Efficiency	0.31	0.032	0.34x10 ⁻⁴	7.0×10 ⁻⁴	0.082

T2K & NOVA ("off-axis beams")

• Off-axis: narrow band aimed to oscillation maximum

0 mrad

7 mrad 14 mrad

21 mrad

7.5

10

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{ν}

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{ν}

less sensitive to beam modeling

- Off-axis: narrow band aimed to oscillation maximum
- More flux: wide range of E_{π} contribute to narrow E_{ν}

less sensitive to beam modeling

• Less BG: NC HE-tail and V_e intrinsic contamination

JPARC beam + SuperK

Kajita@NOW2006

• 0.6GeV beam (0.75kW): 80% quasi-elastic Vs

- 0.6GeV beam (0.75kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile

- 0.6GeV beam (0.75kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile
- ND (280m off-axis): σ_v factory and normalisation

- 0.6GeV beam (0.75kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile
- ND (280m off-axis): σ_v factory and normalisation
- Middle Detector: match the off-axis spectrum of FD

- 0.6GeV beam (0.75kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile
- ND (280m off-axis): σ_v factory and normalisation
- Middle Detector: match the off-axis spectrum of FD
- SuperKamiokande III (fine resolution: π° taggings)

- 0.6GeV beam (0.75kW): 80% quasi-elastic Vs
- On-axis beam monitoring detectors: beam centre profile
- ND (280m off-axis): σ_v factory and normalisation
- Middle Detector: match the off-axis spectrum of FD
- SuperKamiokande III (fine resolution: π^o taggings)

Magnet

beam

Impressive progress & future...

• $sin^2(2\theta_{13})$ & dirac- δ_{CP} (harder during phase-I)

Physics

- $sin^{2}(2\theta_{23})$ to 1% & Δm^{2} to 1%
- critical input to world neutrino community
- more upon updates (4MW beam & HK)

• $sin^2(2\theta_{13})$ & dirac- δ_{CP} (harder during phase-I)

Physics

🔶 5% syst

📥 20% syst

2013

- $sin^{2}(2\theta_{23})$ to 1% & Δm^{2} to 1%
- critical input to world neutrino community
- more upon updates (4MW beam & HK)

NOvA Detector

• physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$

NOvA Detector

• physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$

• V_e detector: EM showers

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- v_e detector: EM showers
 - tracking too: muons

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- v_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- v_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- v_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- V_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...
 - liquid scintillator

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- V_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...
 - liquid scintillator
 - no B-field

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- V_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...
 - liquid scintillator
 - no B-field
 - photodetection:APD

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- V_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...
 - liquid scintillator
 - no B-field
 - photodetection:APD
- 3m overburden: EM shower

- physics: $\theta_{13} \& (\delta_{CP}, \pm \Delta m^2)$
- V_e detector: EM showers
 - tracking too: muons
- longest baseline: ~810km
- 20-25kT full active volume
 - MINOS-like but...
 - liquid scintillator
 - no B-field
 - photodetection:APD

Sm overburden: EM shower Feldman@wiN05 Howcroft@NuFact06 Kopp@NOW06 48

Physics reach

Physics reach

• Correlation among $\theta_{13}, \delta_{CP}, \pm \Delta m^2 =>$ to disentangle

Physics reach

• Correlation among $\theta_{13}, \delta_{CP}, \pm \Delta m^2 =>$ to disentangle

Correlation among θ₁₃,δ_{CP},±Δm² => to disentangle anti-V/V running helps self-disentangle

Physics reach
Correlation among θ₁₃,δ_{CP},±Δm² => to disentangle
anti-V/V running helps self-disentangle
comparison with T2K and reactors

Measure sin²(2 θ_{23}) to ~1% and $\Delta m^2(atm)$ to ~2%

- April 2006: DOE CD1 review. Recommends approval
- Early 2007: DOE CD2 review
- Oct 2007: DOE CD3 and begin Far Detector building construction.
- Late 2007: completion of an small Integration Prototype at FNAL.
- Oct 2008: First construction of Far Detector Scintillator modules.
- June 2009: Completion of Far Detector building.
- Nov 2010: First 5 kT completed, start of data taking
- Nov 2011: Far Detector completed, 25 kT.

- **April 2006:** DOE CD1 review. Recommends approval
- Early 2007: DOE CD2 review
- **Oct 2007:** DOE CD3 and begin Far Detector building construction.
- Late 2007: completion of an small Integration Prototype at FNAL.
- Oct 2008: First construction of Far Detector Scintillator modules.
- June 2009: Completion of Far Detector building. NuMl upgrade | (700kW): duty cycle better (~2009) Nov 2010: First 5 kT completed, start of data taking
- Nov 2011: Far Detector completed, 25 kT. NuMI upgrade II (1.2MW): higher intensity (~2011)

Reactor Experiments:

Double Chooz Daya Bay RENO

• make flux uncertainty negligible: multi-detector

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"
- reduce & understand backgrounds

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"
- reduce & understand backgrounds
 - overburden & detector design [DC]

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"
- reduce & understand backgrounds
 - overburden & detector design [DC]
- reduce & understand experimental systematics

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"
- reduce & understand backgrounds
 - overburden & detector design [DC]
- reduce & understand experimental systematics
 - inter-detector normalisation: <0.6%

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - although few reactors may be nice: "reactor off"
- reduce & understand backgrounds
 - overburden & detector design [DC]
- reduce & understand experimental systematics
 - inter-detector normalisation: <0.6%
 - inter-detector energy calibration: <1%

"White Paper": hep-ex/040204

v-target: Volume for v-interaction (0.1% Gd)

-target: Volume for v-interaction (0.1% Gd)

γ-catcher: Extra-volume for v-interaction

v-target: Volume for v-interaction (0.1% Gd)

γ-catcher: Extra-volume for ν-interaction

Acrylic vessels and «hardware» definition of fiducial volume

v-target: Volume for v-interaction (0.1% Gd)

γ-catcher: Extra-volume for ν-interaction

Acrylic vessels and «hardware» definition of fiducial volume

Non-scintillating buffer: oil no scintillator to isolate PMs from target area

v-target: Volume for v-interaction (0.1% Gd)

γ-catcher: Extra-volume for v-interaction

Acrylic vessels and «hardware» definition of fiducial volume

-Non-scintillating buffer: oil no scintillator to isolate PMs from target area

-Muon Inner-VETO: Traversing muon and fast-n tagging (by proton recoil)

v-target: Volume for v-interaction (0.1% Gd)

γ-catcher: Extra-volume for v-interaction

Acrylic vessels and «hardware» definition of fiducial volume

-Non-scintillating buffer: oil no scintillator to isolate PMs from target area

-Muon Inner-VETO: Traversing muon and Inert Shielding: Reduce rock radioactivity from

What to remember?
beams + reactors = deeper insight

Competitive & overlapping coverage by both techniques!

Similar time scale

• Angra (reactor): θ_{13} [hep-ex/0511059]

- Angra (reactor): θ_{13} [hep-ex/0511059]
- KASKA (reactor): θ_{13} , θ_{12} , Δm^2 (atm) [hep-ex/0607013]

- Angra (reactor): θ_{13} [hep-ex/0511059]
- KASKA (reactor): θ_{13} , θ_{12} , Δm^2 (atm) [hep-ex/0607013]
- β -beam (beam): θ_{13} , Δm^2 (atm) [hep-ph/0605033]

- Angra (reactor): θ_{13} [hep-ex/0511059]
- KASKA (reactor): θ_{13} , θ_{12} , Δm^2 (atm) [hep-ex/0607013]
- β-beam (beam): θ₁₃, Δm²(atm) [hep-ph/0605033]
- NuFact (beam): θ_{13} , Δm^2 (atm) [hep-ph/0210192]

- Angra (reactor): θ_{13} [hep-ex/0511059]
- KASKA (reactor): θ_{13} , θ_{12} , Δm^2 (atm) [hep-ex/0607013]
- β -beam (beam): θ_{13} , Δm^2 (atm) [hep-ph/0605033]
- NuFact (beam): θ_{13} , Δm^2 (atm) [hep-ph/0210192]
- Hanohano (reactor): θ_{13} , Δm^2 (atm) [hep-ex/0612022]

- Angra (reactor): θ_{13} [hep-ex/0511059]
- KASKA (reactor): θ_{13} , θ_{12} , Δm^2 (atm) [hep-ex/0607013]
- β -beam (beam): θ_{13} , Δm^2 (atm) [hep-ph/0605033]
- NuFact (beam): θ_{13} , Δm^2 (atm) [hep-ph/0210192]
- Hanohano (reactor): θ_{13} , Δm^2 (atm) [hep-ex/0612022]
- And more...