

dapnia

Heat transfer through Nb₃Sn electrical insulation

Jaroslaw Polinski, Bertrand Baudouy

CEA/DAPNIA/SACM

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

cecility saclay

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

- Operation of the SC accelerators is connected with energy deposition in SC cables due beam losses
 - Current (NbTi) LHC e ≈ 0.4 0.6 W/m, 10 15mW/cm³
 - Future (Nb₃Sn) LHC $e \approx 2 3$ W/m, 50 80mW/cm³
 - Max temperature margin of the SC cable \approx 1.4K

Kapton insulation sample

saclay

5 dummy stainless steal conductors stack17 Tons on the samples as specifiedCentral conductor heated

1	đ	ik	T
	44	1919	aJ.

1st layer: Kapton 200 HN (50 μ m x 11 mm) in 2 wrappings (no overlap) 2nd layer: Kapton 270 LCI (71 μ m x 11 mm) with a 2 mm gap Thermally treatment at 170°C for polymerisation

Kapton insulation results

saclay

- Operation of the SC accelerators is connected with energy deposition in SC cables due beam losses
 - Current (NbTi) LHC e ≈ 0.4 0.6 W/m, 10 15mW/cm³
 - Future (Nb₃Sn) LHC $e \approx 2 3$ W/m, 50 80mW/cm³
 - Max temperature of the SC cable \approx 1.4K
- Nb₃Sn technology need the thermal treatment over 600°C
 - Polyimide (Kapton) insulation operation temperature > 400°C

NEW GENERATION MAGNETS CALL FOR NEW MATERIALS FOR SC CABLES ELECTRICAL INSULATIONS

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

(E

saclay

Insulation material

- Mineral fibre tape vacuum impregnated with epoxy resin
- Treated for 50 hours at 666°C at 10 MPa

Single cable and sack of cables with ceramic insulation – photo F. Rondeaux

Dummy conductors (KEK)

Material: CuNi

saclay

- Dimensions: 1.9mm x 11mm x 150mm (T x W x L)
- Conductor fabricated in real cable technology
- CERNOX temp. sensors placed in the quarter of the length and in axis of the conductor

œ

saclay

Test condition

- 10 MPa on the samples as specified
- Temperature of the bath Tb= 1.8K, 1.9K and 2.0K
- All conductors heated
- Supplied current range: 0 10 Amps
- Dissipated heat range: 0 ≈42 mW/cm³
- Temperature measured on the central conductor

KEK sample

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

CEC saclay

ø 80 Pressurised superfluid T_b• helium bath Insulation material **Compressing flange** sample Sample holder flange Scotch-Weld DP190 Epoxy seal V///// Support flange T_i^{\bullet} Support blind flange Feeding tube (Capillary) **AB** Temperature Inner helium volume Heater Sensor

Construction of the drum test support

Sample holder flange

Support flange

œ

saclay

Drum setup

- Theoretical Background of the Method (1/2)

$$\frac{Q_s}{A} = \begin{cases} h_K (T_i^n - T_1^n) \\ \frac{\lambda}{l} (T_1 - T_2) \\ h_k (T_2^n - T_b^n) \end{cases} = \frac{1}{R_s} (T_i - T_b) = \frac{1}{R_s} T\Delta$$

- A Active area of the heat transfer
- h_k Kapitza heat transfer coefficient
- λ Thermal conductivity of the material
- l material thickness
- $R_{\rm s}$ overall thermal resistance of the sample
- T_i temperature of the heated volume
- T_1 temperature of the sample surfaces from the heated volume side
- T_2 temperature of the sample surfaces from the constant T bath
- T_b temperature of the constant T bath

Drum setup

saclay

- Theoretical Background of the Method (2/2)

Since $\Delta T >> T_b$ it can be assumed that:

$$h_{K}\left(T_{i}^{n}-T_{1}^{n}\right)\approx n\cdot h_{K}\cdot T_{i}^{n-1}\left(T_{i}-T_{1}\right)$$
$$h_{K}\left(T_{2}^{n}-T_{b}^{n}\right)\approx n\cdot h_{K}\cdot T_{b}^{n-1}\left(T_{2}-T_{b}\right)$$

And finally overall thermal resistance of the sample:

$$R_{s} = \frac{A\Delta T}{Q_{s}} = \frac{1}{n \cdot h_{K} \cdot T_{i}^{n-1}} + \frac{l}{\lambda} + \frac{1}{n \cdot h_{K} \cdot T_{b}^{n-1}} \approx \frac{2}{n \cdot h_{K} \cdot T_{b}^{n-1}} + \frac{l}{\lambda} \approx \frac{2}{R_{K}} + \frac{l}{\lambda}$$

saclay

RAL insulation material - fiberglass tape and epoxy resin

Tested sheets

saclay

Study of sheets surface area and thickness

saclay

Tests conditions

- 4 sheets with different thicknesses
- 7 different temperatures of the bath from range: 1.55 K 2.05 K
- Temperature of the inner volume: $Tb T\lambda$
- Heat dissipated in inner volume: 0 0.8 W
- Range of ΔT accounted in computation process: 10 30 mK

 $\frac{2}{2}$

saclay

Test results and computation process, example for *l*=0.039 mm

Evolution of the temperature difference across the sample with heat flux as a function of the bath temperature.

œ

saclay

Computation process

œ

Thermal conductivity, comparison with other materials

saclay

saclay

Kapitza Resistance

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

dapnia Technical solution investigation

cecility saclay Thermal blockades of the one side of the conductors stack

0.9 mm

G10 interlayer spacer

dapnia Technical solution investigation

Test results

saclay

- Motivations of the investigations
- Ceramic (innovative) insulation stack method
- RAL conventional insulation drum method
- Technical solution study
- Conclusions

saclay

- For Nb₃Sn technology magnets beam losses heat generation in cables would be about 5 times higher then for NbTi technology
- Temperature margin as 2.2 K is expected when the LHC convectional electrical insulation is used to Nb₃Sn cables
- Innovative ceramic insulation seems to be very good solution for future Nb₃Sn magnets
- Thermal conductivity of the RAL insulation material is 5 times lower and Kapitza resistance is 4 times lower then for Kapton – RAL material can be considered as new conventional insulation
- Yoke of magnet can strongly restrict heat transport from cables. Application of the G10 interlayer spacers improve heat transfer process.

dapnia

Thank you for your attention