

Update on J-PARC Project

Nobuhiro KIMURA Cryogenic Science Center/KEK

1

(Nobuhiro KMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

KEK

Y. AJIMA, O. ARAOKA, Y. FUJII, N. HIGASHI, A. ICHIKAWA, M. IIDA, K. KASAMI, T. KOBAYASHI, Y. MAKIDA, T. NAKAMOTO, T. OGITSU, H. OHHATA, T. OKAMURA, K. SASAKI, S. SUGAWARA, K. TANAKA, A. TERASHIMA, T. TOMARU, and A. YAMAMOTO

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

(Nobuhiro KIMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

- 2001FY
 - Design of Neutrino beam line project (T2K) was started with
 - 10 FODO = 40 Superconducting(SC) Magnets
- 2002FY
 - <u>Superconducting Combined Function Magnets system</u>, which consists of 14 doublet: 28 SCFM, was proposed as bending magnet system.
- 2003FY
 - SCFM was approved by internal review in KEK
 - The first production of prototype magnet was started in-house at the KEK
- 2004FY
 - Civil construction work of Neutrino beam line was started at Tokai
 - A prototype magnet was completed and tested in KEK
 - Design of cryostat and cooling system were started
 - Production of the magnets and cryostats were started at Mitsubishi Electric
- 2006FY
 - Continuing magnet production and cryostats
- 2007FY
 - Continuing magnet production and cryostats and started installation work in the tunnel
 - Production of the Transfer line was started
- 2008FY
 - Installation work should be completed and started commissioning on end of 2008.

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

Superconducting Combined Function Magnet

cification				4.106 - 4.3
				3.865 - 4.1
	en e	2+3 B	locks,	3.623 - 3.8
		41 tur	ms 🗧	3.140 - 3.3
	ter a ser a se			2.898 - 3.1
	Polo			2.657 - 2.8
	TOIC			2.415 - 2.0
		The second second		1.932 - 2.1
		111111111		1.691 - 1.9
			e e e e e e	1.449 - 1.0
				0.966 - 1.2
			· · · · · ·	0.724 - 0.9
				0.483 - 0.7
				0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m	nm	Op. Current:	7345 A	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length:	nm 3300 mm	Op. Current: Op. Margin:	7345 A 72%	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length: Mech. Length:	nm 3300 mm 3630 mm @RT	Op. Current: Op. Margin: Inductance:	7345 A 72% 14.3 mH	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length: Mech. Length: Tmax:	nm 3300 mm 3630 mm @RT < 5.0K	Op. Current: Op. Margin: Inductance: Stored Energy:	7345 A 72% 14.3 mH 386 kJ	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length: Mech. Length: Tmax:	nm 3300 mm 3630 mm @RT < 5.0K (Supercritical Helium)	Op. Current: Op. Margin: Inductance: Stored Energy: # of Magnet:	7345 A 72% 14.3 mH 386 kJ 28	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length: Mech. Length: Tmax: Dipole Field:	nm 3300 mm 3630 mm @RT < 5.0K (Supercritical Helium) 2.59 T	Op. Current: Op. Margin: Inductance: Stored Energy: # of Magnet: SC Cable:	7345 A 72% 14.3 mH 386 kJ 28 NbTi/Cu f	0.483 - 0.7 0.241 - 0.4 0 0.2
Coil ID.: 173.4m Mag. Length: Mech. Length: Tmax: Dipole Field: Quad. Field:	nm 3300 mm 3630 mm @RT < 5.0K (Supercritical Helium) 2.59 T 18.6 T/m	Op. Current: Op. Margin: Inductance: Stored Energy: # of Magnet: SC Cable:	7345 A 72% 14.3 mH 386 kJ 28 NbTi/Cu f Dipole Ou	0.483 - 0.7 0.241 - 0.4 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2

Structure design of the Cryostat for SCFM

(Nobuhiro KMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

(Nobuhiro KIMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

Cross section of the Transfer Line

Transfer Line with SC bus-bar

(Nobuhiro KMURA The 2nd Saclay-KEK cooperation program workshop – 28/March/2008)

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

- In our project plan, thirty two SCFMs products for T2K.
- All of the SCFMs are testd using with holyzontal cryostat in KEK.
- In this time, twenty eight SCFMs have finished performance test without serious troubles.
- These magnets install in the tunnel with cryostats.
- Left four SCFMs will be done performance test until mid of 2008.
- These four SCFMs will use as reserve magnet.

Status on Dublet Cryostat

Twelve cryostats are completed, and installed in the tunnel. Left two cryostats and two reserved cryostats are now under production at Mitsubishi Electric Co..

Status of Transfer Line

Production of Transfer line was started on end of 2007

First of four units of transfer line These units will be installed in the tunnel on this July.

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

Status on Doublet Cryostat (1)

On 8th Feb. 2008, installation work of the doublet cryostats were started I n the tunnel at Tokai. The above photograph shows the cryostat into the tunnel by crane. Left three photographs show the first cryostat in the tunnel.

Status on Doublet Cryostat (2)

Doublet cryostats in the tunnel. eleven doublet cryostats (11/14) were set on the beam line. The cryostats were tighten by bolts.

Status on Quench Valve Cryostat

Four Quench Valve inter-connect cryostats were transferred in to the tunnel Three Quench Valve inter-connect cryostats were set on right position in the system.

Status on other component

Quench pressure relief lines were installed in the tunnel. The lines will be connected with quench relief valve cryostat and stack.

- Introduction
- System overview and Design of the Cryogenics
- Status on cryostat components
- Recent status on installation work in the tunnel
- Summary

- Twenty eight SCFMs have finished performance test without serious troubles.
- Twelve doublet cryostats have been completed, and installed in the tunnel.
- Left two doublet cryostats and two reserved cryostats are now under production at Mitsubishi Electric Co..
- Three quench relief valve cryostats and two corrector magnet cryostats have installed in the tunnel.
- First of four units of transfer line were delivered for KEK. These units will be installed in the tunnel on this July.
- A cold box manufactured by LINDE and components such as a Helium compressor will be delivered Tokai at mid of May 2008.

The beam is distributed uniformly rectangular area. dX=1cm,dY=2cm

-	Beam shield	Beam tube
Material	Copper	Stainless
Radius (mm)	~74	76~84
Thickness(mm)	0, 4, 8, 10	8

- - \dots π
 - 130mm

•

-π
 - •
- -

iro KMURA The 2nd Saclay-KEK cooperation program workshop – 28/March/2008)

•

- -
- -
- - -
- - -

- - - •
 - •

Radiation to Cold Diode

- Influence of Neutron to Cold Diode
 - Intensively studied at CERN by D. Hagedorn
 - Change Forward Voltage
 - Using LHC Arc Quad Assembly
 - 7.5kA Operation
 - Limit; 2• 10¹⁴ n/cm²

Courtesy D.Hagdors

- •
- •

Strict analytical model

Summary of Load (Magnet & Transfer Lines) to Cryogenic System

	4.5 K Level	Remarks	80 K Level	Remarks
Coolant	SHe	4.5 K□0.4 MPa	He Gas	60□100 K, 1.2 MPa
Heat Load Estimation	336 W	Including beam loss of 150 W transfer line of 55 W	1419 W	Including transfer line of 440 W
Current Lead	1.0 g/s	8000A	-	
+ 20 % Contingency	403 W + 1.1 g/s		1703 W	
Cold Mass	204 ton	Iron basis	6.8 ton 2.5 ton	Aluminum basis Iron basis
+ 10 % Contingency	225 ton	Iron basis	7.5 ton 2.8 ton	Aluminum basis Iron basis
Inventory	3550 l		1620 l	
+ 10 % Contingency	3900 l		1780 l	
Pressure Drop	84 kPa	300 g/sec, 4.5 K, 0.4 MPaAbs	36 kPa	40 g/sec, 80 K, 1.35 MPa
Design Pressure	>1.4 MPa(G)		>1.4 MPa(G)	

(Nobuhiro KMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

Operation – Magnet Excitation (Steady state)

Schedule

	2005	2006	2007	2008
Cryostat w/ 2- SCFMs	1 (proto)	6 (12 Mag.)	6 (12 Mag.)	2 & Install
Transfer Line				Install
Refrig.				Install
PS				Install
Corrector Magnet				Install
Quench Detector				Install

Summary of Organic Materials in Magnet and Radiation Resistance

New Elastomer Seal for the Cryostat

New EPDM type Elastomer seal were developed with collaboration of KEK, JAEA and Hayakawa Rubber Co..

New Elastomer seal have been tested up to Dose=9.1 MGy with γ ray source.

It is confirmed that new EPDM type elastomer seal can be used up to Dose=1.2 MGy.

Layout of Cryogenic Components

Quench Release Analysis

OKAMURA Takahiro takahiro.okamura@kek.jp

Contents

- **0.** Motivation of this work
- **1.** Conceptual diagram of quench release
- 2. Analytical model & Method
- 3. Highlight numerical result
- 4. Summary

59

Allowable pressure of SC magnet system: 2.0 MPa

1-Dimensional Heat Transfer Model

(Nobuhiro KIMURA The 2nd Saclay-KEK cooperation program workshop – 28/March/2008)

<u>Highlight Result</u>

buffer tank.

Simulation Method

E.Q.: NSE+Equation of State •

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0\\ \frac{\partial}{\partial t} (\rho \boldsymbol{v}) + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) &= -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{g}\\ \frac{\partial}{\partial t} (\rho e) + \nabla \cdot (\rho e \boldsymbol{v}) &= -\nabla \cdot \boldsymbol{q} - p(\nabla \cdot \boldsymbol{v}) + \boldsymbol{\tau} : \nabla \boldsymbol{v}\\ de &= \left(\frac{1}{\varphi \rho}\right) dp - \left(\frac{c^2}{\varphi \rho} - \frac{p}{\rho^2}\right) d\rho\end{aligned}$$

where
$$\tau =$$

1

$$\left\{ \boldsymbol{\tau} = \mu \left\{ \nabla \boldsymbol{v} + \left(\nabla \boldsymbol{v} \right)^T \right\} - \frac{2}{3} \mu \left(\nabla \cdot \boldsymbol{v} \right) \boldsymbol{I}$$

- $\boldsymbol{q} = -\lambda \nabla T$ Method: FVM+P
- **Coordinate: BFC**

7. Simulation Results at 4/4 Magnets Quench

Required Cooling Capacity

SHe Flow Rate	max 300 g/s
SHe Condition	0.4 MPa(A), 4.5 K
SHe Return	4.9 K
Thermal Load to SHe Flow	410 W
Pressure Head of SHe	85 kPa
Current Lead cooling gas	1.1 g/s (1 pair)
Shield Temperature	60□100 K
Shield Cooling	Cold Helium Gas
Thermal Load to Shield Line	1710 W
Shield Cooling Gas Condition	Not specified
LN2 usage	Only Pre-cooling and re-cooling after quench
Pre-cooling duration	< 20 days
Re-cooing duration	<6 hours (30GeV
	operation)

(Nobuhiro KMURA The 2nd Saclay-KEK cooperation program workshop – 28/March/2008)

Expected Operational Flow Rate : 300 g/s □ Pump Load : < 300 W Mag. Temp. : ~ 4.8 K

Mass-flow rate is controlled to be 300 g/s at the maximum.

Example 7 Required Refrigeration Capacity – Design by Contractor

		Thermal Load @4.5 K Level	Thermal Load @shield Level
KEK Requirement	Magnet & Transfer Line	410 W + 1.1 g/s	1710 W
	SHe Flow conditions	Max 300 g/s, 4.5 K, 0.4 MPa Pressure Head 85 kPa	
Contractor Design	SHe Pump Load	330 W	
	Sub-cooler, Transfer Line b/w CB	150 W	250 W
	Required Refrigeration	890 W + 1.1 g/s → 1.0 kW	$\begin{array}{c} 1960 \text{ W} \\ \rightarrow 2 \text{ kW} \end{array}$
	+ 20 % Margin	1.2 kW	2.4 kW

Taiyo-Nissan Co. in the business collaboration with LINDE won the bid.

Conceptual Flow Diagram

⁽Nobuhiro KIMURA The 2nd Saclay-KEK cooperation program workshop - 28/March/2008)

- A new Implicit Continuous-fluid Eulerian code for SHe venting simulation has been developed
 by means of 1 & 2 Dimensional Heat transfer model.
- Maximum Pressure is about 1.8 MPa and lower than allowable pressure of the magnet under the present relief valve and emergent exhaustion line design conditions.

