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Nucleon-nucleus potentials: `impossible’ but true

Back in the nuclear stone age….

Fermi’s resonances, Bohr’s liquid drop --- everyone `knew’ that a nuclear shell 
model (or the extension to the unbound case) is `impossible’.  Single particle 
model phenomenology was abandoned in the 1930s.

But the shell model IS possible, and a single-particle potential model of neutron 
scattering is possible IF (at low energies) you study average cross sections. 
The relative motion of two nucleons in a nucleus is essentially that of free 
particles --- until they are much closer than the average separation of nucleons 
in nuclear matter.

How is this possible?  The key (Brueckner, Bethe, Weisskopf) is the Pauli 
exclusion principle… this is behind the shell-model, nuclear matter and …the 
complex nuclear `optical model’ potential.

By 1960, there was consistent picture involving the same non-local (for exchange) 
potential for the shell model (bound nucleons) and the optical model (nucleons 
in the continuum). This conceptually important encouraged a `nuclear matter’
approach to the optical model potential.

.Now in the present age: what are the limits to a single particle potential? 

.



Non-locality of the nucleon-nucleus potential.

Knock-on exchange (just the Fock term of Hartree Fock) makes the 
nucleon OMP non-local.

Nonlocal potential requires integro-differential equation with

Note that the non-local potential has a local equivalent (LEP)…. But 
it is strictly an exact equivalent for elastic scattering only… The 
Perey effect implies that uncorrected local equivalent potentials 
are not strictly appropriate for applications. 

Most of the energy dependence of the (local) proton OMP arises 
from the fact that the local equivalent of a non-local potential 
(which is mostly due to knock-on exchange) is energy 
dependent.

There are various formal ways of calculating the LEP, but inversion 
is a practical one (see later).



Folding models (local version!)

Behind calculations of the OMP lies the folding model (FM) 
in its various variants and developments. The key 
equation depends on the nuclear density       which is 
the nuclear density at point       in the nucleus. (We 
ignore spin, isospin etc here). The (local) potential at r is 
then

More modern forms include a specific density dependence 
based on nuclear matter considerations:

A local representation of exchange is usually included, but 
depends on local nucleon energy: don’t renormalize.



Optical potentials for composite projectiles

In the `iron age’, a potential model for composite nuclei seemed 
even more implausible than for nucleons, but by the later 
1950s successful phenomenological OMPs for 2H, 4He, 
modelled on local nucleon OMPs, had been found. The 
ambiguities were more serious, related to lesser penetration.

Later, nucleon folding models (FMs) were generalized either by:

1. Folding the nucleon-target (or cluster-target) interactions over 
the density of the projectile (e.g. Watanabe), or,

2. Folding a nucleon-nucleon (N-N) interaction over both 
densities.

Almost invariably, FMs involve approximations:  local density LDA, 
local representation of exchange. (The range of the exchange 
non-locality goes like 1/Aproj. But exchange non-locality is not 
the only kind of non-locality).

The density dependence of the N-N interaction has been included 
more recently, often based on nuclear matter theory. 



Limitations of folding model; (nucleons or composite)

1. Almost always, nothing characteristic of a nucleus except the 
nuclear density (or proton and neutron densities) is included. 
Usually, not included are:

2. the density gradients (LDA), 

3. the nuclear collectivity,  

4. the possibility of `virtual’ coupling processes, including 
projectile excitations.

5. the nature of the specific outer shell orbitals…

The collectivity effect was recognized a long time ago!

[Note: I am concerned with energies below those for which impulse 
approximation, KMT etc are appropriate.]



A bit more history

� 1962-1963, Buck notes effect of channel coupling on elastic 
scattering; Perey finds term depending upon β2 in real and 
imaginary parts; Perey-Buck find departures from OMP 
systematics at the deformed rare earth transition near A=150.

� 1967, Glendenning et al find single potential valid across the 
shape transition as long as rotational coupling is included; 
Feshbach invoked, but new part has not yet a name.

� 1971, Study of `collective contributions to OMP’: refit elastic 
scattering angular distribution with OM code. Surface V.

� 1973, CRC calculations to determine contributions of pickup 
(deuteron) channels on proton scattering.

Is there a better way to find the contributions due to specific coupled 
channels? 



The dynamic polarization potential, DPP

Feshbach theory (Ann Phys 5, 357 (1958), also 1962) 
suggests a separation of the OMP into two terms, 

VOMP = VFM + VDPP 
and the question is: how can we determine the second 
term? This, the DPP, contains the effect of ALL coupled
channels.

In Feshbach formalism, the second term involves a very
complicated Green’s function involving all possible 
couplings between open (and closed) channels. 

But do we want the effect of all coupled channels? We set 
aside serious conceptual problem and consider
contribution of specific channels.



One approach: Green’s functions

Evaluate the DPP due to specific channels (or even OMP) using 

Feshbach formalism, e.g. Coulter and Satchler in 1977. 
Problems:

1. It is easy --- if you neglect channel-channel coupling (i.e. 
include `up-down’ coupling only) but much harder if you include 
all couplings, or exchange. 

2. You get a non-local and L-dependent potential. Note that this is 
independent of exchange non-locality.

3. Do the inelastic channels fit the data? 

There is a way to get the local equivalent potential directly:- apply 
S-matrix-to-potential inversion to the elastic channel S-matrix 
from the full coupled (reaction) channel calculation.  But, why 
bother?



Why bother?

There are now well-developed folding models (FMs)… but:

1. FMs generally involve local density approximation (LDA) and 
do not fully account for surface gradients…. They cannot 
accommodate L-dependence, for example.

2. FMs only give average properties. For example, FMs can not 
explain Perey’s deformation dependence of the OMP, nor can 
they describe effects of specific unfilled shells.

3. We expect (and find) coupling effects to be large in the surface
and NOT represented by renormalizing the FM. (Surely if a 
consistent FM potential requires renormalization, it has failed?)

4. Very interesting effects are found with exotic nuclei (e.g. 6He) 
that are  outside the scope of FMs.

In short: other properties of nucleus determine the OMP besides the 
nuclear density.



Conceptual problem with calculated DPP

� In the background, we have:

� Problem: VFM is not based on bare NN interaction – the effective 
interaction involves many excitations…. And so does  (much of) 
VDPP…. and they are not orthogonal (Breakup and maybe 
stripping DPPs are OK ?) 

� Possible solution for future? develop a potential model that is 
analogous to the Strutinsky model --- smooth trend described by 
FM, plus `shell corrections’ representing the features that depend 
on departures from smoothly varying properties, and also from 
the validity of LDA.

� Glendenning et al in 1968 conceptually separated specific 
channels that depend on particular nuclei from the high-lying 
channels that can be assumed to vary smoothly. See also PR 
C67, 034607 (2003) for formal expression of DPP.

DPPFM VVV +=



Three important aspects of DPPs

1. Describing the departure from average FM properties 
of nucleon and OMPs and heavy ion OMPs (`shell 
corrections’); extrapolation from beta stability; 
differences between global potentials and potentials 
that accurately fit elastic scattering for specific nuclei. 

2. Breakup and transfer DPPs for loosely bound nuclei 
and cluster nuclei. 

3. Threshold effects (related by dispersion relations).

This list is not exhaustive and the categories have 
overlaps.  There have been particularly successful 
calculations for cases 2 and 3. 



The (psychological) importance of threshold effects.

Threshold effects are helpful since coupled reaction

channel, CRC, effects have inescapable consequences.

Coupled reaction channels have substantial effects on 

elastic scattering well above threshold, but, since they

are not easily reconciled with conventional models, 

those who do not wish to be convinced of their

importance have not been convinced.

But the CRC theory is the same, and has been verified by 

the threshold phenomena!



How to calculate the local DPP.

1. Perform as complicated and realistic a reaction 

calculation (e.g. CRC, CDCC or better) as you can 

manage. It will involve a ‘bare’ potential corresponding 

to FM.

2. ‘Invert’ the elastic channel S-matrix from the elaborate 

(e.g. CRC) calculation to get the local potential V that 

gives the same S-matrix.

3. Then the DPP due to (e.g. CRC) is:- VDPP = V -Vbare

This is much better than finding V by fitting the elastic 

cross section from a CRC calculation.



Paradigm case: breakup of 6Li

1. Case of  6Li was exception to the successful M3Y folding model 
applied by Satchler and Love…. The real part had to be 
renormalized by factor of ~0.6  

2. One can get a good fit to elastic scattering data by including 
projectile breakup (using adiabatic model, later CDCC) .

3. Story completed by `inverting’ the elastic S-matrix from 
calculations that included coupling … yields potential showing 
appropriate repulsion in surface.

4. But inversion revealed more: a generic pattern of surface 
repulsion and interior attraction that applied also to breakup of 
deuterons. 

5. There are also many other applications of inversion besides 
determining DPPs.

6. So what does it mean -- `inverting’ the elastic S-matrix-- ?



Inversion… What is it?

�Case 1 inversion is now routinely possible, 

�Case 2 and Case 3 inversion can present formidable difficulties,

although R-matrix fits solve Case 2 in restricted cases, and optical model 

searches apply to Case 3 for many years. 

�We mostly discuss Case 1 inversion, but also Case 3.

ReviewReview: V.I. : V.I. KukulinKukulin and R.S. Mackintosh, J. Phys.and R.S. Mackintosh, J. Phys. G: G: NuclNucl. Part .Phys. 30, R1 (2004). Part .Phys. 30, R1 (2004)

�� Case 2Case 2

�� Case 1Case 1

�� Case 3Case 3

Sl  →σ (θ )forward                             TRIVIALforward                             TRIVIAL

Sl →V(r)inversion                           MUCH HARDERinversion                           MUCH HARDER

σ (θ )→ Slinversion                           OFTEN VERY HARDinversion                           OFTEN VERY HARD

σ (θ )→V(r)inversion                               VERY HARDinversion                               VERY HARD

V(r) → Slforward                              EASYforward                              EASY

forward                                   EASYforward                                   EASY)()( θσ→ rV



Classes of Sl→ V(r) inversion

Formal inversion methods apply to two classes:Formal inversion methods apply to two classes:

� Fixed-l inversion.

a single l for all energies Sl→ V(r), local potential.

� Fixed energy inversion.

for all l at a single energy Sl→ V(r), local potential.

The problem in each case is the all.



Formal inversion methods

� Fixed l :- Gel’fand-Levitan, Marchenko

� Fixed E :- Newton Sabatier, NS, and related methods due to 
Lipperheide, Fiedeldey etc

Disadvantages of traditional methods (e.g. NS):

1. Require highly precise Sl, tendency to instability (NS method).

2. Fixed-l requires large energy ranges, but nuclear potentials are 
energy-dependent (has been used for N-N). 

3. Not adaptable to cases with small ranges of l (NS).

4. Mostly applied to spin 0; NS can handle spin 1/2. 

5. Cannot easily be generalized.

Practical versions of NS can handle finite range of l and a number 
of applications have yielded real physical insights.



Inversion based on wave function.

Various kinds of `Trivial Equivalent Local Potential’, TELP, have 

been found useful. These are based on the wave function rather 

than S-matrix. Some weighting procedure is required.

In some, but not all, cases they give similar results to S-matrix 

equivalent potentials. Full and detailed comparisons over a range 

of cases have not yet been made. Not guaranteed to give same 

fit to cross section.

Raises interesting question concerning the meaning of potential 

models.

Obvious limitation: In many cases, there are no wave functions 

available.



Other methods of S-to-V inversion

1. Semi-classical methods based on WKB and Glauber

(eikonal) methods. (Not an exhaustive list.)

2. The iterative-perturbative, IP, method. 

All inversions described here are applications of IP 

inversion.



Key  idea: the response of the elastic scattering S-matrix to small changes is assumed to 

be linear (often surprisingly accurate):
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V (r)→ ˆ V (r) = V(r)+ ci∑ vi(r)

where ul(r) is normalized with ul(r) → (Il(r) - Sl(r)Ol(r)), where Il(r) and Ol(r),

are incoming and outgoing Coulomb wave functions.

Take a known `starting potential' V(r) giving Sl. With added term:

it gives Sl + ∆Sl. Functions vi(r) belong to a suitable `inversion basis’.

IP inversion: underlying principles, 1. 



IP inversion: underlying principles, 2. 

Solve linear equations with                                     to find amplitudes 

ci such that     gives Sl closer to Sl
target. Use SVD to solve these over-determined 

linear equations. By iterating, Sl+ ∆Sl converges to Sl target .

In many applications there is a natural starting potential, SRP; it can often

be a zero potential. (Apply diverse bases and SRPs to establish uniqueness of 

results.)

The quality of the inversion is quantified using The quality of the inversion is quantified using σσinvinv defined bydefined by
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IP inversion can be generalized indefinitely 

i. Fixed-energy inversion. Sl, ‘all l’, one E. (Problem: at low energies the  potential 
is under-determined - too few partial waves to define potential.)

ii. Mixed case (energy bite) inversion. Problem of under-determination  can often 
be solved given Sl(E) over a range of energies (‘energy bite’).

Some l, some E, Sl(E) → V(r)

For a narrow energy bite, this effectively includes dSl /dE as input information.

iii. Energy dependent inversion. The potential, particularly imaginary parts, varies 
with energy.  IP can be extended to  determine V(r,E) directly.

Some l, some E, Sl(E) → V(r,E)

Published cases are limited to the factored form, Σi fi(E)Vi(r),where i indicates 
real-central, imaginary-central, etc.

iv. Inversion to fit bound state and resonance energies. Energies of bound states 
can be included with Sl as input data.

v. Direct data to potential inversion. Example:               many energies, many 
observables, tensor interaction included.

Hed 4+
r



IP: Identical bosons, Majorana potential

Identical bosons. One can determine V(r) given Sl for even-l only, e.g. 
12C + 12C.

Majorana terms.We often require Wigner and Majorana terms for each component:

)()1()( MW rVrV l−+

� Theory and experiment often make Majorana terms obligatory for light nuclei; they 

are even required for p +16O. Odd-parity and even-parity potentials always have 

different radial forms.

� Inversion of both empirical and theoretical Slwill often  present a choice:

either oscillatory pure Wigner potentials

or relatively smooth potentials with Majorana components.

� We have established highly oscillatory l-independent potentials having  the same 

set of Sl as explicitly parity-dependent phenomenological potentials.

� But, wavy  l-independent potentials also result from alternative sources of l-

dependence (Feshbach). 



� Spinless projectiles. Sl→ V(r)

� Spin ½ projectiles.

� Spin one projectiles. Vector spin-orbit and                                                tensor 

potentials can be determined from non-diagonal       . This is coupled channel inversion.

� High channel spin. For cases like d + 3He, or p + 6Li, independent potentials for each 

possible channel spin have been determined.

In general, all spin-dependent components can have real and imaginary, Wigner and 

Majorana terms. These different components of the potentials can all be expanded in 

different bases if required.

IP: Spin cases handled by IP inversion

lslj VrVS σ⋅+→ l)(
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How well does it work?

� Test case. Deuterons on 58Ni at 56 
MeV. 

Solid lines:  target (known) potential,

Dash-dot: inversion SRP (starting 
potentials), which were  zero for the 
real spin-orbit and tensor terms.

Dots: V found by inversion. 

� Noisy S-matrix. IP inversion can be 
applied to noisy data and produce 
meaningful V(r) … the iterative 
process is under control.



Information on nuclear interactions from inversion

II. InversInversion of of Sl, Slj oror from analysis of experimentfrom analysis of experiment

1. (few partial waves) Parameterized R-matrix or effective range fits at low energies.

2. (many partial waves) High energy two-step phenomenology. (E.g. 11Li, 12C +12C from 

140 to 2400 MeV)

I. Inversion of of Sl, , Slj or       obtained from theoryor       obtained from theory

1. DPPs have been found for inelastic, breakup and  reaction channels

2. V(r) from RGM and similar S-matrix.

3. Local V(r)  equivalent to non-local potentials.

4. V(r) for impulse approximation SL, or S(b) from Glauber and other eikonal models

j
llS '

III. Direct observable →→→→ V(r) inversion.

S-matrix search convoluted with IP inversion; S-matrix is byproduct. Can handle many 

energies simultaneously to give multi-component V(E).

j
llS '



Pickup coupling and proton scattering.

It has long been known that  pickup coupling

(p → d → p for proton scattering) makes a 

significant contribution to the proton optical potential. 

It explains why really precise fits for nucleon elastic 

scattering below 50 MeV for closed shell target nuclei 

have not been found with conventional OM.

What contribution does this process make to the OMP?

The contribution to the proton OMP can be quantified in 

terms of the changes in the volume integrals of the real 

qnd imaginary terms JR and JI, and the change in the 

rms radius of the imaginary part, RI .



Effect on 8He(p,p) elastic scattering cross sections

The coupling of deuteron
channels has a large 
influence on the elastic
scattering of protons on 
8He at 15.6 MeV. The 
figure also shows the 
influence of ‘non-
orthogonality’ corrections 
(they are omitted in ‘nono’
curves.)

The lower part shows the 
(p,d) cross section.



Contribution to OMP for 8He + p

We can carried out a full finite-range pickup calculations including non-

orthogonality terms, for protons on 8He, Phys. Phys. LettLett. . B 619B 619 (2005) 82(2005) 82. The 

pickup coupling greatly improved the fit to the elastic scattering.

OM=Bare, CRC=CRC, NONO=CRC with non-orthogonality term omitted

The table quantifies the pickup contribution for 15.6 MeV protons in 

terms of volume integrals and RMS radii. The repulsive real DPP is large 

at the nuclear centre although the effect on JR is modest. The DPP could 

not be represented by renormalizing a folding model potential. 

6.5533.154.360252.622.840571.28NONO

1.25040.274.138307.472.938653.94CRC

0.00526.603.33655.373.092704.14OM

JSOIJSORJIJR
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R
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Example:  Pickup coupling effects in p+ 10Be; 1

What contribution does the coupling of 
pickup (deuteron) channels make to 
proton scattering for a more normal 
nucleus similar in mass to 8He?

<= See the effect on elastic scattering 
angular distributions… Note the 
smaller effect at 12 MeV; the fit is 
not so good there…. Resonance? 
Exchange requiring Majorana? The 
effect is similar to that for 8He 
despite lesser neutron skin – clearly 
it is a general effect. 

But what is the contribution to the 
OMP?



Example:  Pickup coupling effects in p+ 10Be; 2

Are the effects of pickup coupling specific 
to the halo target nucleus 8He or are 
they more general?

Here are the DPPs for protons on 10Be at 
14, 15 and 16 MeV.

Net repulsion (at 16 MeV, decreasing the 
real volume integral JR by 66.9 MeV
fm3), and absorption (at 16 MeV
increasing JW by 57.3 MeV fm

3 ). DPP 
emissive near nuclear centre; effect is 
to move absorption outwards.

These are similar to general effects found 
previously, but with smaller reduction 
in JR due to inclusion of non-
orthogonality effects.

Shapes for the central terms of the DPP 
are like those for p+ 8He, but shifted 
outwards; S-O shapes different.



Example:  Pickup coupling effects in p+ 10Be; 3

The contribution to the proton OMP can be quantified in 

terms of the changes in the volume integrals of the real 

qnd imaginary terms JR and JI, and the change in the 

rms radius of the imaginary part RI :



6He scattering from 208Pb at 22 MeV

Coupling to 2+ 

resonance and 

continuum 

breakup states of 

the 6He projectile 

at 22 MeV.

Calculated using

CDCC formalism.



DPP due to breakup for 6He scattering from 208Pb

1. DPP due to 2+ and dipole 
excitation

� 6He incident on 208Pb, 22,  27, 32  
MeV -- these DPPs are at 27 MeV.

� The breakup was calculated using  
model due to Moro et al. The DPP 
has a long range attractive tail 
generated  by the Coulomb dipole 
interaction.

� There is short range repulsive and 
emissive DPP around 11 fm. 
Regions of emissiveness often 
appear in local potentials that 
represent non-local and L-
dependent DPP; unitarity is not 
broken. 

� The DPP is not well-defined for r ≤
10 fm. 



The DPP due to breakup for 6He scattering from 208Pb

2. The DPP depends little on energy …



The DPP due to breakup for 6He scattering from 208Pb

3. … although SL does vary as the Coulomb barrier is approached:

For low L |S
L
| increases as 

coupling switched on.



p + 6He: DPP due to breakup.

With K. Rusek, uses `old’ di-neutron 
cluster model, at 21.57 MeV CM. 
Breakup into continuum states with
L= 0, 1, 2, 3 plus L=2 resonance at 
1.8 MeV.

Note emissive region in imaginary part.

Very similar results at 32.8 MeV CM.

The WTE results are in poor agreement 
for real part.

The DPP does not look like a multiple 
of the bare potential. 

Effect of breakup is to make the 
nucleus seem smaller, rrms for real 
part is reduced, so nuclei are larger 
than FM might suggest.

DPP at E(lab) =21.57 MeV, except for the 

phenomenological, 32.8 MeV. WTE is 

weighted trivially equivalent. Substantial 

effect on spin-orbit potential is not shown.



Pickup and breakup contributions to d + 40Ca OMP

� 52 MeV deuterons; substantial DPP due 

to pickup and breakup, especially wavy 

imaginary term.

� A significant TR tensor force arises 

mostly from reorientation in deuteron 

breakup channels.

� Such couplings cannot be omitted from 

an account of deuteron scattering.

� Phenomenological wavy potentials now 

become plausible.

� The DPP, especially imaginary part, 

cannot be represented by a local density 

model, or by renormalizing FM.

� N Keeley and RSM, Phys Rev C 77, 

0546003 (2008)  



The d-4He interaction derived from multi-energy data
� ‘Direct data → V inversion’ is an alternative to optical model fitting with parameterized 

forms for determining potentials from data, especially when there are many data and 
many parameters. 

� There are many data for d-4He scattering:  a full set of polarization observables 
(including all 3 tensor analyzing powers) for many angles, all for many energies in the 
range of 4 - 13 MeV.

� 1000 data points were fitted,  NuclNucl. Phys. . Phys. A723A723 (2003) 45(2003) 45, (five observables, a wide 
angular range and many energies) to produce a multi-component (Wigner and 
Majorana, central, spin-orbit and tensor) multi-energy potential (components were 
functions of energy) giving a reasonable representation of shape resonances. 

� This would have been a formidable job for standard optical model codes since they 
would have had to include the coupled channel calculation for the tensor interaction, for 
each energy,  within the search.

� The simultaneous fit to all energies reduces chance of noisy or spurious  data 
introducing spurious features in potential.

� The facility of the IP method to control the degree of fitting is essential; it is possible to 
demand smooth potentials. 



Understanding nucleus-nucleus interactions….

…. With a little help from inversion

� The systematic properties of DPPs and exchange effects need to be established 
before we understand nucleus-nucleus interactions. To get a deeper understanding of 
nucleus-nucleus interactions we must explore where folding models fail… e.g. get 
clues to limits of LDA, and need for L-dependence.

� We should be able to understand OMP for every target nucleus, not just trends, but 
we  also wish to predict with confidence the OMP for target nuclei far from stability.

� As reaction theories progress and produce better S-matrices, IP inversion will be 
there to provide local potentials, linking to precision phenomenology.

� In particular, Glauber and other eikonal models, RGM, impulse and KMT models etc 
do not produce potentials  (how else to interpret the inexact fits?). 

� The IP algorithm is indefinitely (?) generalizable, and has found wider applications 
than originally envisaged. Are there any suggestions for new applications?

.
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p + 6He : exchange processes.

� Inversion of RGM S-matrix, real potential only (no 
inelastic channels). The presence or absence of a 
Majorana term (required by inversion) changes the 
differential cross section by a factor of two over a range 
of angles in the backward hemisphere. No effect in 
forward hemisphere as expected for `heavy particle 
stripping’ contribution. The Majorana term is smaller 
than for p+ 4He, as expected.  

� Volume integrals:

� Wigner term: JW= - 709(1 - 0.0064 Elab) MeV fm
3

� Majorana term: 

� JM = 66.5(1 – 0.024 Elab + 0.036 x 10-4 Elab
2) MeV fm3


