Nuclear matter equation of state and in-medium nucleon properties

Vittorio Somà

SPhN / ESNT

$\frac{\frac{1 r f u}{c e a}}{\frac{\text { saclay }}{}}$
in collaboration with P. Bożek (IFJ PAN Kraków)

Séminaire SPhN

30 octobre 2009
Saclay

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\rightarrow how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Outline

- Introduction
\rightarrow what is nuclear matter definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Nuclear matter

- strongly interacting nucleons (symmetric/pure neutron matter)
- spin-unpolarized
- homogeneous system
- thermodynamic limit

\cdots Weizsäcker semi-empirical mass formula

$$
E\left(N_{p}, N_{n}\right)=E_{B} N+E_{\text {surf }} N^{2 / 3}+E_{\mathrm{Coul}} N_{p}^{2} N^{-1 / 3}+E_{\text {Pauli }}\left(N_{n}-N_{p}\right)^{2} / N
$$

energy per particle in symmetric nuclear matter at saturation density ρ_{0}

Limits of validity

high density \rightarrow hyperons, etc ...

Challenges

- nuclear matter as a thermodynamic ensemble
\cdots equation of state
- nuclear matter as a system of interacting nucleons
\rightarrow modified single-particle properties

An example of EoS

- equation of state $\quad \rightarrow \quad P=P(\rho, T)$
... or free energy $\quad F=E-T S$
- problem of thermodynamic consistency
chemical potential

$$
\mu \quad \longleftrightarrow \quad \mu^{\prime}=\frac{\partial F}{\partial N}=\rho \frac{\partial(F / N)}{\partial \rho}+\frac{F}{N}
$$

pressure

$$
P=-\frac{\Omega}{\mathcal{V}} \quad \longleftrightarrow \quad P^{\prime}=\rho^{2} \frac{\partial(F / N)}{\partial \rho}
$$

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Applications and constraints: neutron stars

- densest massive objects in the universe

$$
M \sim 1-2 M_{\circ} \quad R \sim 10-15 k m
$$

- first observation in 1967 (Bell, Hewish)
- about 2000 NS observed so far...

Cooling of neutron stars

- direct Urca cooling $n \rightarrow p+e^{-}+\bar{v}_{e}, \quad p \rightarrow n+e^{+}+v_{e}$
- modified Urca cooling
$n+(n, p) \rightarrow p+(n, p)+e^{-}+\bar{\nu}_{\mathrm{e}}$.
$p+(n, p) \rightarrow n+(n, p)+e^{+}+v_{\mathrm{e}}$

much less efficient ($<10^{-4}$)

- neutrino emissivities depend on the in-medium nucleon properties, in particular of the superfluid phase

Mass-radius relation in neutron stars

- Tolman-Oppenheimer-Volkov eq. (hydrostatic equilibrium)

two relations between

$$
P(r), \rho(r), m(r)
$$

\cdots equation of state needed $P(\rho)$
$\cdots \rightarrow$ transition to quark matter ?

Applications and constraints: heavy ions

- Au-Au collisions at Ebeam/A $=[0.15-10] \mathrm{GeV}$, semi-peripheral
- information on the EoS from two kinds of flow: transverse and elliptic
- densities up to 2-5 times the nuclear saturation density

Heavy ions: transverse and elliptic flow

model:

- address the time-evolution of Wigner $f(p, r, t)$ for stable/excited nucleons and pions
- model for the interaction energy $\quad \rightarrow \quad U=\left(a \rho+b \rho^{v}\right) /\left[1+\left(0.4 \rho / \rho_{0}\right)^{\nu-1}\right]+\delta U_{\mathrm{p}}$

Global constraints from flow observables

- not excluded a phase transition above $4 \rho_{0}$

- extrapolation to neutron matter

model for the symmetry energy

© Summary of EoS applications and constraints ©

investigating nuclear matter properties:
neutron stars

- mass-radius: sensitivity on the global EoS
- cooling: sensitivity on the global EoS and on the single-particle properties
heavy-ion reactions
- flow global contraints: sensitivity on the global EoS
just examples: superfluid neutrons, symmetry energy, ...

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

The nuclear many-body problem

- many-body system with two-body interaction

$$
H=\sum_{i=1}^{N} T_{i}+\sum_{i<j}^{N} V_{i j}
$$

in the nuclear case, the strong repulsive core precludes an ordinary perturbation expansion in terms of the bare interaction

- we need suitable methods to take into account the short-range correlations induced in the medium
\Rightarrow ab-initio calculations
- alternative: employ an effective potential (Skyrme, Gogny)
\Rightarrow phenomenological (mean-field) calculations
predictive power?

Variational approach

- calculates an upper bound to the ground state energy $\quad E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \geq E_{0}$
- wave function constructed from the unperturbed ground state

$$
\Psi=\left[S \prod_{i<j} F\left(r_{i j}\right)\right] \Phi
$$

correlation functions determined through the minimization

BHF approach

- rearrangement of the Hamiltonian

$$
(H=T+V=T+U+\underbrace{V-U}_{\delta V}=T+U+\delta V)
$$

- calculation of the ground state energy from a perturbative expansion in terms of δV

\rightarrow definition of G matrix from ladder diagrams
\rightarrow Hartree-Fock calculation with the G-matrix interaction

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Green's functions basics

- mathematical definition

$$
\left[z-\mathcal{L}\left(x, x^{\prime}\right)\right] G\left(x, x^{\prime} ; z\right)=\delta\left(x-x^{\prime}\right)
$$

- example: free particle

$$
\left[E+\frac{\nabla^{2}}{2 m}\right] G\left(x, x^{\prime} ; E\right)=\delta\left(x-x^{\prime}\right)
$$

many-body interacting system

$\left[i \frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 m}\right] G\left(x t, x^{\prime} t^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)-i \int d^{3} y V(x-y) G_{2}\left(x t, x^{\prime} t^{\prime} ; y t, y^{\prime} t^{+}\right)$
... but then ...

$$
G_{N}\left(x_{1}, t_{1} ; \ldots x_{N}, t_{N}\right)
$$

$$
\Psi\left(x_{1}, \ldots, x_{N} ; t\right) \longrightarrow G_{N}\left(x_{1}, \ldots, x_{N} ; t\right) \longrightarrow G\left(x_{1}, x_{2} ; t\right)
$$

Self-consistent procedure

(1) start with $V\left(p, p^{\prime}\right)$ and $\quad G(p, \omega)$ (ansatz)
(2) compute $G_{2}\left(P, k, k^{\prime}, \Omega\right)$ \downarrow approximation \longrightarrow self-energy $\quad \Sigma(p, \omega)$
(3) compute $G(p, \omega)$ by means of the Dyson eq. $\quad G^{-1}=G_{0}^{-1}-\Sigma$
(4) repeat (2) and (3) until convergence is achieved

In-medium T-matrix

- T-matrix approximation for the two-particle propagator

$+\ldots$ \cdots
- energy per particle

$$
\frac{E}{N}=\frac{1}{\rho}\left[\frac{\left\langle H_{t o t}\right\rangle}{V}\right]=\frac{1}{\rho}\left[\frac{\left\langle H_{k i n}\right\rangle}{V}+\frac{\left\langle H_{p o t}\right\rangle}{\mathcal{V}}\right]
$$

$$
\left\langle H_{p o t}\right\rangle=\sum_{n} \frac{1}{2}
$$

- grand-canonical potential

$$
\Omega[G, \Sigma, \Phi]=-P \mathcal{V}
$$

$$
\Phi=\sum_{n} \frac{1}{2 n}[
$$

Spectral representation

$$
i G^{>}(\mathbf{p}, \omega)=[1-f(\omega)] A(\mathbf{p}, \omega)
$$

- spectral GFs particles

$$
-i G^{<}(\mathbf{p}, \omega)=f(\omega) A(\mathbf{p}, \omega)
$$

holes
where $\quad f(\omega)=\frac{1}{e^{\beta(\omega-\mu)}+1}$
and $\quad \int \frac{d \omega}{2 \pi} A(\mathbf{p}, \omega)=1$
\rightarrow example: free particle $\quad A_{0}(\mathbf{p}, \omega)=2 \pi \delta\left(\omega-p^{2} / 2 m\right)$

- density $\quad-i G^{<}(\mathbf{p}, \omega)=\langle n(\mathbf{p}, \omega)\rangle$
- momentum distribution $n(\mathbf{p})=\int \frac{d \omega}{2 \pi} A(\mathbf{p}, \omega) f(\omega)$

Finite temperature Green's functions

- single-particle propagator on the time-contour

$$
i \mathbf{G}_{A \alpha B \beta}\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right)=\left\langle\mathcal{T} \psi_{A \alpha}(\mathbf{r}, t) \psi_{B \beta}^{\dagger}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right\rangle
$$

$$
\downarrow \text { weird, but... }
$$

carry statistical mechanics information of the system

$$
\langle\hat{O}\rangle=\operatorname{tr}[\hat{\rho} \hat{O}]=\frac{\operatorname{tr}\left[e^{-\beta(H-\mu N)} \hat{O}\right]}{\operatorname{tr}\left[e^{-\beta(H-\mu N)}\right]}
$$

consistency between macroscopic and microscopic observables
other ab-initio approaches:

- Bloch-De Dominicis (\Rightarrow BBG) \rightarrow "frozen correlations" approximation
- variational
\rightarrow work in progress

Technical aspects

- numerical solution of coupled integro-differential equations
\longrightarrow iterative scheme
- code in Fortran 77
- use Fast Fourier Transform (FFT) and convolution theorem

$$
\int d \omega^{\prime} F_{1}\left(\omega^{\prime}-\omega\right) F_{2}\left(\omega^{\prime}\right)=\left[F_{1}^{T}(t) F_{2}^{T}(t)\right]^{T}
$$

- discretization on a fixed-spacing grid
- cut-off dependence under control
- each point (T, ρ, δ, V) 100 hours

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

The need for three-body forces

- empirical values for saturation

$$
\begin{aligned}
& \rho_{\text {Sat }} \equiv \rho_{0}=0.16 \pm 0.01 \mathrm{fm}^{-3} \\
& E_{\mathrm{Sat}} / N \equiv B=16 \pm 1 \mathrm{MeV}
\end{aligned}
$$

[Akmal et al., Phys. Rev. C 58 (1998)]
[Baldo and Maieron, J. Phys. G 34 (2007)]

Coester band

New Coester band

Urbana three-body forces

$$
V_{i j k}^{U r b a n a}=V_{i j k}^{2 \pi}+V_{i j k}^{R}
$$

- modification of the internal structure of hadrons
$\rightarrow \Delta$-excitation

$\leftrightarrow \quad 2 \pi$ exchange
$\rightarrow \rightarrow$ and others:

Derivation of the effective potential

- need to derive an effective two-body potential

$$
V_{3}^{e f f}\left(\mathbf{q}, \mathbf{q}^{\prime}\right)=\sum_{\sigma \tau} \int \frac{d \mathbf{k}}{(2 \pi)^{3}} n(\mathbf{k}) V_{3}^{F T}\left(\mathbf{k}, \mathbf{q}, \mathbf{q}^{\prime}\right)
$$

to be inserted in the T-matrix $\quad V \rightarrow V^{\prime}=V+V_{3}^{\text {eff }}$

Fourier transform
spin-isospin average

1

$$
\begin{aligned}
V_{3}^{e f f}\left(\mathbf{q}, \mathbf{q}^{\prime}\right) & =V_{s}^{R}\left(\mathbf{q}, \mathbf{q}^{\prime}\right)+V_{s}^{2 \pi}\left(\mathbf{q}, \mathbf{q}^{\prime}\right) \\
& +V_{\sigma \tau}^{2 \pi}\left(\mathbf{q}, \mathbf{q}^{\prime}\right) \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime} \boldsymbol{\tau} \cdot \boldsymbol{\tau}^{\prime}+V_{S \tau}^{2 \pi}\left(\mathbf{q}, \mathbf{q}^{\prime}\right) S\left(\mathbf{q}, \mathbf{q}^{\prime}\right) \boldsymbol{\tau} \cdot \boldsymbol{\tau}^{\prime}
\end{aligned}
$$

projection into partial waves

$$
\langle q| V_{J}^{S=0}(P)\left|q^{\prime}\right\rangle=\frac{1}{4 \pi^{2}} \int d \Omega_{q q^{\prime}} \mathrm{P}_{J}\left(\Omega_{q q^{\prime}}\right) \times \begin{cases}V_{s}^{R}+V_{s}^{2 \pi}-3 V_{\sigma \tau}^{2 \pi} & \text { for } J \text { even } \\ V_{s}^{R}+V_{s}^{2 \pi}+9 V_{\sigma \tau}^{2 \pi} & \text { for } J \text { odd }\end{cases}
$$

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
-Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Energy per particle in symmetric matter

Energy in neutron matter \& symmetry energy

- parabolic approximation

$$
\frac{E}{N}(\rho, \delta)=\frac{E}{N}(\rho, \delta=0)+\delta^{2} E_{\text {sym }}(\rho)+\mathcal{O}\left(\delta^{4}\right) \quad \delta \equiv \frac{\rho_{n}-\rho_{p}}{\rho_{t o t}}
$$

Density dependence

- large uncertainties in the density dependence of the energy and symmetry energy

[Li et al., Phys. Rev. C 74 (2006)]

Entropy and pressure

- direct (diagrammatic) calculation of P

$$
\Phi=\int_{0}^{1} \frac{d \lambda}{\lambda} H_{p o t}\left(\lambda V, G_{\lambda=1}\right)
$$

- entropy from

$$
\frac{S}{N}=\frac{1}{T}\left(\frac{E}{N}-\mu+\frac{P}{\rho}\right)
$$

$$
\Omega[G, \Sigma, \Phi]=-P \mathcal{V}
$$

coexistence region

$$
\begin{aligned}
& \mu\left(\rho_{g}\right)=\mu\left(\rho_{l}\right) \\
& P\left(\rho_{g}\right)=P\left(\rho_{l}\right)
\end{aligned}
$$

Spinodal region

potential	$T_{c}(\mathrm{MeV})$	$\rho_{c}\left(\mathrm{fm}^{-3}\right)$	$P_{c}\left(\mathrm{MeV} \mathrm{fm}^{-3}\right)$	$\frac{P_{c}}{\rho_{c} T_{c}}$
CD-Bonn	18	0.107	0.43	0.22
CD-Bonn + TBF	12.5	0.096	0.14	0.12
Nijmegen	20.5	0.094	0.50	0.26
Nijmegen + TBF	11.5	0.088	0.15	0.14

Critical temperature in nuclear matter

- Bloch-De Dominicis
- Dirac-Brueckner-Hartree-Fock
- Green's functions (NN only)
- Green's functions (NN+NNN)
\rightarrow 9-20 MeV [Das et al. ; Baldo et al.]
\rightarrow 10-13 MeV [Ter Haar et al ; Huber et al.]
\rightarrow 16-19 MeV [Rios et al.; VS, Bożek]
$\rightarrow \quad \sim 12 \mathrm{MeV} \quad[\mathrm{VS}$, Bożek]

"Limiting temperature" in finite nuclei

- Coulomb and surface effects
the nucleus undergoes a mechanical instability before reaching T_{c}

$$
\delta P=P_{c}+P_{s}(T)
$$

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Single-particle properties

- spectral representation

$$
\begin{aligned}
-i G^{<}(\mathbf{p}, \omega) & =f(\omega) A(\mathbf{p}, \omega) \\
i G^{>}(\mathbf{p}, \omega) & =[1-f(\omega)] A(\mathbf{p}, \omega)
\end{aligned}
$$

recall that the free spectral function is $\quad A_{0}(\mathbf{p}, \omega)=2 \pi \delta\left(\omega-p^{2} / 2 m\right)$
\rightarrow quasiparticle approximation

$$
A_{q p}(\mathbf{p}, \omega)=2 \pi \delta\left(\omega-p^{2} / 2 m-\operatorname{Re} \Sigma(\mathbf{p}, \omega)\right)
$$

- effective mass

$$
\left.\frac{\partial \omega_{p}}{\partial p^{2}}\right|_{p=p_{F}}=\frac{1}{2 m^{\star}} \quad \text { where } \quad \omega_{p}=\frac{p^{2}}{2 m}+\operatorname{Re} \Sigma\left(p, \omega_{p}\right)
$$

Spectral function - symmetric matter

ω [MeV]

$\omega[\mathrm{MeV}]$

$\omega[\mathrm{MeV}]$

Effective mass - symmetric matter

Spectral function - neutron matter

Effective mass - neutron matter

\oplus Summary of the results ©

- first spectral calculations of the nuclear matter EOS with TBF
- correct saturation properties
- entropy not affected by nucleon correlations
- study of the liquid-gas phase transition $\longrightarrow T_{c} \simeq 12 \mathrm{MeV}$
- single-particle properties \rightarrow TBF effects above saturation density
- spectral function \rightarrow opposite effect in symmetric and in pure neutron matter

Extensions of the technique:

- asymmetric nuclear matter
- explicit inclusion of superfluidity
- application to nuclei

Outline

- Introduction
\cdots what is nuclear matter
definitions, limits of validity, EOS
\rightarrow why we study it
applications and constraints
\cdots how we study it
phenomenological vs. ab-initio approaches
- Self-consistent Green's functions at finite temperature
- The need for three-body forces
- Results I : equation of state
- Results II : in-medium single-particle properties
- Conclusions and current plans

Plans @ ESNT

The nuclear many-body problem

- many-body system with two-body interaction

$$
H=\sum_{i=1}^{N} T_{i}+\sum_{i<j}^{N} V_{i j}
$$

in the nuclear case, the strong repulsive core precludes an ordinary perturbation expansion in terms of the bare interaction

- we need suitable methods to take into account the short-range correlations induced in the medium
\Rightarrow ab-initio calculations
- alternative: employ an effective potential (Skyrme, Gogny)
\Rightarrow phenomenological (mean-field) calculations
predictive power?

The nuclear many-body problem

- many-body system with two-body interaction

$$
H=\sum_{i=1}^{N} T_{i}+\sum_{i<j}^{N} V_{i j}
$$

- we need suitable methods to take into account the short-range correlations induced in the medium

```
\(\Rightarrow\) ab-initio calculations
```

- take into account part of the short-range correlations already in the potential
\Rightarrow low-momentum interactions
- alternative: employ an effective potential (Skyrme, Gogny)
\Rightarrow phenomenological (mean-field) calculations

Bridging SCGF and EDFs

- in finite nuclei ab-initio calculations are limited
- energy density functionals \cdots lack of predictive power

