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transversity distribution
in polarized SIDIS
`N↑ → `′hX
`N↑ → `′hhX
`N↑ → `′ΛX

helicity distribution
in polarized DIS
~̀ ~N → `′X

quark distribution
in unpolarized DIS
`N → `′X

∆Tq(x)=q↑↑(x)−q↑↓(x)

∆q(x)

q(x)

In leading order three parton distributions are
needed to describe the structure of the nucleon:
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function
of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is
superimposed. The bands represent the total uncertainty of the fit. Dashed lines are shown for
Q2 values not included in the QCD analysis.
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Figure 16.8: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 16.7.
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Figure 16.9: The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to
the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s+ s)/6, where heavy-target effects

have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV
x values. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant c(x) = 0.05ix is added
to F2, where ix is the number of the x bin, ranging from 0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has
been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett.
86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
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Figure 16.3: Kinematic domains in x and Q2 probed by fixed-target and collider experiments, shown together with the
important constraints they make on the various parton distributions.
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Figure 16.4: Distributions of x times the unpolarized parton distributions f(x) (where f = uv, dv, u, d, s, c, b, g) and their
associated uncertainties using the NNLO MRST2006 parameterization [13] at a scale µ2 = 20 GeV2 and µ2 = 10, 000 GeV2.
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function
of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is
superimposed. The bands represent the total uncertainty of the fit. Dashed lines are shown for
Q2 values not included in the QCD analysis.
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Figure 16.8: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 16.7.
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Figure 16.9: The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to
the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s+ s)/6, where heavy-target effects

have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV
x values. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant c(x) = 0.05ix is added
to F2, where ix is the number of the x bin, ranging from 0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has
been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett.
86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function
of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is
superimposed. The bands represent the total uncertainty of the fit. Dashed lines are shown for
Q2 values not included in the QCD analysis.
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Figure 16.8: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 16.7.
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Figure 16.9: The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to
the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s+ s)/6, where heavy-target effects

have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV
x values. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant c(x) = 0.05ix is added
to F2, where ix is the number of the x bin, ranging from 0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has
been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett.
86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
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Figure 16.3: Kinematic domains in x and Q2 probed by fixed-target and collider experiments, shown together with the
important constraints they make on the various parton distributions.
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Figure 16.4: Distributions of x times the unpolarized parton distributions f(x) (where f = uv, dv, u, d, s, c, b, g) and their
associated uncertainties using the NNLO MRST2006 parameterization [13] at a scale µ2 = 20 GeV2 and µ2 = 10, 000 GeV2.
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function
of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is
superimposed. The bands represent the total uncertainty of the fit. Dashed lines are shown for
Q2 values not included in the QCD analysis.
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Figure 16.8: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 16.7.
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Figure 16.9: The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to
the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s+ s)/6, where heavy-target effects

have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV
x values. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant c(x) = 0.05ix is added
to F2, where ix is the number of the x bin, ranging from 0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has
been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett.
86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
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Figure 9: HERA combined NC e+p reduced cross section and fixed-target data as a function
of Q2. The error bars indicate the total experimental uncertainty. The HERAPDF1.0 fit is
superimposed. The bands represent the total uncertainty of the fit. Dashed lines are shown for
Q2 values not included in the QCD analysis.
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2 measured in electromagnetic scattering of electrons (SLAC) and muons (BCDMS,

E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed x. Statistical and systematic errors added in quadrature are
shown. For the purpose of plotting, F d

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29
(x = 0.0009). References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same references as
Fig. 16.7.
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Figure 16.9: The deuteron structure function F2 measured in deep inelastic scattering of muons on a fixed target (NMC) is compared to
the structure function F2 from neutrino-iron scattering (CCFR and NuTeV) using F

µ
2 = (5/18)F ν

2 − x(s+ s)/6, where heavy-target effects

have been taken into account. The data are shown versus Q2, for bins of fixed x. The NMC data have been rebinned to CCFR and NuTeV
x values. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, a constant c(x) = 0.05ix is added
to F2, where ix is the number of the x bin, ranging from 0 (x = 0.75) to 7 (x = 0.175). For ix = 8 (x = 0.125) to 11 (x = 0.015), 2c(x) has
been added. References: NMC—M. Arneodo et al., Nucl. Phys. B483, 3 (1997); CCFR/NuTeV—U.K. Yang et al., Phys. Rev. Lett.
86, 2741 (2001); NuTeV—M. Tzanov et al., Phys. Rev. D74, 012008 (2006).
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Figure 16.3: Kinematic domains in x and Q2 probed by fixed-target and collider experiments, shown together with the
important constraints they make on the various parton distributions.
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Figure 16.4: Distributions of x times the unpolarized parton distributions f(x) (where f = uv, dv, u, d, s, c, b, g) and their
associated uncertainties using the NNLO MRST2006 parameterization [13] at a scale µ2 = 20 GeV2 and µ2 = 10, 000 GeV2.
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Figure 16.3: Kinematic domains in x and Q2 probed by fixed-target and collider experiments, shown together with the
important constraints they make on the various parton distributions.

Structure functions (p.191)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
-4

10
-3

10
-2

10
-1

x

x 
f(

x)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

10
-4

10
-3

10
-2

10
-1

x

x 
f(

x)

Figure 16.4: Distributions of x times the unpolarized parton distributions f(x) (where f = uv, dv, u, d, s, c, b, g) and their
associated uncertainties using the NNLO MRST2006 parameterization [13] at a scale µ2 = 20 GeV2 and µ2 = 10, 000 GeV2.
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transversity distribution
in polarized SIDIS
`N↑ → `′hhX
`N↑ → `′hX
`N↑ → `′ΛX

helicity distribution
in polarized DIS
~̀ ~N → `′X

quark distribution
in unpolarized DIS
`N → `′X

← well known

∆Tq(x)=q↑↑(x)−q↑↓(x)

∆q(x)

q(x)

In leading order three parton distributions are
needed to describe the structure of the nucleon:
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Proton Deuteron

It’s getting better −→ QCD analysis, but collider data clearly missing!

• ∆u+∆ū and ∆d+∆d̄ well constrained by data (LSS PRD 80 (2009) 054026)

• ∆s and ∆g need other data in addition to inclusive data
• ∆s comes out negative (except for DSSV) and ∆G small (< 0.5)

Can one learn something without these fits?

E. Kabuß, GPD2010, Trento, 12.10.2007 13

Blümlein and Böchner, arXiv:1005.3113
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Figure 1: NLO polarized parton distributions at the input scale Q2
0 = 4.0 GeV2 (solid line) com-

pared to results obtained by GRSV (dashed–dotted line) [19], DSSV (long dashed–dotted line) [24],
AAC (dashed line) [18], and LSS (long dashed line) [20]. The shaded areas represent the fully
correlated 1σ error bands calculated by Gaussian error propagation.
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transversity distribution
in polarized SIDIS
`N↑ → `′hX
`N↑ → `′hhX
`N↑ → `′ΛX

helicity distribution
in polarized DIS
~̀ ~N → `′X

← known

quark distribution
in unpolarized DIS
`N → `′X

← well
known

∆Tq(x)=q↑↑(x)−q↑↓(x)

∆q(x)

q(x)

In leading order three parton distributions are
needed to describe the structure of the nucleon:
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Pictures look pretty similar!

; Why is Transversity only accessible in SIDIS?

Helicity ∆q(x) Transversity ∆Tq(x)
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Helicity and parity conservation ⇒

q

N

2
 '

q

N



∼ Im

Optical theorem:

DIS cross-section is proportional to imaginary part of
compton forward scattering
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chiral-odd Fragmentation-

Function balances

helicity-flip

; SIDIS

FF −∆Tq(x) ∼
helicity-flip in inclusive

DIS is suppressed with

O(mq/Q)

| ↑〉 ∼ |+〉+ i |−〉
| ↓〉 ∼ |+〉 − i |−〉

−∆q(x) ∼

+q(x) ∼
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Fragmentation into single hadron:

`N↑ → `′hX

; Collins-Fragmentation Function ∆0
TD

h
q :

fragmentation of a transversely polarized quark into an unpolarized

hadron

; azimuthal asymmetry of produced hadrons
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 ' ?

q u quarku quark
dd̄(JP = 0+)

π+(ud̄)

spin flip of
struck u!

Favored fragmentation:

u → π+(ud̄)
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Unfavored fragmentation:

u → π−(dū)

→ subleading π− heads into page

uū(JP = 0+) : S = 1; L = 1
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π−(dū)



Collins-Asymmetry: A simple interpretation

COMPASS

Heiner Wollny (University of Freiburg) Seminar CEA Saclay, Dec 03 2010 14

Unfavored fragmentation:

u → π−(dū)

→ subleading π− heads into page

uū(JP = 0+) : S = 1; L = 1
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q u quark
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q u quark

π−(dū)
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Proton: Ah+

Coll ∼ −Ah−
Coll 6= 0

Deuteron: Ah+

Coll ∼ Ah−
Coll ∼ 0

(we’ll keep that in mind..)
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µ+-beam 160 GeV/c

SPS

COMPASS

230 physicists, 10 countries, 25 institutes
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Polarized
Target

Veto

SM1

SM2

RICH

Muon-filter

Muon-filter

ECAL2
HCAL2

ECAL1
HCAL1



I high energy muon beam (160 GeV)

I high intensity beam (2 · 108µ+/spill)

I two stages spectrometer:

; large angular acceptance (0 ≤ θlab ≤ 180mrad)

; broad kinematical range in x and Q2
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 [cm]vtxZ
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COMPASS 2007 TRANSVERSE PROTON DATA

-h+h

180mrad

COMPASS target (≥ 2006):

I 3 target cells

I acceptance: 180 mrad

I target material: NH3

I dilution factor: f ' 15 %

I polarization: PT ∼ 90 %

I reversal of polarization every 4 - 5
days
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Measuring Collins Asymmetry is challenging:

I Asymmetries are expected to be in the order of few percents

; 1
f PTDnn

∼ 0.1 ⇒ few permille

I Coupling of data-samples with opposite target polarization

; stable working detector (timescale weeks)
; extensive data stability checks

I Non-uniform angular acceptance of detector

; Orthogonal Collins- and Sivers-
Modulation mixes via acceptance

; need of advanced extraction methods
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I Nice agreement between COMPASS
and HERMES data!

I Not obvious, because of different Q2
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and HERMES energies not known!

Update on transversity and Collins functions from SIDIS and e+e− data 5

are the same for favoured and unfavoured Collins
fragmentation functions; we then remain with a
total number of 9 parameters.
The first study along this line was presented in

Ref. [20]. Here we repeat the analysis, exploit-
ing the new high-precision data recently released
by the HERMES [21] and COMPASS [22] Col-
laborations for SIDIS, and by the Belle Collab-
oration [23] for e+e− annihilation processes, in
order to refine and reduce the uncertainty of the
previous extraction.
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Figure 1. Fit of HERMES [21] data. The shaded
area corresponds to the statistical uncertainty in
the parameter values, see text.

New data from COMPASS operating on a
transversely polarized hydrogen target have re-
cently been released [40]: these are not included
in the fit but compared with our predictions.
The two sets of Belle data, coming from two

analyses of the same experimental events, are not
independent. Therefore we include only one set
of data in the fit, either A0 or A12 data. In this
analysis we report the results obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
quences of fitting A0 instead of A12 are presently
under investigation.
In Figs. 1 and 2 we show the best fit to the

HERMES [21] and COMPASS [22] data, respec-
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tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].
The curves shown are evaluated using the cen-

tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).
Table 1 collects the results of our best fit to the

new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
have been crucial. It is worth noticing that while
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the transversity for up quarks is strongly con-
strained by HERMES data, in particular through
the positive pion azimuthal asymmetry, the addi-
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Table 1
Best values of the free parameters for the u and
d transversity distribution functions and for the
favoured and unfavoured Collins fragmentation
functions. We obtain χ2/d.o.f. = 1.3. No-
tice that the errors generated by MINUIT are
strongly correlated, and should not be taken at
face value. The significant fluctuations in our re-
sults are shown by the shaded areas in the plots.

NT
u = 0.64± 0.34 NT

d = −1.00± 0.02

α = 0.73± 0.51 β = 0.84± 2.30

NC
fav = 0.44± 0.07 NC

unf = −1.00± 0.06

γ = 0.96± 0.08 δ = 0.01± 0.05

M2
h = 0.91± 0.52 GeV2

tion of COMPASS deuteron data to the fit allows
a better determination of ∆Td. We recall here
that, in analyzing SIDIS data, we have assumed
the transversity distributions for sea quarks and
antiquarks to vanish. The extracted Collins FFs
are well constrained and much smaller than their
positivity bounds, with the unfavoured Collins
function large in size and negative, consistently
with other extractions [42,43,20].
A word of caution has to be added here since

SIDIS data (HERMES and COMPASS) are col-
lected at a much smaller scale (Q2 ≃ 2.5 GeV2)
compared to the Belle data (Q2 = 110 GeV2).
Both azimuthal asymmetries in SIDIS and in

e+e− collisions involve spin and TMD functions
whose behaviour upon scale variation should be
described in the context of Collins-Soper factor-
ization [28,30]. Beyond tree level this would result
in a soft factor entering TMD convolutions, with
the corresponding Sudakov suppression. This, as
discussed in Refs. [44,45], might imply an under-
estimation of the Collins function as extracted at
tree level from the azimuthal asymmetry at Belle.
Hence the combined extraction of the transversity
from SIDIS at a lower Q2 (less Sudakov suppres-
sion), might lead to an overestimation of ∆T q.
This issue is currently under study. Here, as in
Ref. [20], the Q2 dependence of the Collins FF
is included assuming it to be the same as that
of the unpolarized fragmentation function, Dh/q:

Anselmino et al arXiv:0812.4366
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fragmentation functions; we then remain with a
total number of 9 parameters.
The first study along this line was presented in

Ref. [20]. Here we repeat the analysis, exploit-
ing the new high-precision data recently released
by the HERMES [21] and COMPASS [22] Col-
laborations for SIDIS, and by the Belle Collab-
oration [23] for e+e− annihilation processes, in
order to refine and reduce the uncertainty of the
previous extraction.

)
Sφ

 +
 

hφ
si

n 
(

U
T

A
)

Sφ
 +

 
hφ

si
n 

(

U
T

A
)

Sφ
 +

 
hφ

si
n 

(

U
T

A

x z  (GeV)TP

−0.1

0

0.1 0π

0

0.05

0.1 +π

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

−0.05

0

−π

−0.1

HERMES
preliminary

0.2 0.4 0.6 0.8

−0.1

−0.05

−0.1

2002−2005

0.2 0.4 0.6 0.8 1

−0.1

−0.05

Figure 1. Fit of HERMES [21] data. The shaded
area corresponds to the statistical uncertainty in
the parameter values, see text.

New data from COMPASS operating on a
transversely polarized hydrogen target have re-
cently been released [40]: these are not included
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independent. Therefore we include only one set
of data in the fit, either A0 or A12 data. In this
analysis we report the results obtained by using
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quences of fitting A0 instead of A12 are presently
under investigation.
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tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].
The curves shown are evaluated using the cen-

tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).
Table 1 collects the results of our best fit to the

new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
have been crucial. It is worth noticing that while
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laborations for SIDIS, and by the Belle Collab-
oration [23] for e+e− annihilation processes, in
order to refine and reduce the uncertainty of the
previous extraction.

)
Sφ

 +
 

hφ
si

n 
(

U
T

A
)

Sφ
 +

 
hφ

si
n 

(

U
T

A
)

Sφ
 +

 
hφ

si
n 

(

U
T

A

x z  (GeV)TP

−0.1

0

0.1 0π

0

0.05

0.1 +π

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

−0.05

0

−π

−0.1

HERMES
preliminary

0.2 0.4 0.6 0.8

−0.1

−0.05

−0.1

2002−2005

0.2 0.4 0.6 0.8 1

−0.1

−0.05

Figure 1. Fit of HERMES [21] data. The shaded
area corresponds to the statistical uncertainty in
the parameter values, see text.

New data from COMPASS operating on a
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The two sets of Belle data, coming from two

analyses of the same experimental events, are not
independent. Therefore we include only one set
of data in the fit, either A0 or A12 data. In this
analysis we report the results obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
quences of fitting A0 instead of A12 are presently
under investigation.
In Figs. 1 and 2 we show the best fit to the
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tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].
The curves shown are evaluated using the cen-

tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).
Table 1 collects the results of our best fit to the

new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
have been crucial. It is worth noticing that while
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the transversity for up quarks is strongly con-
strained by HERMES data, in particular through
the positive pion azimuthal asymmetry, the addi-
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Table 1
Best values of the free parameters for the u and
d transversity distribution functions and for the
favoured and unfavoured Collins fragmentation
functions. We obtain χ2/d.o.f. = 1.3. No-
tice that the errors generated by MINUIT are
strongly correlated, and should not be taken at
face value. The significant fluctuations in our re-
sults are shown by the shaded areas in the plots.

NT
u = 0.64± 0.34 NT

d = −1.00± 0.02

α = 0.73± 0.51 β = 0.84± 2.30

NC
fav = 0.44± 0.07 NC

unf = −1.00± 0.06

γ = 0.96± 0.08 δ = 0.01± 0.05

M2
h = 0.91± 0.52 GeV2

tion of COMPASS deuteron data to the fit allows
a better determination of ∆Td. We recall here
that, in analyzing SIDIS data, we have assumed
the transversity distributions for sea quarks and
antiquarks to vanish. The extracted Collins FFs
are well constrained and much smaller than their
positivity bounds, with the unfavoured Collins
function large in size and negative, consistently
with other extractions [42,43,20].
A word of caution has to be added here since

SIDIS data (HERMES and COMPASS) are col-
lected at a much smaller scale (Q2 ≃ 2.5 GeV2)
compared to the Belle data (Q2 = 110 GeV2).
Both azimuthal asymmetries in SIDIS and in

e+e− collisions involve spin and TMD functions
whose behaviour upon scale variation should be
described in the context of Collins-Soper factor-
ization [28,30]. Beyond tree level this would result
in a soft factor entering TMD convolutions, with
the corresponding Sudakov suppression. This, as
discussed in Refs. [44,45], might imply an under-
estimation of the Collins function as extracted at
tree level from the azimuthal asymmetry at Belle.
Hence the combined extraction of the transversity
from SIDIS at a lower Q2 (less Sudakov suppres-
sion), might lead to an overestimation of ∆T q.
This issue is currently under study. Here, as in
Ref. [20], the Q2 dependence of the Collins FF
is included assuming it to be the same as that
of the unpolarized fragmentation function, Dh/q:
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Ref. [20]. Here we repeat the analysis, exploit-
ing the new high-precision data recently released
by the HERMES [21] and COMPASS [22] Col-
laborations for SIDIS, and by the Belle Collab-
oration [23] for e+e− annihilation processes, in
order to refine and reduce the uncertainty of the
previous extraction.
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New data from COMPASS operating on a
transversely polarized hydrogen target have re-
cently been released [40]: these are not included
in the fit but compared with our predictions.
The two sets of Belle data, coming from two

analyses of the same experimental events, are not
independent. Therefore we include only one set
of data in the fit, either A0 or A12 data. In this
analysis we report the results obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
quences of fitting A0 instead of A12 are presently
under investigation.
In Figs. 1 and 2 we show the best fit to the
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tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].
The curves shown are evaluated using the cen-

tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).
Table 1 collects the results of our best fit to the

new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
have been crucial. It is worth noticing that while
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tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].
The curves shown are evaluated using the cen-

tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).
Table 1 collects the results of our best fit to the

new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
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Table 1
Best values of the free parameters for the u and
d transversity distribution functions and for the
favoured and unfavoured Collins fragmentation
functions. We obtain χ2/d.o.f. = 1.3. No-
tice that the errors generated by MINUIT are
strongly correlated, and should not be taken at
face value. The significant fluctuations in our re-
sults are shown by the shaded areas in the plots.

NT
u = 0.64± 0.34 NT

d = −1.00± 0.02

α = 0.73± 0.51 β = 0.84± 2.30

NC
fav = 0.44± 0.07 NC

unf = −1.00± 0.06

γ = 0.96± 0.08 δ = 0.01± 0.05

M2
h = 0.91± 0.52 GeV2

tion of COMPASS deuteron data to the fit allows
a better determination of ∆Td. We recall here
that, in analyzing SIDIS data, we have assumed
the transversity distributions for sea quarks and
antiquarks to vanish. The extracted Collins FFs
are well constrained and much smaller than their
positivity bounds, with the unfavoured Collins
function large in size and negative, consistently
with other extractions [42,43,20].
A word of caution has to be added here since

SIDIS data (HERMES and COMPASS) are col-
lected at a much smaller scale (Q2 ≃ 2.5 GeV2)
compared to the Belle data (Q2 = 110 GeV2).
Both azimuthal asymmetries in SIDIS and in

e+e− collisions involve spin and TMD functions
whose behaviour upon scale variation should be
described in the context of Collins-Soper factor-
ization [28,30]. Beyond tree level this would result
in a soft factor entering TMD convolutions, with
the corresponding Sudakov suppression. This, as
discussed in Refs. [44,45], might imply an under-
estimation of the Collins function as extracted at
tree level from the azimuthal asymmetry at Belle.
Hence the combined extraction of the transversity
from SIDIS at a lower Q2 (less Sudakov suppres-
sion), might lead to an overestimation of ∆T q.
This issue is currently under study. Here, as in
Ref. [20], the Q2 dependence of the Collins FF
is included assuming it to be the same as that
of the unpolarized fragmentation function, Dh/q:

Anselmino et al arXiv:0812.4366



Collins-Asymmetry: Access to Transversity

COMPASS

Heiner Wollny (University of Freiburg) Seminar CEA Saclay, Dec 03 2010 23

Update on transversity and Collins functions from SIDIS and e+e− data 7

 d
(x

)
T∆

x 
 u

(x
)

T∆
x 

  )
 d

(x
, k

T∆
x 

  )
 u

(x
, k

T∆
x 

x   (GeV)k

−0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1

0

0.1

0.2

0.3

0.4

x = 0.1

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x = 0.1

Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the Sof-
fer bound [46] (highest or lowest lines) and the
(wider) uncertainty bands of our previous extrac-
tion [20].

although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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obtained in Ref. [20].
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ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
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obtained in Ref. [20].
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0

dx (∆T q −∆T q̄) =

∫ 1

0

dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
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although this might not be the proper evolution,
it should mitigate the above-mentioned effect.
As it is well known, in a non relativistic the-

ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.
Another interesting quantity, related to the

first x-moment of the transversity distribution,
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δq =
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transversity, as assumed in our approach. From
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δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤
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mentation functions as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the positiv-
ity bound and the (wider) uncertainty bands as
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Fragmentation into pair of hadrons:

`N↑ → `′hhX
; Dihadron-Interference-FF H^

1 (z ,M2):

Fragmentation of a transversely polarized quark

into two unpolarized hadrons and rest X

; Azimuthal asymmetry of produced

hadron-pairs

In leading order interference

between hadron pairs in relative s- and p-waves
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Dihadron production depends on
two azimuthal angles:
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I ; Polarized DiFF and Transversity are not Zero

I Ap
RS(Minv ) < 0; (0.4 < Minv < 2 GeV/c2)

I Signal enhanced around ρ0-mass (0.77 GeV)
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I HERMES results scaled with −1/Dnn

I COMPASS measurement covers much larger range in x

I Good agreement in overlap region

I cut on x > 0.032 to enhance asymmetries in z and Minv

; Ap
RS(z) ≈ Ap

RS(Minv ) ≈ const.
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Recent prediction (Ma et al., Phys.Rev.D77:014035,2008)

I Two different Transversity models: SU6 and pQCD

I Model for polarized DiFF from Bacchetta et al (non-scaled)

... Belle showed first results of polarized DiFF !

(A. Vossen, Dubna Spin 2009)

; significant asymmetry

Recent prediction (Bacchetta, Radici, Phys.Rev.D79:034029,2009)

I Transversity-Distribution of Anselmino et al. (arXiv:0801.0173)

I Model for polarized DiFF

was downscaled with factor ∼ 3 ! (Fit on HERMES results!)
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Sivers-Function ∆T
0 q(x ,kkk2

T ):

distribution of unpolarized quarks with transverse

momentum kT in a transversely polarized nucleon

; azimuthal asymmetry of produced hadrons
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; azimuthal asymmetry:

Nh ∝ 1± A · sin(φh − φS)

φSiv = φh − φS

φh: azimuthal angle of hadron

φS : azimuthal angle of spin of initial quark
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f PT
∝

∑
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Sivers PDF ∆T
0 q(x ,kkk2

T ):

A non-zero Sivers-Asymmetry requires angular

momentum of the quarks
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I COMPASS and HERMES data show similar trends!

I COMPASS h+ about factor 2 smaller than HERMES
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CHAPTER 5. THE EXTRACTION OF THE AZIMUTHAL MOMENTS

carry the information of the struck quark. A list of the kinematic cuts for inclusive and semi-
inclusive DIS is reported in Table 5.3. The distributions ofselected inclusive and semi-inclusive
variables, subjected to the cuts discussed above, are plotted in Figure 5.4.
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Figure 5.4: Selected DIS kinematic variables.

5.3.4 The charge symmetric background

A big fraction of the interactions that take place in the target region do not result in deep inelastic
scattering processes. In addition, due to the limited geometric acceptance of the HERMES
spectrometer, not all the DIS events result in a detected scattered lepton. Nevertheless, high
energy leptons, produced in different processes such as electron-positron pair productions or
Dalitz-like meson decays, might pass all the DIS cuts. Theseleptons can thus be misidentified
as the scattered leptons, resulting in a wrong DIS and SIDIS count rate. Since, however, these
leptons are produced in pairs (charge symmetric background), a same amount of leptons with
the charge opposite to that of the beam particles is produced. These leptons were then used as a
control sample to quantify the amount of charge symmetric background and to correct for it.
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spectrometer, not all the DIS events result in a detected scattered lepton. Nevertheless, high
energy leptons, produced in different processes such as electron-positron pair productions or
Dalitz-like meson decays, might pass all the DIS cuts. Theseleptons can thus be misidentified
as the scattered leptons, resulting in a wrong DIS and SIDIS count rate. Since, however, these
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88

HERMESCOMPASS 2007 proton data

)2c(GeV/W 
5 10

2 )c
(G

eV
/

 〉2
Q〈

0

5

10

15
>0.032x
<0.032x

)2c(GeV/W 
5 10

〉x〈

−210

−110

positive hadrons:

I possible W dependence

I Asymmetry only non-zero
for small W , where
HERMES measures

COMPASS 2007 proton data

)2c(GeV/W 
5 10

p Si
v

A

−0.1

0

0.1 positive hadrons

>0.032x

<0.032x

)2c(GeV/W 
5 10

p Si
v

A

−0.1

0

0.1

preliminary

negative hadrons

Might explain difference between

COMPASS and HERMES proton results



Sivers-Asymmetry: Access to Sivers-Function

COMPASS

Heiner Wollny (University of Freiburg) Seminar CEA Saclay, Dec 03 2010 35

ASiv ∝∆T
0 q(x ,kkk2

T )⊗ Dh
q (x ,ppp2

T )

I HERMES Proton

Aπ
0

Siv , Aπ
+

Siv , AK+

Siv > 0

Aπ
−

Siv , AK−
Siv ≈ 0

I COMPASS Deuteron

Aπ
+

Siv ' Aπ
−

Siv ' 0

AK+

Siv ' AK−
Siv ' 0

A
K0
S

Siv ' 0

7

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

0

0.05

0.1

0.15 0π HERMES
preliminary

2002-2005

0

0.05

0.1

0.15 +π

0 0.1 0.2 0.3 0.4 0.5

-0.1

0

0.05

0.1 -π

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

-0.2

-0.1

0

0.1

0.2

S
0K HERMES

preliminary
2002-2005

-0.2

-0.1

0

0.1

0.2 +K

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2 -K

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

FIG. 3: The results obtained from our simultaneous fit of the SIDIS A
sin (φh−φS)
UT Sivers asymmetries (solid lines) are compared

with HERMES experimental data [10] for pion and kaon production (left and right panel, respectively). The shaded area
corresponds to the statistical uncertainty of the parameters, see Appendix A for further details. For completeness, we also show
the K0

S asymmetry, not measured at HERMES, which is the result of a computation based on our extracted Sivers function
and the assumed fragmentation functions of Eq. (16).
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FIG. 4: The results obtained from our fit (solid lines) are compared with the COMPASS measurements of A
sin (φh−φS)
UT for

pion (left panel) and kaon (right panel) production [11] off a deuteron target. The shaded area corresponds to the statistical
uncertainty of the parameters, as explained in Appendix A. The π0 asymmetry, not measured at COMPASS, is the result of
a computation based on our extracted Sivers functions. Also the K0

S asymmetry, although compared with data [12], is not a
best fit, but the result of our computation, using the assumed fragmentation functions of Eq. (16).
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ū = DK+

s = DK+

d̄ .

Our computation of the K0
S asymmetry at COMPASS can be compared with the available data [12], as shown in the

upper-right plots of Fig. 4. Notice that these curves, contrary to the others in the same figure, are not best fits, but
a simple estimate, based on the extracted Sivers functions and the adopted fragmentation functions of Eq. (16).
In Fig. 5, our results, obtained using the kaon fragmentation functions as given by de Florian et al. in Ref. [13]
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ū = DK+

s = DK+

d̄ .

Our computation of the K0
S asymmetry at COMPASS can be compared with the available data [12], as shown in the

upper-right plots of Fig. 4. Notice that these curves, contrary to the others in the same figure, are not best fits, but
a simple estimate, based on the extracted Sivers functions and the adopted fragmentation functions of Eq. (16).
In Fig. 5, our results, obtained using the kaon fragmentation functions as given by de Florian et al. in Ref. [13]

7

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

0

0.05

0.1

0.15 0π HERMES
preliminary

2002-2005

0

0.05

0.1

0.15 +π

0 0.1 0.2 0.3 0.4 0.5

-0.1

0

0.05

0.1 -π

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

-0.2

-0.1

0

0.1

0.2

S
0K HERMES

preliminary
2002-2005

-0.2

-0.1

0

0.1

0.2 +K

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2 -K

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

FIG. 3: The results obtained from our simultaneous fit of the SIDIS A
sin (φh−φS)
UT Sivers asymmetries (solid lines) are compared

with HERMES experimental data [10] for pion and kaon production (left and right panel, respectively). The shaded area
corresponds to the statistical uncertainty of the parameters, see Appendix A for further details. For completeness, we also show
the K0

S asymmetry, not measured at HERMES, which is the result of a computation based on our extracted Sivers function
and the assumed fragmentation functions of Eq. (16).

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

-0.1

0

0.05

0.1 0π COMPASS 2003-2004

-0.1

0

0.05

0.1 +π

-310 -210 -110 1

-0.1

0
0.05

0.1 -π

0.2 0.4 0.6 0.8 0.5 1 1.5

)
Sφ

 -
 

hφ
si

n
 (

U
T

A

x z  (GeV)TP

-0.1

0

0.05

0.1
S
0K COMPASS 2003-2004

-0.1

0

0.05

0.1 +K

-310 -210 -110 1

-0.1

0
0.05

0.1 -K

0.2 0.4 0.6 0.8 0.5 1 1.5

FIG. 4: The results obtained from our fit (solid lines) are compared with the COMPASS measurements of A
sin (φh−φS)
UT for

pion (left panel) and kaon (right panel) production [11] off a deuteron target. The shaded area corresponds to the statistical
uncertainty of the parameters, as explained in Appendix A. The π0 asymmetry, not measured at COMPASS, is the result of
a computation based on our extracted Sivers functions. Also the K0

S asymmetry, although compared with data [12], is not a
best fit, but the result of our computation, using the assumed fragmentation functions of Eq. (16).

from Ref. [13] – as:

D
K0

S

d = D
K0

S

d̄
=

1

2

[
DK+

u +DK+

sea

]

D
K0

S
s̄ = D

K0
S

s =
1

2

[
DK+

s̄ +DK+

sea

]
(16)

D
K0

S
u = D

K0
S
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a simple estimate, based on the extracted Sivers functions and the adopted fragmentation functions of Eq. (16).
In Fig. 5, our results, obtained using the kaon fragmentation functions as given by de Florian et al. in Ref. [13]
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Extraction of Sivers-Function:
Anselmino et al. arXiv:0805.2677

⇒ Sivers-Function
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simultaneous fit of HERMES and COMPASS data (see text for details). On the left panel, the first moment x∆Nf (1)(x),
Eq. (17), is shown as a function of x for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution
x∆Nf(x, k⊥) is shown as a function of k⊥ at a fixed value of x for each flavour, as indicated. The highest and lowest dashed
lines show the positivity limits |∆Nf | = 2f .

The u and d Sivers functions are also predicted to be opposite in the large Nc limit [29] and in chiral models
[30].

• The Sivers functions for ū, d̄ and s quarks, instead, turn out to have much larger uncertainties; even the sign
of the ū and s Sivers functions is not fixed by available data, while ∆Nfd̄/p↑ appears to be negative. This could

be consistent with a positive contribution from u quarks, necessary to explain the large K+ asymmetry, which
is decreased, for π+, by a negative d̄ contribution. One might expect correlated Sivers functions for s and s̄
quarks: we have actually checked that choosing ∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from 1 up to

about 1.1), but still leads to a reasonable fit.

COMPASS proton data will

improve extraction for low x
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Extraction of Sivers-Function:
Anselmino et al. arXiv:0805.2677
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[30].

• The Sivers functions for ū, d̄ and s quarks, instead, turn out to have much larger uncertainties; even the sign
of the ū and s Sivers functions is not fixed by available data, while ∆Nfd̄/p↑ appears to be negative. This could

be consistent with a positive contribution from u quarks, necessary to explain the large K+ asymmetry, which
is decreased, for π+, by a negative d̄ contribution. One might expect correlated Sivers functions for s and s̄
quarks: we have actually checked that choosing ∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2
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Transversity

I Sizeable Collins asymmetries

First extraction of Transversity distribution and Collins Fragmenation

Function

I Sizeable Dihadron asymmetries

Data is ready to extract Transversity

Sivers

I Significant asymmetry for positive hadron

First extraction of Sivers distribution

Outlook

I 2010 full year of data taking with transversely polarized protons
; statistical errors are expected to improve about factor 1.5
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where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of `′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and
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UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-
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longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward
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Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target

rest frame [28]. Ph⊥ and S⊥ are the transverse parts of Ph and S with respect to the photon

momentum.

have nonzero components g11
⊥ = g22

⊥ = −1 and ε12
⊥ = −ε21

⊥ = 1 in the coordinate system of

Fig. 1, our convention for the totally antisymmetric tensor being ε0123 = 1. We decompose

the covariant spin vector S of the target as

Sµ = S‖
Pµ − qµM2/(P · q)

M
√

1 + γ2
+ Sµ

⊥ , S‖ =
S · q
P · q

M
√

1 + γ2
, Sµ

⊥ = gµν
⊥ Sν (2.6)

and define its azimuthal angle φS in analogy to φh in eq. (2.3), with Ph replaced by S.

Notice that the sign convention for the longitudinal spin component is such that the target

spin is parallel to the virtual photon momentum for S‖ = −1. The helicity of the lepton

beam is denoted by λe. We consider the case where the detected hadron h has spin zero

or where its polarization is not measured.

Assuming single photon exchange, the lepton-hadron cross section can be expressed in

a model-independent way by a set of structure functions, see e.g. refs. [29, 30, 27]. We use

here a modified version of the notation in ref. [27], see appendix A, and write1
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1The polarizations SL and ST in [27] have been renamed to S‖ and |S⊥| here. This is to avoid a clash

of notation with section 3, where subscripts L and T refer to a different z-axis than in Fig. 1.
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; azimuthal asymmetry:

Nh+h− ∝ 1± A · sinφRS · sin θ

φRS = φR + φS − π
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