Transverse Spin and Transverse Momentum Effects at COMPASS

Heiner Wollny
University of Freiburg

Outline:

- Introduction: DIS, Parton Distribution Functions
- Transversity
- Transverse Momentum Dependent Distribution Functions (TMDs)

Transverse Spin and Transverse Momentum Effects at COMPASS

Heiner Wollny
CEA-Saclay Irfu/SPhN

Outline:

- Introduction: DIS, Parton Distribution Functions
- Transversity
- Transverse Momentum Dependent Distribution Functions (TMDs)

Deep-Inelastic Scattering (DIS)

Lepton-Nucleon DIS:
 $\ell+N \rightarrow \ell^{\prime}+X$

$$
\begin{aligned}
Q^{2} & =-q^{2}=-\left(I-I^{\prime}\right)^{2} \\
y & =\frac{P \cdot q}{P \cdot l} \stackrel{\text { lab }}{=} \frac{E-E^{\prime}}{E} \\
x & =\frac{Q^{2}}{2 P \cdot q} \\
W^{2} & =(P+q)^{2}
\end{aligned}
$$

Deep-Inelastic Scattering (DIS)

$\ell+N \rightarrow \ell^{\prime}+X$

$$
\begin{aligned}
Q^{2} & =-q^{2}=-\left(I-l^{\prime}\right)^{2} \\
y & =\frac{P \cdot q}{P \cdot 1} \stackrel{\text { abb }}{\frac{E-E^{\prime}}{E}} \\
x & =\frac{Q^{2}}{2 P \cdot q} \\
W^{2} & =(P+q)^{2}
\end{aligned}
$$

Deep-Inelastic Scattering (DIS)

Lepton-Nucleon DIS:

$$
\ell+N \rightarrow \ell^{\prime}+X
$$

$$
\begin{aligned}
Q^{2} & =-q^{2}=-\left(I-l^{\prime}\right)^{2} \\
y & =\frac{P \cdot q}{P \cdot l} \stackrel{\text { lab }}{=} \frac{E-E^{\prime}}{E} \\
x & =\frac{Q^{2}}{2 P \cdot q} \\
W^{2} & =(P+q)^{2}
\end{aligned}
$$

Lepton-Nucleon SIDIS: $\ell+N \rightarrow \ell^{\prime}+h+X$

$$
z=\frac{P \cdot P_{h}}{P \cdot l} \stackrel{\text { lab }}{=} \frac{E_{h}}{E-E^{\prime}}
$$

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS
$\ell N \rightarrow \ell^{\prime} X$

helicity distribution
in polarized DIS
$\vec{\ell} \vec{N} \rightarrow \ell^{\prime} X$

Unpolarized PDFs: $q(x)$

F_{2}^{p} from lepton-proton scattering

Unpolarized PDFs: $q(x)$

F_{2}^{p} from lepton-proton scattering

F_{2}^{d} from lepton-deuteron scattering

Unpolarized PDFs: $q(x)$

F_{2}^{p} from lepton-proton scattering

F_{2}^{d} from lepton-deuteron scattering $\therefore 10^{9}$
F_{2} from neutrino-iron scattering

Deuteron

- BCDMS
- E665
- NMC
\square SLAC
37

Unpolarized PDFs: $q(x)$

Particle Data Group Collaboration

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS
\leftarrow well known
$\ell N \rightarrow \ell^{\prime} X$

helicity distribution
in polarized DIS
$\vec{\ell} \vec{N} \rightarrow \ell^{\prime} X$

Helicity PDFs: $\Delta q(x)$

Physikalisches Institut

Helicity PDFs: $\Delta q(x)$

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS
\leftarrow well
$\ell N \rightarrow \ell^{\prime} X$

helicity distribution
in polarized DIS
\leftarrow known
$\vec{\ell} \vec{N} \rightarrow \ell^{\prime} X$

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS
\leftarrow well
$\ell N \rightarrow \ell^{\prime} X$

helicity distribution
in polarized DIS
\leftarrow known
$\vec{\ell} \vec{N} \rightarrow \ell^{\prime} X$

Transversity: What is the challenge?

Helicity $\Delta \mathbf{q}(x)$

Transversity $\Delta_{T} \mathbf{q}(x)$

Pictures look pretty similar! \leadsto Why is Transversity only accessible in SIDIS?

Optical Theorem

Optical theorem:
DIS cross-section is proportional to imaginary part of compton forward scattering

Optical Theorem

Optical theorem:
DIS cross-section is proportional to imaginary part of compton forward scattering

Helicity and parity conservation \Rightarrow

PDFs in hand-bags

Physkalisches Instut

PDFs in hand-bags

Collins-Asymmetry

Fragmentation into single hadron:
$\ell N^{\dagger} \rightarrow \ell^{\prime} h X$
\leadsto Collins-Fragmentation Function $\Delta_{T}^{0} D_{q}^{h}$:
fragmentation of a transversely polarized quark into an unpolarized hadron

Collins-Asymmetry

Fragmentation into single hadron:
$\ell N^{\uparrow} \rightarrow \ell^{\prime} h X$
\leadsto Collins-Fragmentation Function $\Delta_{T}^{0} D_{q}^{h}$:
fragmentation of a transversely polarized quark into an unpolarized hadron
\leadsto azimuthal asymmetry of produced hadrons

Collins-Asymmetry: A simple interpretation

Favored fragmentation:
$u \rightarrow \pi^{+}(u \bar{d})$
spin flip of
struck u! -

$$
d \bar{d}\left(J^{P}=0^{+}\right)
$$

Collins-Asymmetry: A simple interpretation

Favored fragmentation:
$u \rightarrow \pi^{+}(u \bar{d})$

$L=1 \rightarrow \pi^{+}$heads out of page

Collins-Asymmetry: A simple interpretation

Unfavored fragmentation:
$u \rightarrow \pi^{-}(d \bar{u})$

$$
\quad==1
$$

$$
u \bar{u}\left(J^{P}=0^{+}\right): S=1 ; L=1
$$

Collins-Asymmetry: A simple interpretation

Unfavored fragmentation:
$u \rightarrow \pi^{-}(d \bar{u})$

Collins-Asymmetry

Physikaliscches institut

Proton:
 $$
A_{\text {Coll }}^{h^{+}} \sim-A_{\text {Coll }}^{h^{-}} \neq 0
$$

Deuteron: $\quad A_{\text {Coll }}^{h^{+}} \sim A_{\text {Coll }}^{h^{-}} \sim 0$
(we'll keep that in mind..)

Collins Asymmetry

Measuring transversity with Collins-FF $\Delta_{T}^{0} D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)$

Hadron production depends on two azimuthal angles:
ϕ_{S} : azimuthal angle of spin of the initial quark

Collins Asymmetry

Measuring transversity with Collins-FF $\Delta_{T}^{0} D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)$

Hadron production depends on two azimuthal angles:
ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{h} : azimuthal angle of hadron

Collins Asymmetry

Measuring transversity with Collins-FF $\Delta_{T}^{0} D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)$

Hadron production depends on two azimuthal angles:

$$
\begin{aligned}
\phi_{S}: & \text { azimuthal angle of spin } \\
& \text { of the initial quark }
\end{aligned}
$$

\leadsto azimuthal asymmetry:

$$
\begin{gathered}
N_{h} \propto 1 \pm A \cdot \sin \phi_{\text {Coll }} \\
\phi_{\text {Coll }}=\phi_{h}+\phi_{S}-\pi
\end{gathered}
$$

Collins Asymmetry

Measuring transversity with Collins-FF $\Delta_{T}^{0} D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)$

Hadron production depends on two azimuthal angles:
ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{h} : azimuthal angle of hadron
\leadsto azimuthal asymmetry:

$$
\begin{gathered}
N_{h} \propto 1 \pm A \cdot \sin \phi_{\text {Coll }} \\
\phi_{\text {Coll }}=\phi_{h}+\phi_{S}-\pi
\end{gathered}
$$

$$
\begin{aligned}
A_{C o l l} & =\frac{A}{f P_{T} D_{n n}} \propto \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{T} q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes \Delta_{T}^{0} D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)}{\sum_{q} e_{q}^{2} \cdot q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)} \\
f & =\text { target dilution } \\
P_{T} & =\text { target polarization } \\
D_{n n} & =\text { transverse spin transfer }
\end{aligned}
$$

COMPASS Experiment

230 physicists, 10 countries, 25 institutes

COMPASS Detector (muon setup)

- high intensity beam ($2 \cdot 10^{8} \mu^{+} /$spill)
- two stages spectrometer:
\leadsto large angular acceptance $\left(0 \leq \theta_{l a b} \leq 180 \mathrm{mrad}\right)$ \sim broad kinematical range in x and Q^{2}

COMPASS Polarized Target

COMPASS target (≥ 2006):

- 3 target cells
- acceptance: 180 mrad
- target material: NH_{3}
- dilution factor: $f \simeq 15 \%$
- polarization: $P_{T} \sim 90 \%$
- reversal of polarization every 4-5 days

Challenge of Measurement

Measuring Collins Asymmetry is challenging:

- Asymmetries are expected to be in the order of few percents $\leadsto \frac{1}{f P_{T} D_{n n}} \sim 0.1 \Rightarrow$ few permille
- Coupling of data-samples with opposite target polarization
\leadsto stable working detector (timescale weeks)
\sim extensive data stability checks
- Non-uniform angular acceptance of detector \leadsto Orthogonal Collins- and SiversModulation mixes via acceptance \sim need of advanced extraction methods

Collins: Results Proton 2007

COMPASS 2007 proton data

$-A_{\text {Coll }}^{h^{+}} \simeq-A_{\text {Coll }}^{h^{-}}$

- Large asymmetries in valence-quark region
\sim Transversity and Collins-FF are not Zero
- Small asymmetries in sea-quark region
- Published in PLB 673 (2009) 127-135

Collins: Results Proton 2007

- Nice agreement between COMPASS and HERMES data!
- Not obvious, because of different Q^{2}

Collins-Asymmetry: Access to Transversity

Collins-Asymmetry: Access to Transversity

- HERMES Proton
$\sim A_{\text {Coll }}^{\pi^{+}} \simeq-A_{\text {Coll }}^{\pi^{-}}$
- COMPASS Deuteron

$$
\leadsto A_{\text {Coll }}^{\pi^{+}} \simeq A_{\text {Coll }}^{\pi^{-}} \simeq 0
$$

Heiner Wollny (University of Freiburg)
Seminar CEA Saclay, Dec 032010

Collins-Asymmetry: Access to Transversity

- HERMES Proton
$\sim A_{\text {Coll }}^{\pi^{+}} \simeq-A_{\text {Coll }}^{\pi^{-}}$
- COMPASS Deuteron

$$
\leadsto A_{\text {Coll }}^{\pi^{+}} \simeq A_{\text {Coll }}^{\pi^{-}} \simeq 0
$$

- Belle $e^{+} e^{-}$: Collins-FF $\Delta_{T}^{0} D_{q}^{h}$ Q^{2}-evolution to COMPASS and HERMES energies not known!

Collins-Asymmetry: Access to Transversity

\Rightarrow Transversity

Collins-Asymmetry: Access to Transversity

\Rightarrow Transversity

\Rightarrow Collins-FF $\Delta_{T}^{0} D_{q}^{h}$
$2 \Delta_{T}^{0} D_{\text {favored }} \approx-\Delta_{T}^{0} D_{\text {unfavored }}$

Collins-Asymmetry: Access to Transversity

\Rightarrow Transversity

\Rightarrow Collins-FF $\Delta_{T}^{0} D_{q}^{h}$
$2 \Delta_{T}^{0} D_{\text {favored }} \approx-\Delta_{T}^{0} D_{\text {unfavored }}$

Collins-Asymmetry: Access to Transversity

\Rightarrow Transversity
$\Delta_{T} \mathrm{u}>0, \quad \Delta_{T} \mathrm{~d}<0$

\Rightarrow Collins-FF $\Delta_{T}^{0} D_{q}^{h}$
$2 \Delta_{T}^{0} D_{\text {favored }} \approx-\Delta_{T}^{0} D_{\text {unfavored }}$

Dihadron-Asymmetry

Physikalisches Institut

Fragmentation into pair of hadrons:
$\ell N^{\uparrow} \rightarrow \ell^{\prime} h h X$
\sim Dihadron-Interference-FF $H_{1}^{\varangle}\left(z, M^{2}\right)$:

Fragmentation of a transversely polarized quark into two unpolarized hadrons and rest X

Dihadron-Asymmetry

Physikalisches Institut

Fragmentation into pair of hadrons:
$\ell N^{\uparrow} \rightarrow \ell^{\prime} h h X$
\sim Dihadron-Interference-FF $H_{1}^{\varangle}\left(z, M^{2}\right)$:
Fragmentation of a transversely polarized quark into two unpolarized hadrons and rest X
\sim Azimuthal asymmetry of produced hadron-pairs

In leading order interference
between hadron pairs in relative s - and p-waves

Dihadron: What to be measured

Dihadron production depends on two azimuthal angles:
 ϕ_{S} : azimuthal angle of spin of the initial quark

Dihadron: What to be measured

Dihadron production depends on

 two azimuthal angles:ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{R} : azimuthal angle of two hadron-plane

Dihadron: What to be measured

Dihadron production depends on

 two azimuthal angles:ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{R} : azimuthal angle of two hadron-plane

Dihadron-Interference:
\sim Azimuthal asymmetry in:

$$
N_{h^{+} h^{-}} \propto 1 \pm A \cdot \sin \phi_{R S} \cdot \sin \theta
$$

$$
\Phi_{R S}=\phi_{R}+\phi_{S}-\pi
$$

Dihadron: What to be measured

Dihadron production depends on

 two azimuthal angles:ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{R} : azimuthal angle of two hadron-plane

Dihadron-Interference:
\sim Azimuthal asymmetry in:

$$
N_{h^{+} h^{-}} \propto 1 \pm A \cdot \sin \phi_{R S} \cdot \sin \theta
$$

$$
\Phi_{R S}=\phi_{R}+\phi_{S}-\pi
$$

Dihadron: What to be measured

Dihadron production depends on

 two azimuthal angles:
ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{R} : azimuthal angle of two hadron-plane

Dihadron-Interference:
$~$ Azimuthal asymmetry in:

$$
N_{h^{+} h^{-}} \propto 1 \pm A \cdot \sin \phi_{R S} \cdot \sin \theta
$$

$$
\Phi_{R S}=\phi_{R}+\phi_{S}-\pi
$$

Dihadron: What to be measured

Dihadron production depends on

 two azimuthal angles:ϕ_{S} : azimuthal angle of spin of the initial quark
ϕ_{R} : azimuthal angle of two hadron-plane

Dihadron-Interference:
\sim Azimuthal asymmetry in:

$$
N_{h^{+} h^{-}} \propto 1 \pm A \cdot \sin \phi_{R S}
$$

$$
\Phi_{R S}=\phi_{R}+\phi_{S}-\pi
$$

$$
\begin{aligned}
& A_{R S}=\frac{A}{f \cdot P_{T} \cdot D_{n n}} \bigcirc \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{T} q(x) \cdot H_{1}^{\varangle}\left(z, M^{2}\right)}{\sum_{q} e_{q}^{2} \cdot q(x) \cdot D_{1}\left(z, M^{2}\right)} \\
& f=\text { target dilution } \\
& P_{T}=\text { target polarization } \\
& D_{n n}=\text { transverse spin transfer }
\end{aligned}
$$

Dihadron-Asymmetry: Results

- \sim Polarized DiFF and Transversity are not Zero
- $A_{R S}^{p}\left(M_{\text {inv }}\right)<0 ; \quad\left(0.4<M_{i n v}<2 \mathrm{GeV} / c^{2}\right)$
- Signal enhanced around ρ^{0}-mass $(0.77 \mathrm{GeV})$

Dihadron-Asymmetry: Results

- cut on $x>0.032$ to enhance asymmetries in z and $M_{i n v}$
$\leadsto A_{R S}^{p}(z) \approx A_{R S}^{p}\left(M_{i n v}\right) \approx$ const.

Dihadron-Asymmetry: Results

- HERMES results scaled with $-1 / D_{n n}$
- COMPASS measurement covers much larger range in x
- Good agreement in overlap region

Dihadron-Asymmetry: Results

Recent prediction (Bacchetta, Radici, Phys.Rev.D79:034029,2009)

- Transversity-Distribution of Anselmino et al. (arXiv:0801.0173)
- Model for polarized DiFF

Dihadron-Asymmetry: Results

Recent prediction (Bacchetta, Radici, Phys.Rev.D79:034029,2009)

- Transversity-Distribution of Anselmino et al. (arXiv:0801.0173)
- Model for polarized DiFF
was downscaled with factor ~ 3 ! (Fit on HERMES results!)

Dihadron-Asymmetry: Results

Recent prediction (Ma et al., Phys.Rev.D77:014035,2008)

- Two different Transversity models: SU6 and pQCD
- Model for polarized DiFF from Bacchetta et al (non-scaled)

Dihadron-Asymmetry: Results

Recent prediction (Ma et al., Phys.Rev.D77:014035,2008)

- Two different Transversity models: SU6 and pQCD
- Model for polarized DiFF from Bacchetta et al (non-scaled)
... Belle showed first results of polarized DiFF!
(A. Vossen, Dubna Spin 2009)
\leadsto significant asymmetry

Dihadron-Asymmetry: Results

Recent prediction (Ma et al., Phys.Rev.D77:014035 7 nn~-

- Two different Transversitv m- . 'vsis to extract
- Model fnor global analys cross-check Ready for sity \rightarrow Ultimate Transversity upn 2009) o.....cant asymmetry

Transverse Momentum Dependent Distributions TMDs

TMDs

Three parton distribution functions when integrating over k_{\perp}

TMDs

Eight parton distribution functions when taking into account k_{\perp}

TMDs

Eight parton distribution functions when taking into account k_{\perp}

Sivers-Asymmetry

Sivers-Function $\Delta_{0}^{T} \mathrm{q}\left(x, \boldsymbol{k}_{T}^{2}\right)$:

distribution of unpolarized quarks with transverse momentum k_{T} in a transversely polarized nucleon

$~$ azimuthal asymmetry of produced hadrons

Sivers-Asymmetry: A simple interpretation

- angular momentum $~$ non-symmetric quark-density (in impact parameter space)

Sivers-Asymmetry: A simple interpretation

- angular momentum $~$ non-symmetric quark-density (in impact parameter space)

Chromodynamic lensing:

- proton spin
- strong force pulls fragmenting quark towards center of momentum
- more displaced quarks w.r.t center of momentum feel stronger force

Sivers-Asymmetry: A simple interpretation

- angular momentum $~$ non-symmetric quark-density (in impact parameter space)

Chromodynamic lensing:

- proton spin
\Rightarrow More reactions in upper part of proton
\Rightarrow More hadrons will be deflected downwards

Sivers Asymmetry

Physikalisches Institut
Abert-Ludwigs
Albert Lutwigs:
Universtita Frebur

Sivers PDF $\Delta_{0}^{T} q\left(x, \boldsymbol{k}_{T}^{2}\right)$:

A non-zero Sivers-Asymmetry requires angular momentum of the quarks

Sivers Asymmetry

A non-zero Sivers-Asymmetry requires angular momentum of the quarks
\leadsto azimuthal asymmetry:

$$
\begin{aligned}
& N_{h} \propto 1 \pm A \cdot \sin \left(\phi_{h}-\phi_{S}\right) \\
& \phi_{S i v}=\phi_{h}-\phi_{S}
\end{aligned}
$$

ϕ_{h} : azimuthal angle of hadron
ϕ_{S} : azimuthal angle of spin of initial quark

Sivers Asymmetry

Sivers PDF $\Delta_{0}^{T} q\left(x, \boldsymbol{k}_{T}^{2}\right)$:

A non-zero Sivers-Asymmetry requires angular momentum of the quarks
\leadsto azimuthal asymmetry:

$$
\begin{aligned}
& N_{h} \propto 1 \pm A \cdot \sin \left(\phi_{h}-\phi_{S}\right) \\
& \phi_{S i v}=\phi_{h}-\phi_{S}
\end{aligned}
$$

ϕ_{h} : azimuthal angle of hadron
ϕ_{S} : azimuthal angle of spin of initial quark
$A_{\text {Siv }}=\frac{A}{f P_{T}} \propto \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{0}^{T} q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes D_{q}^{h}\left(x, \boldsymbol{p}_{T}^{2}\right)}{\sum_{q} e_{q}^{2} \cdot q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes D_{q}^{h}\left(z, \boldsymbol{p}_{T}^{2}\right)}$

Sivers: Results Proton 2007

COMPASS 2007 proton data

for h^{+}additional absolute systematical uncertainty of ± 0.01

- Positive asymmetry for h^{+}
- Asymmetry for h^{-}small, compatible with zero
- Published in PLB 673 (2009) 127-135

Sivers: Results Proton 2007

COMPASS 2007 proton data

- COMPASS and HERMES data show similar trends!
- COMPASS h^{+}about factor 2 smaller than HERMES

Sivers: Results Proton 2007

positive hadrons:

- possible W dependence
- Asymmetry only non-zero for small W, where HERMES measures

Sivers: Results Proton 2007

positive hadrons:

- possible W dependence
- Asymmetry only non-zero for small W, where HERMES measures

Sivers: Results Proton 2007

positive hadrons:

- possible W dependence
- Asymmetry only non-zero for small W, where HERMES measures

Sivers-Asymmetry: Access to Sivers-Function

Anselmino et al. arXiv:0805.2677
 $A_{S i v} \propto \Delta_{0}^{T} q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes D_{q}^{h}\left(x, \boldsymbol{p}_{T}^{2}\right)$

- HERMES Proton

$$
\begin{aligned}
& A_{\text {Siv }}^{\pi^{0}}, A_{\text {Siv }}^{\pi^{+}}, A_{\text {Siv }}^{K^{+}}>0 \\
& A_{\text {Siv }}^{\pi^{-}}, A_{\text {Siv }}^{K-} \approx 0
\end{aligned}
$$

Sivers-Asymmetry: Access to Sivers-Function

Anselmino et al. arXiv:0805.2677

$$
\begin{aligned}
& A_{S i v} \propto \Delta_{0}^{T} q\left(x, \boldsymbol{k}_{T}^{2}\right) \otimes D_{q}^{h}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& \quad \text { HERMES Proton }
\end{aligned}
$$

$$
\begin{aligned}
& A_{\text {Siv }}^{\pi^{0}}, A_{\text {Siv }}^{\pi^{+}}, A_{\text {Siv }}^{K+}>0 \\
& A_{\text {Siv }}^{\pi^{-}}, A_{\text {Siv }}^{K-} \approx 0
\end{aligned}
$$

- COMPASS Deuteron

$$
\begin{aligned}
& A_{S i v}^{\pi^{+}} \simeq A_{\text {Siv }}^{\pi^{-}} \simeq 0 \\
& A_{\text {Siv }}^{K+} \simeq A_{\text {Siv }}^{K-} \simeq 0 \\
& A_{S i v}^{K_{S}^{0}} \simeq 0
\end{aligned}
$$

Sivers-Asymmetry: Access to Sivers-Function

Extraction of Sivers-Function: Anselmino et al. arXiv:0805.2677

\Rightarrow Sivers-Function

$\Delta_{0}^{T} \mathbf{u}>0$
$\Delta_{0}^{T} \mathbf{d}<0$

Sivers-Asymmetry: Access to Sivers-Function

$$
\begin{aligned}
& \Delta_{0}^{T} \mathbf{u}>0 \\
& \Delta_{0}^{T} \mathbf{d}<0
\end{aligned}
$$

Extraction of Sivers-Function: Anselmino et al. arXiv:0805.2677

$$
\Rightarrow \text { Sivers-Function }
$$
 \Rightarrow Sivers-Function

data for low x

Summary

Transversity

- Sizeable Collins asymmetries

First extraction of Transversity distribution and Collins Fragmenation
Function

- Sizeable Dihadron asymmetries

Data is ready to extract Transversity

Sivers

- Significant asymmetry for positive hadron

First extraction of Sivers distribution

Summary

Transversity

- Sizeable Collins asymmetries

First extraction of Transversity distribution and Collins Fragmenation
Function

- Sizeable Dihadron asymmetries

Data is ready to extract Transversity

Sivers

- Significant asymmetry for positive hadron

First extraction of Sivers distribution

Outlook

- 2010 full year of data taking with transversely polarized protons \sim statistical errors are expected to improve about factor 1.5

Thank You

email: heiner.wollny@cern.ch

Back up

Back Up

Single Hadrons: SIDIS Event Selection

DIS cuts:

- $Q^{2}>1(\mathrm{GeV} / c)^{2}$
- $0.1<y<0.9$
- $W^{2}>25 \mathrm{GeV}^{2} / c^{4}$

Single Hadrons: SIDIS Event Selection

DIS cuts:

- $Q^{2}>1(\mathrm{GeV} / c)^{2}$
- $0.1<y<0.9$
- $W^{2}>25 \mathrm{GeV}^{2} / c^{4}$

Single Hadrons: SIDIS Event Selection

hadron cuts:
 - $p_{T}>0.1 \mathrm{GeV} / c$
 - $z>0.2$

Total statistics:
pos hadrons neg hadrons
$15 \cdot 10^{6} \quad 12 \cdot 10^{6}$

General Expression of polarized SIDIS Cross-Section

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}= \\
& \frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& +\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}
\end{aligned}
$$

unpolarized target

$$
+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

longitudinally
 polarized target

$$
+\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right.
$$

transversely

$$
+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}
$$ polarized target

$$
+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}
$$

$$
+\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right]
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

[^0]
Dihadron Interference

Measuring transversity with polarized Dihadron-Interference-FF H_{1}^{\varangle} :

$~$ azimuthal asymmetry:

$$
\begin{aligned}
& N_{h^{+} h^{-}} \propto 1 \pm A \cdot \sin \phi_{R S} \cdot \sin \theta \\
& \phi_{R S}=\phi_{R}+\phi_{S}-\pi \\
& A_{R S}=\frac{A}{f P_{T} D_{n n}} \propto \sum_{q} e_{q}^{2} \cdot \Delta_{T} q \cdot H_{1}^{\varangle} \\
& H_{1}^{\varangle}=H_{1}^{\varangle, S p}+\cos \theta H_{1}^{\varangle, p p} \\
& \leadsto \text { only sensitive to } H_{1}^{\varangle, S p}
\end{aligned}
$$

Definition of R_{T} and ϕ_{R}

DiHadrons: SIDIS Event Selection

DIS cuts:

- $Q^{2}>1(\mathrm{GeV} / c)^{2}$
- $0.1<y<0.9$
- $W>5 \mathrm{GeV} / c^{2}$

COMPASS 2007 TRANSVERSE PROTON DATA

DiHadrons: SIDIS Event Selection

hadron cuts:

- $z_{i}>0.1, \quad x_{F, i}>0.1$
- $z_{\text {sum }}=z_{1}+z_{2}<0.9$
- $R_{T}>0.07 \mathrm{GeV} / c$

Total statistics for this analysis:
$11 \cdot 10^{6} h^{+} h^{-}$-pairs

Z_{1}

Table of Contents

Physikalisches Institut

DIS and SIDIS
Nucleon in LO
Unpolarized PDFs
Polarized PDFs
Transversity
Optical Theorem
Collins-Asymmetry
Collins: A simple interpretation
Collins: What to be measured?
COMPASS Experiment
Detector
Polarized Target
Collins: Results
Access to Transversity
Dihadron-Asymmetry
Dihadrons: What to be measured
Dihadron: Results
Sivers-Asymmetry
Sivers: A simple interpretation
Sivers: What to be measured?
Sivers: Results
Sivers: W-dependence
Access to Sivers-Function
Summary
Back Up
Single Hadrons: SIDIS Event Selection
TMDs in Single Hadron Cross-Section
Dihadron Interference
DiHadrons: SIDIS Event Selection
Table of Contents

[^0]: A.Bacchetta et al

 JHEP 0702:093,2007
 E-print number: hep-ph/0611265

