Transverse Spin and Transverse Momentum Effects at COMPASS

Heiner Wollny University of Freiburg

Outline:

- Introduction: DIS, Parton Distribution Functions
- Transversity
- Transverse Momentum Dependent Distribution Functions (TMDs)

Transverse Spin and Transverse Momentum Effects at COMPASS

Heiner Wollny CEA-Saclay Irfu/SPhN

Outline:

- Introduction: DIS, Parton Distribution Functions
- Transversity
- Transverse Momentum Dependent Distribution Functions (TMDs)

Deep-Inelastic Scattering (DIS)

Lepton-Nucleon DIS: $\ell + N \rightarrow \ell' + X$

$$Q^{2} = -q^{2} = -(I - I')^{2}$$
$$y = \frac{P \cdot q}{P \cdot I} \stackrel{\text{lab}}{=} \frac{E - E'}{E}$$
$$x = \frac{Q^{2}}{2P \cdot q}$$
$$W^{2} = (P + q)^{2}$$

Deep-Inelastic Scattering (DIS)

Lepton-Nucleon DIS: $\ell + N \rightarrow \ell' + X$

Deep-Inelastic Scattering (DIS)

Lepton-Nucleon DIS: $\ell + N \rightarrow \ell' + X$

k = xP

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS $\ell N \rightarrow \ell' X$

helicity distribution in polarized DIS $\vec{\ell} \, \vec{N} \to \ell' X$

$$\Delta_{\tau} \mathbf{q}(x) = \mathbf{q}^{\uparrow\uparrow}(x) - \mathbf{q}^{\uparrow\downarrow}(x)$$

transversity distributionin polarized SIDIS $\ell N^{\uparrow} \rightarrow \ell' h X$ $\ell N^{\uparrow} \rightarrow \ell' h X$ $\ell N^{\uparrow} \rightarrow \ell' \Lambda X$

Heiner Wollny (University of Freiburg)

Seminar CEA Saclay, Dec 03 2010

Heiner Wollny (University of Freiburg)

Particle Data Group Collaboration

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution in unpolarized DIS $\ell N \rightarrow \ell' X$ \leftarrow well known

helicity distribution in polarized DIS $\vec{\ell} \, \vec{N} \to \ell' X$

$$\Delta_{T} \mathbf{q}(x) = \mathbf{q}^{\uparrow\uparrow}(x) - \mathbf{q}^{\uparrow\downarrow}(x)$$

transversity distribution in polarized SIDIS $\ell N^{\uparrow} \rightarrow \ell' hhX$ $\ell N^{\uparrow} \rightarrow \ell' hX$ $\ell N^{\uparrow} \rightarrow \ell' \Lambda X$

Helicity PDFs: $\Delta q(x)$

Physikalisches Institut Abert-Ludmgs-Universität Fredurg

Helicity PDFs: $\Delta q(x)$

Physikalisches Institut

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution
in unpolarized DIS
 $\ell N \rightarrow \ell' X$ \leftarrow well
known

helicity distribution in polarized DIS $\ell \vec{N} \rightarrow \ell' X$

$$\Delta_{\tau} \mathbf{q}(x) = \mathbf{q}^{\uparrow\uparrow}(x) - \mathbf{q}^{\uparrow\downarrow}(x)$$

transversity distributionin polarized SIDIS $\ell N^{\uparrow} \rightarrow \ell' h X$ $\ell N^{\uparrow} \rightarrow \ell' h X$ $\ell N^{\uparrow} \rightarrow \ell' h X$

Nucleon in Leading Order

In leading order three parton distributions are needed to describe the structure of the nucleon:

quark distribution
in unpolarized DIS
 $\ell N \rightarrow \ell' X$ \leftarrow well
known

$$\Delta \mathbf{q}(x) \longrightarrow \mathbf{r} \mathbf{q}(x)$$

helicity distribution in polarized DIS $\ell \vec{N} \rightarrow \ell' X$

$$\Delta_{T} \mathbf{q}(x) = \mathbf{q}^{\uparrow\uparrow}(x) - \mathbf{q}^{\uparrow\downarrow}(x)$$

transversity distribution in polarized SIDIS

$$\ell N^{\uparrow} \to \ell' hX$$

$$\ell N^{\uparrow} \to \ell' hhX$$

$$\ell N^{\uparrow} \to \ell' hhX$$

Transversity: What is the challenge?

Pictures look pretty similar!

\rightsquigarrow Why is Transversity only accessible in SIDIS?

Physikalisches Institu

Optical theorem:

DIS cross-section is proportional to imaginary part of compton forward scattering

Optical theorem:

DIS cross-section is proportional to imaginary part of compton forward scattering

Helicity and parity conservation \Rightarrow

1 miles

 $|\uparrow\rangle \sim |+\rangle + i|-\rangle$ $|\downarrow\rangle \sim |+\rangle - i|-\rangle$

Fragmentation into single hadron:

 $\ell N^{\uparrow} \rightarrow \ell' h X$

\rightsquigarrow Collins-Fragmentation Function $\Delta^0_T D^h_q$:

fragmentation of a transversely polarized quark into an unpolarized hadron

Fragmentation into single hadron:

 $\ell N^{\uparrow} \rightarrow \ell' h X$

\rightsquigarrow Collins-Fragmentation Function $\Delta^0_T D^h_q$:

fragmentation of a transversely polarized quark into an unpolarized hadron

\rightsquigarrow azimuthal asymmetry of produced hadrons

Collins-Asymmetry: A simple interpretation

Collins-Asymmetry: A simple interpretation

Seminar CEA Saclay, Dec 03 2010

Collins-Asymmetry: A simple interpretation

Physikalisches Institu:

(we'll keep that in mind..)

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h(z, \mathbf{p}_T^2)$

Hadron production depends on two azimuthal angles:

 ϕ_5 : azimuthal angle of spin of the initial quark

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h(z, \mathbf{p}_T^2)$

Hadron production depends on two azimuthal angles:

 ϕ_5 : azimuthal angle of spin of the initial quark ϕ_h : azimuthal angle of hadron

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h(z, \mathbf{p}_T^2)$

Hadron production depends on two azimuthal angles:

 ϕ_5 : azimuthal angle of spin of the initial quark ϕ_h : azimuthal angle of hadron

q

Ph

S

Collins Asymmetry

Measuring transversity with Collins-FF $\Delta_T^0 D_q^h(z, \mathbf{p}_T^2)$

Hadron production depends on two azimuthal angles:

 ϕ_5 : azimuthal angle of spin of the initial quark ϕ_h : azimuthal angle of hadron

COMPASS Experiment

Seminar CEA Saclay, Dec 03 2010
COMPASS Detector (muon setup)

- \rightsquigarrow large angular acceptance ($0 \le \theta_{lab} \le 180 \text{ mrad}$)
- \sim broad kinematical range in x and Q^2

COMPASS Polarized Target

Ô

50 Z_{vtv} [cm]

5000

-50

Heiner Wollny (University of Freiburg)

COMPASS target (\geq 2006):

- ► 3 target cells
- ► acceptance: 180 mrad
- ► target material: NH₃
- dilution factor: $f \simeq 15 \%$
- polarization: $P_T \sim 90 \%$
- reversal of polarization every 4-5 days

Measuring Collins Asymmetry is challenging:

- ► Asymmetries are expected to be in the order of few percents $\sim \frac{1}{f P_T D_{nn}} \sim 0.1 \Rightarrow$ few permille
- Coupling of data-samples with opposite target polarization
 stable working detector (timescale weeks)
 extensive data stability checks

- ► Large asymmetries in valence-quark region → Transversity and Collins-FF are **not** Zero
- Small asymmetries in sea-quark region
- Published in PLB 673 (2009) 127-135

Collins: Results Proton 2007

Heiner Wollny (University of Freiburg)

- Nice agreement between COMPASS and HERMES data!
- Not obvious, because of different Q^2

HERMES Proton

 $\rightarrow A_{Coll}^{\pi^+} \simeq -A_{Coll}^{\pi^-}$

- COMPASS Deuteron
 - $\rightarrow A_{Coll}^{\pi^+} \simeq A_{Coll}^{\pi^-} \simeq 0$

- HERMES Proton
 - $\rightarrow A_{Coll}^{\pi^+} \simeq -A_{Coll}^{\pi^-}$
- COMPASS Deuteron $\rightarrow A_{Coll}^{\pi^+} \simeq A_{Coll}^{\pi^-} \simeq 0$
- ▶ Belle e^+e^- : Collins-FF $\Delta^0_{\tau}D^h_{\sigma}$

Q²-evolution to COMPASS

Physikalisches Institut

 \Rightarrow Transversity

Heiner Wollny (University of Freiburg)

 $\mathbf{x} \Delta_{\mathbf{T}} \mathbf{u}(\mathbf{x})$

d(x)

Seminar CEA Saclay, Dec 03 2010

Fragmentation into pair of hadrons:

 $\ell N^{\uparrow} \rightarrow \ell' hhX$

 \rightsquigarrow Dihadron-Interference-FF $H_1^{\triangleleft}(z, M^2)$:

Fragmentation of a transversely polarized quark

into two unpolarized hadrons and rest X

Fragmentation into pair of hadrons:

 $\ell N^{\uparrow} \rightarrow \ell' hhX$

 \rightsquigarrow Dihadron-Interference-FF $H_1^{\triangleleft}(z, M^2)$:

Fragmentation of a transversely polarized quark into two unpolarized hadrons and rest X

→ Azimuthal asymmetry of produced hadron-pairs

In leading order interference

between hadron pairs in relative s- and p-waves

Dihadron production depends on two azimuthal angles:

 ϕ_{5} : azimuthal angle of spin of the initial quark

Dihadron production depends on two azimuthal angles: ϕ_c : azi

 ϕ_{5} : azimuthal angle of spin of the initial quark

 ϕ_R : azimuthal angle of two hadron-plane

Physikalisches Institut

Dihadron production depends on two azimuthal angles:

 ϕ_{5} : azimuthal angle of spin of the initial quark

 ϕ_R : azimuthal angle of two hadron-plane

Dihadron-Interference:

→ Azimuthal asymmetry in:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta$

$$\Phi_{RS} = \phi_R + \phi_S - \pi$$

Physikalisches Institut Alient-Ludwigs-Universität Findurg

Dihadron production depends on two azimuthal angles:

 ϕ_{5} : azimuthal angle of spin of the initial quark

 ϕ_R : azimuthal angle of two hadron-plane

Dihadron-Interference:

→ Azimuthal asymmetry in:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS} \cdot \underline{\sin \theta}$

$$\Phi_{RS} = \phi_R + \phi_S - \pi$$

$$h^+ h^- \text{ cm.}$$

$$frame$$

$$P_h = P_1 + P_2$$

Dihadron production depends on two azimuthal angles: ϕ_{S} : azimuthal angle of spin

 P_{2}

Physikalisches Institut

Dihadron production depends on two azimuthal angles:

 ϕ_{S} : azimuthal angle of spin of the initial quark

 ϕ_R : azimuthal angle of two hadron-plane

Dihadron-Interference:

 \rightsquigarrow Azimuthal asymmetry in:

 $N_{h^+h^-} \propto 1 \pm A \cdot \sin \phi_{RS}$

 $\Phi_{RS} = \phi_R + \phi_S - \pi$

$$A_{RS} = \frac{A}{f \cdot P_T \cdot D_{nn}} \propto \frac{\sum_q e_q^2 \cdot \Delta_T q(x) \cdot H_1^{\triangleleft}(z, M)}{\sum_q e_q^2 \cdot q(x) \cdot D_1(z, M^2)}$$

f = target dilution

- P_T = target polarization
- D_{nn} = transverse spin transfer

Seminar CEA Saclay, Dec 03 2010

Physikalisches Institut

► ~→ Polarized DiFF and Transversity are **not** Zero

- $A^{p}_{RS}(M_{inv}) < 0;$ (0.4 < $M_{inv} < 2 \,\mathrm{GeV}/c^2$)
- Signal enhanced around ρ^0 -mass (0.77 GeV)

• cut on x > 0.032 to enhance asymmetries in z and M_{inv} $\rightarrow A_{RS}^{p}(z) \approx A_{RS}^{p}(M_{inv}) \approx \text{const.}$

- HERMES results scaled with $-1/D_{nn}$
- COMPASS measurement covers much larger range in x
- Good agreement in overlap region

Recent prediction (Bacchetta, Radici, Phys.Rev.D79:034029,2009)

- Transversity-Distribution of Anselmino et al. (arXiv:0801.0173)
- Model for polarized DiFF

Recent prediction (Bacchetta, Radici, Phys.Rev.D79:034029,2009)

- Transversity-Distribution of Anselmino et al. (arXiv:0801.0173)
- Model for polarized DiFF

was downscaled with factor \sim 3 ! (Fit on HERMES results!)

Physikalisches Institut Alzert-Ludmge-Universität Findurg

Recent prediction (Ma et al., Phys.Rev.D77:014035,2008)

- Two different Transversity models: SU6 and pQCD
- Model for polarized DiFF from Bacchetta et al (non-scaled)

Physikalisches Institut Alzert-Ludmge-Universität Findurg

Recent prediction (Ma et al., Phys.Rev.D77:014035,2008)

- Two different Transversity models: SU6 and pQCD
- Model for polarized DiFF from Bacchetta et al (non-scaled)

... Belle showed first results of polarized DiFF !

(A. Vossen, Dubna Spin 2009)

 \rightsquigarrow significant asymmetry

Weiner Wollny (University of Freiburg)

Physikalisches Institut Albert-Ludmige-Universität Ereburg

Transverse Momentum Dependent Distributions TMDs

Three parton distribution functions when integrating over k_{\perp}

Eight parton distribution functions when taking into account k_{\perp}

Eight parton distribution functions when taking into account k_{\perp}

Sivers-Function $\Delta_0^T q(x, \boldsymbol{k}_T^2)$:

distribution of unpolarized quarks with transverse momentum k_T in a transversely polarized nucleon

\rightsquigarrow azimuthal asymmetry of produced hadrons

Sivers-Asymmetry: A simple interpretation

 ▶ angular momentum ~→ non-symmetric quark-density (in impact parameter space)

Sivers-Asymmetry: A simple interpretation

► angular momentum ~→ non-symmetric quark-density (in impact parameter space)

Physikalisches Institu

Chromodynamic lensing:

- strong force pulls fragmenting quark towards center of momentum
- more displaced quarks w.r.t center of momentum feel stronger force

Sivers-Asymmetry: A simple interpretation

 angular momentum → non-symmetric quark-density (in impact parameter space)

Chromodynamic lensing:

- strong force pulls fragmenting quark towards center of momentum
- more displaced quarks w.r.t center of momentum feel stronger force
- \Rightarrow More reactions in upper part of proton
- \Rightarrow More hadrons will be deflected downwards
Sivers Asymmetry

A non-zero Sivers-Asymmetry requires angular momentum of the quarks

Sivers Asymmetry

Sivers PDF $\Delta_0^T q(x, k_T^2)$:

A non-zero Sivers-Asymmetry requires angular momentum of the quarks

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin(\phi_h - \phi_S)$$

$$\phi_{Siv} = \phi_h - \phi_S$$

 ϕ_h : azimuthal angle of hadron ϕ_S : azimuthal angle of spin of initial quark

Sivers Asymmetry

Sivers PDF $\Delta_0^T q(x, \mathbf{k}_T^2)$:

A non-zero Sivers-Asymmetry requires angular momentum of the quarks

 \rightsquigarrow azimuthal asymmetry:

$$N_h \propto 1 \pm A \cdot \sin(\phi_h - \phi_S)$$

$$\phi_{Siv} = \phi_h - \phi_S$$

 ϕ_h : azimuthal angle of hadron

 ϕ_S : azimuthal angle of spin of initial quark

$$A_{Siv} = \frac{A}{f P_T} \propto \frac{\sum_q e_q^2 \cdot \Delta_0^T q(x, \mathbf{k}_T^2) \otimes D_q^h(x, \mathbf{p}_T^2)}{\sum_q e_q^2 \cdot q(x, \mathbf{k}_T^2) \otimes D_q^h(z, \mathbf{p}_T^2)}$$

for h^+ additional absolute systematical uncertainty of ± 0.01

- Positive asymmetry for h^+
- Asymmetry for h^- small, compatible with zero
- Published in PLB 673 (2009) 127-135

positive hadrons:

- possible W dependence
- Asymmetry only non-zero for small W, where HERMES measures

Physikalisches Institut

Anselmino et al. arXiv:0805.2677

 $A_{Siv} \propto \Delta_0^T q(x, \boldsymbol{k}_T^2) \otimes D_q^h(x, \boldsymbol{p}_T^2)$

HERMES Proton

$$A_{Siv}^{\pi^0}, \ A_{Siv}^{\pi^+}, \ A_{Siv}^{K^+} > 0$$

$$A_{Siv}^{\pi^-}, \ A_{Siv}^{K^-} \approx 0$$

Anselmino et al. arXiv:0805.2677

 $A_{Siv} \propto \Delta_0^T q(x, \boldsymbol{k}_T^2) \otimes D_a^h(x, \boldsymbol{p}_T^2)$

Physikalisches Institut

HERMES Proton

$$A_{Siv}^{\pi^0}, \ A_{Siv}^{\pi^+}, \ A_{Siv}^{K^+} > 0$$

 $A^{\pi^-}_{Siv}, \ A^{K^-}_{Siv} pprox 0$

COMPASS Deuteron

$$A_{Siv}^{\pi^+} \simeq A_{Siv}^{\pi^-} \simeq 0$$

$$A_{Siv}^{K^+} \simeq A_{Siv}^{K^-} \simeq 0$$

$$A_{Siv}^{K_S^0}\simeq 0$$

 $Q^2 = 2.4 \text{ GeV}^2$ 0.06 x = 0.1 0.6 □ 0.04 D 0.4 0.02 0.2 ×∆^N f(x, k_I x∆^N f⁽¹⁾(x) 0 0 n 0 σ -0.2 -0.02 -0.4 -0.04 -0.6 -0.06 0.02 0.2 0.01 0.1 n C -0.01 -0.1 -0.02 -0.2 0.02 0.2 0.01 0.1 σ 5 c n -0.01 -0.1 -0.02 -0.2 0.02 0.2 0.01 0.1 S ŝ n 0 -0.01 -0.1 -0.02 -0.2 0.02 0.1 0.01 s ŝ n -0.01 -0.1 -0.02 -0.2 10⁻³ 10⁻² 10⁻¹ 0.2 0.4 0.6 0.8 k х Heiner Wollny (University of Freiburg) Seminar CEA Saclay, Dec 03 2010

Extraction of Sivers-Function: Anselmino et al. arXiv:0805.2677

Physikalisches Institut

 \Rightarrow Sivers-Function

$$\begin{split} \Delta_0^{\mathcal{T}} \boldsymbol{u} &> 0\\ \Delta_0^{\mathcal{T}} \boldsymbol{d} &< 0 \end{split}$$

36

Physikalisches Institut Abert-Ludmige-Universität Fieburg

Physikalisches Institut Alient-Ludwigs-Universität Findurg

Summary

Transversity

Sizeable Collins asymmetries

First extraction of Transversity distribution and Collins Fragmenation Function

Sizeable Dihadron asymmetries

Data is ready to extract Transversity

Sivers

Significant asymmetry for positive hadron

First extraction of Sivers distribution

Physikalisches Institut Allert-Ludwigs-Universität Freburg

Summary

Transversity

Sizeable Collins asymmetries

First extraction of Transversity distribution and Collins Fragmenation Function

Sizeable Dihadron asymmetries

Data is ready to extract Transversity

Sivers

Significant asymmetry for positive hadron

First extraction of Sivers distribution

Outlook

► 2010 full year of data taking with transversely polarized protons → statistical errors are expected to improve about factor 1.5

Thank You

email: heiner.wollny@cern.ch

Back up

Back Up

Single Hadrons: SIDIS Event Selection

DIS cuts:

- $\blacktriangleright \ Q^2 > 1 \, ({\rm GeV}/c)^2$
- ▶ 0.1 < y < 0.9
- ▶ $W^2 > 25 \, {
 m GeV}^2/c^4$

Single Hadrons: SIDIS Event Selection

DIS cuts:

- $\blacktriangleright \ Q^2 > 1 \, ({\rm GeV}/c)^2$
- ▶ 0.1 < y < 0.9
- $W^2 > 25 \, {
 m GeV}^2/c^4$

х

Physikalisches Institu

Single Hadrons: SIDIS Event Selection

hadron cuts:

- ▶ $p_T > 0.1 \, \mathrm{GeV}/c$
- ► *z* > 0.2

Total statistics:

pos hadrons	neg hadrons
$15\cdot 10^6$	$12\cdot 10^6$

General Expression of polarized SIDIS Cross-Section

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xy\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right\} & \text{unpolarized target} \\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos 2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}} \\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right] & \text{longitudinally} \\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right] & \text{transversely} \\ &+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right. \\ &+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})} \\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})} \\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right] \\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right] \\ \end{split}$$

Dihadron Interference

Measuring transversity with polarized Dihadron-Interference-FF H_1^{\triangleleft} :

 \rightsquigarrow azimuthal asymmetry:

$$\begin{split} N_{h^+h^-} &\propto 1 \pm A \cdot \sin \phi_{RS} \cdot \sin \theta \\ \phi_{RS} &= \phi_R + \phi_S - \pi \\ A_{RS} &= \frac{A}{f P_T D_{nn}} \propto \sum_q e_q^2 \cdot \Delta_T q \cdot H_1^{\triangleleft} \\ H_1^{\triangleleft} &= H_1^{\triangleleft, sp} + \cos \theta H_1^{\triangleleft, sp} \\ &\sim \text{only sensitive to } H_1^{\triangleleft, sp} \end{split}$$

Definition of R_T and ϕ_R

$$\vec{\mathsf{R}} = rac{z_2 \vec{P}_1 - z_1 \vec{P}_2}{z_1 + z_2}$$

$$\cos \phi_R = \frac{\vec{q} \times \vec{\ell}}{|\vec{q} \times \vec{\ell}|} \cdot \frac{\vec{q} \times \vec{R}_{\perp}}{|\vec{q} \times \vec{R}_{\perp}|},$$

$$\sin \phi_R = \frac{(\vec{\ell} \times \vec{R}_\perp) \cdot \hat{q}}{|\hat{q} \times \vec{\ell}| |\hat{q} \times \vec{R}_\perp|}$$

Ŕ.

 P_1

DiHadrons: SIDIS Event Selection

Physikalisches Institut

DIS cuts:

- $\blacktriangleright \ Q^2 > 1 \, ({\rm GeV}/c)^2$
- ▶ 0.1 < y < 0.9
- ▶ $W > 5 \,\mathrm{GeV}/c^2$

Heiner Wollny (University of Freiburg)

10-2

10⁻¹

x

DiHadrons: SIDIS Event Selection

Physikalisches Institu

h⁺h⁻

hadron cuts:

- ▶ $z_i > 0.1$, $x_{F,i} > 0.1$
- $rac{z_{sum}}{z_{1}} = z_1 + z_2 < 0.9$
- ► $R_T > 0.07 \, \text{GeV}/c$

Total statistics for this analysis:

 $11 \cdot 10^6 h^+h^-$ -pairs

0.6

0.8 Z₁+Z₂

COMPASS 2007 TRANSVERSE PROTON DATA

 \mathbf{K}^0

Table of Contents

DIS and SIDIS

Nucleon in LO

Unpolarized PDFs Polarized PDFs Transversity Optical Theorem

Collins-Asymmetry

Collins: A simple interpretation Collins: What to be measured?

COMPASS Experiment

Detector Polarized Target Collins: Results Access to Transversity

Dihadron-Asymmetry

Dihadrons: What to be measured Dihadron: Results

Sivers-Asymmetry

Sivers: A simple interpretation Sivers: What to be measured? Sivers: Results Sivers: W-dependence Access to Sivers-Function

Summary

Back Up Single Hadrons: SIDIS Event Selection

TMDs in Single Hadron Cross-Section

Dihadron Interference DiHadrons: SIDIS Event Selection

Table of Contents

