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o Coupled-Cluster approach to nuclear structure
@ Brief overview of Coupled-Cluster theory
@ Coupled-Cluster approach to medium mass nuclei. 160,
40.48Ca with chiral interactions (NN-only)
@ Coupled-Cluster approach to loosely bound and unbound
nuclear systems.
@ Microscopic description of resonances and halo states in }'F
and 170
@ Towards ab-initio reaction theory with coupled-cluster theory:
Overlap functions and nucleon-nucleus scattering
© Probing the dripline with Coupled-Cluster theory
@ Low-lying states in 180 and '8Ne with two-particle attached
EOM-CCSD
@ Shell evolution in Oxygen and Calcium isotopes
@ Conclusion
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Ab-initio approaches to light and medium mass nuclei

Ab-initio approaches to nuclear structure

Green'’s function
Monte Carlo

No-core shell model
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Physics of neutron rich nuclei: A challenge for theory

Many-body

B Interactions
correlations

Physics of neutron
rich nuclei

Open channels
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N-N force from Chiral perturbation theory

2N Force 3N Force 4N Force
“If you want more accuracy, you have to

use more theory (more orders)”

Effective Lagrangian > obeys QCD
symmetries (spin, isospin, chiral
symmetry breaking)

Lagrangian
- infinite sum of Feynman diagrams.

Expand in O(Q/A ocp)

‘Weinberg, Ordonez, Ray, van Kolck

NN amplitude uniquely determined by two
classes of contributions: contact terms and
pion exchange diagrams.

24 paramters (rather than 40 from

meson theory) to describe 2400
data points with
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Ab-initio Coupled-Cluster approach
Coupled-Cluster theory
Medium mass nuclei with CCM

Coupled-Cluster Theory

Exponential Ansatz for W Coupled-Cluster Equations
Wy =ellog), T=Ti+TH+...+ T AE = (o] (Hnexp(T)) ¢ o)
=3 tala, = % S eralafaa. 0= (®p] (Hnexp(T))c |Bo)
i\a i<j,a<b H = (Hnexp(T))

@ Coupled-Cluster Theory is fully microscopic .

@ Coupled-Cluster is size extensive. No unlinked diagrams enters, and error
scales linearly with number of particles.

© Low computational cost (CCSD scales as n2n).
Q@ Capable of systematic improvements.

© Amenable to parallel computing.
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Ab-initio Coupled-Cluster approach

Coupled-Cluster theory
Medium mass nuclei with CCM

Coupled-Cluster in pictures
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Ab-initio Coupled-Cluster approach
Coupled-Cluster theory
Medium mass nuclei with CCM

Equation-of-Motion CC for open-shell nuclei

Equation-of-Motion Coupled-Cluster theory

The idea of Equation-of-Motion Coupled-Cluster theory is to calculate ground- and
excited states of system B by acting with a excitation operator 2, on the ground
state of system A

[E) = Qulg), [¥8) = exp(T)I0)

Define the excitation operators Q) = R,SAil)
1
Rf(AH) = rlal + Erj""ba;r aJ{)aj + .,
_ 1
R/(<A Vo= pat: 5 5‘323:31 Tt

Particle-Attached /Removed EOM-CC equations

(A RV [g0) = (AREY) o) = wicR{*Pls0),
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Ab-initio Coupled-Cluster approach
Coupled-Cluster theory
Medium mass nuclei with CCM

Precision and accuracy: *He and chiral N3LO (500 Mev)

@ Results exhibit practically no dependence on the employed model space.

@ The Coupled-Cluster method in its A-CCSD(T) approximation overbinds by 150
keV, radius too small by about 0.01fm.

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).
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Ab-initio Coupled-Cluster approach

Coupled-Cluster theory
Medium mass nuclei with CCM

Saturation of N3LO (NN only) in medium mass nuclei

0% 8 %0 2 2% 2 ‘ ‘ ‘

28 32 24 26 28 30 34
+w (MeV) tw (Mev)
G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008).
G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).
. CcsD ACCSD(T)

Qo ~ 16

48(lzl;)OkeV/A missing for *°O and Nucieus | E/A | AEJA | E/A | AE/A

’ 50 -6.72 1.25 | -7.56 0.41

@ Interesting isospin behavior of 0C, 772 0.84 | -8.63 20.08

3NF in Calcium isotopes. 48Ca _7.40 1.27 -8.26 0.40
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osely bound and unbound nuclear systems Low-lying states in 1’F and 170
Towards ab-ini reactions

Role of continuum in structure of nuclei

J. Okolowicz, M. Ploszajczak, Yan-an Luo

S. Quaglioni and P. Navratil,
Acta Phys. Polon B 39, 389 (2008).
0

Phys. Rev. Lett. 101, 092501 (2008)

UBe  UBe(y)  MBe(}

NCSM [13. 14]

NCSM [13, 14]*

NCSM/RGM '

Expt 6198 65,16 015 6545 -0.50
present calculation

TABLE II: Caleulatec 1 MeV) of the Be g.s. and
of the lowest negative e-parity states in ! Be, ob-
tained using the CD-I ential [15] at A = 13 MeV
The NCSM/RGM results were obtained using n-+1*Be config-
arations with Nosss = 6 2f, and 17 states of 1°Be
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Loosely bound and unbound nuclear systems Low-lying states in 1’F and 170
Towards ab-initio reactions

Weakly bound and unbound states in !’F an ambitious
testing ground for ab-initio theory
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Loosely bound and unbound nuclear systems Low-lying states in 1’F and 170

Towards ab-initio reactions

Coupled-Cluster approach to open quantum systems

Number of Protons

» shell gap larger than expected
28  shell gap less than expected

20

2

Number of Neutrons
—

521818 punoq

o
saje)s pumoqrue

capturing states decaying states
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Loosely bound and unbound nuclear systems Low-lying states in YF and 170
Towards ab-initio reactions

Low-lying states in 1’F and the role of continuum

@ Low-lying single-particle states in 17F using a Gamow-Hartree-Fock basis (GHF)
and a Oscillator-Hartree-Fock (OHF) basis.

@ Very weak dependence on the oscillator frequency Aw for calculations done in a
GHF basis.

@ Significant effect of continuum coupling on the 1/2F and 3/2% states in 17F.

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010).
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Loosely bound and unbound nuclear systems Low-lying states in YF and 170
Towards ab-initio reactions

Cutoff dependence on Low-lying states in }’F

<3 o—ody, 3
g o—ody, 5

< 2 s, (NLO)| 4
& 12

i

35 7
A (fm™)
@ Cuttoff dependence on the low-lying states in 17F.

@ Spin-orbit splitting increases between the ds/»-d3 /> orbitals with decreasing
cutoff .

@ s/, state show very weak dependence on the cutoff.

@ The 1/27 state is a halo state which extends far beyond the range of the
interaction. Renormalizing the interaction by integrating out high momentum
modes does not alter the long range physics.
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Loosely bound and unbound nuclear systems Low-lying states in YF and 170
Towards ab-initio reactions

Summary of results for 'O and !'F

@ Our calculations for the 1/27 states in 17F and 17O agree remarkably well with
experiment.

@ Spin-orbit splitting between ds/»-d3 /> orbitals too compressed without
three-nucleon forces.

@ Our calculations of the widhts of the 3/2T resonant states compare reasonably
well with experiment.

170 17F
127 [ 5/2F | Eso. || (/27 | 5/2)7 | Eswo.
OHF | -1.888 | -2.955 | 4.891 || 0.976 | 0.393 | 4.453
GHF -2.811 -3.226 4.286 -0.082 0.112 3.747
Exp. | 3.272 | -4.143 | 5.084 || -0.105 | -0.600 | 5.000

"0 (3/2)] "F (3/2)f
RelEsp] | T Re[Esp] | T
PA-EOMCCSD 1.059 0.014 | 3.859 0.971
Experiment 0.942 0.096 | 4.399 1.530
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Loosely bound and unbound nuclear systems Low-lying states in 17F and 170
Towards ab-initio reactions

Spectroscopic factors with coupled-cluster theory

Overlap functions for one-nucleon removal.

<A — lMA_1|a,jm(r)\AMA)

Ol ) = (A= 1lI35(n)1A) = (=Y~ e

The spectroscopic factor is defined as the norm the overlap function:

. | (A — 1]anm|A) 2
SA () = Zl —1|\an/,-|\A>\2=Z(JAMAj mljjj’ M)
= - -1 =il

Spectroscopic factors in coupled-cluster formalism

Z (¢olLEa ZUmRA71\¢0> (¢l L @ RE\ | b0)

Sa 1 (l) =

o (JaMaj—m | Ja_1Ma_1)?

First application to SFs in 100:
@. Jensen, G. Hagen, T. Papenbrock, D. J. Dean, J. S. Vaagen, Phys. Rev. C 82, 014310 (2010).
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Loosely bound and unbound nuclear systems Low-lying states in ’F and 170
Towards ab-initio reactions

Quenching of SFs in the oxygen isotopes
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Spectroscopic factor for proton removal from Oxygen isotopes

@ We find a significant quenching of the spectroscopic factors due to coupling to
the scattering continuum in the neutron rich oxygen isotopes.

@ @. Jensen, GH, Hjorth-Jensen, Brown, Gade submitted to PRL, arXiv:1104.1552 (2011)
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Loosely bound and unbound nuclear systems Low-lying states in ’F and 170
Towards ab-initio reactions

How closed shell is 2*Q ?
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Spectroscopic factor for nucleon removal from 24O

@ We find a large spectroscopic factor for s, /5 and ds /> neutron removal in %0.
This is consistent with experiment and indicates shell closure in 240.

@ Removal of deeper lying states in O show a considerable %w dependence
pointing to stronger fragmentation and larger role of correlations.

@ @. Jensen, G. Hagen and M. Hjorth-Jensen, Phys. Rev. C(R) 83, 021305 (2011)
R. Kanungo et al, Phys. Rev. Lett. 102, 152501 (2009).
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Loosely bound and unbound nuclear systems Low-lying states in 17F and 170
Towards ab-initio reactions

Overlap functions and nucleon-nucleus elastic scattering

Elastic scattering, or capture of a nucleon on a target nucleus with mass A is given by
the overlap function

O3 (i 1) = (Al &) | A+1) .

The overlap function is given in the coupled-cluster formalism

O Uiz r) = L (LG (Ua)I3ngl R (Ja41)) dmi(r)

Outside the range of the interaction the overlap function is proportional to a
single-particle wave function.

—Kr

oM (lj;r) = ¢S
Kr

(Bound states)

O£+1(lj; r) = A(i(kr) — tan ;n;(kr)) (Scattering states)
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Low-lying states in 7F and 170
Towards ab-initio reactions

Loosely bound and unbound nuclear systems

Asymptotic normalization coeffcients

0.1

o)

0.01]

0.001

Overlap function for a bound A + 1 nucleus

@ We use an SRG evolved interaction with cutoff 2.66fm . The CCSD ground
state energy for 60 in N = 11 major shells is —140.52 MeV.

@ One neutron overlap functions for the bound J™ = 1/2% state in 17O with the
ground state of 100. For 170 we get E;p(1/27) = -3.83 MeV.
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Loosely bound and unbound nuclear systems

Low-lying states in 7F and 170
Towards ab-initio reactions

Overlap functions for A 4 1 scattering states

T T T T T T T T T T T T T T T
: 04k i
01 o™ ] \ — E,,=31MeV
) Csin(kr + 3)/kr \ —- E, =7.7MeV
03 — Eg,=152Mev|

Overlap functions

@ One neutron overlap functions for a J™ = 1/2% scattering state with energy
4.075267MeV in 17O with the ground state of 1°0. The red line gives the
asymptotic form of the radial overlap.
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Loosely bound and unbound nuclear systems Low-lying states in 1’F and 170
Towards ab-initio reactions

s1/2 and d3/» phase shifts for elastic neutron scattering on
160 (Preliminary)

| I U |

4 5 6 7 8 9 10
E,, (MeV)
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Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Going beyond closed-shell nuclei. Low-lying states in 80
and 8Ne (Preliminary)

E, (MeV)
(%)) (22} ~
T

BN W b
T

@ SRG evolved interaction with A = 2.0fm~!.
@ Model space consists of 8 major oscillator shells.
@ Two-particle attached equation-of-motion coupled-cluster works very well for

low-lying states in open-shell nuclei like 180 and 1&Ne.

G. Jansen, M. Hjorth-Jensen, G. Hagen, T. Papenbrock, Phys. Rev. C 83, 054306 (2011).
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Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Shell evolution towards the drip line

T
Nuclear Shell —>
Structure 3
i —
: T
h,,
[ Oxygen isotope
Py
Pax FIG. 4 (color online). The experimental [25.26] (data points)
i and theoretical [13-15] (lines) one- and two-neutron separation
energies for the N = 15-18 oxy sotopes. The experimental
N/Z error is shown if it is larger than the symbol size.
250 neutron separation energy: -820 keV
. the width was measured to be 90(30) keV
f) ) giving a lifetime of t ~ 7x10-21 sec
= -
around the valley neutron-rich C. Hoffman PRL 100 (2008) 152502
of nuclear stability nuclei
N/Z~1-16 N/Z ~ 3
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Ab-initio Coupled-Clu
Loosely bound and unbound nu ems Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline
Conclusion

Effective single-particle energies in correlated
many-nucleon systems

Effective single-particle energies (ESPEs)

@ How can we define single-nucleon shell structure in a system that is strongly
correlated; i.e. how are ESPEs related to (correlated) observable?

@ ESPEs are the eigen solutions of the centroid matrix :

t c+pq e+ _ _
”23" = Z SupqEM+ Z Supun :

HEH A1 HEH A

@ The centroid matrix can be written in terms of the correlated density matrix

1
hcent — qu 4 Z o P[sr]

@ T. Duguet, J. Sadoudi, V. Soma, G. Hagen, and C. Barbieri, In preparation
(2011)
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Coupled-cluster approach to open-shell nuclei
Shell-evolution towards the dripline

Open-shell nuclei and CCM

Low-lying states in neutron rich Potassium isotopes

2 @ Proton separation energies
Sp=—E, =E,"'—Efin
40,48,52,54,60 5

@ Low lying states in Potassium
isotopes calculated using
PA/PR-EOMCCSD with
“bare” chiral interactions.

S (Mev)

i @ Model space consists of 15
major harmonic oscillator shells
with fixed oscillator frequency
hw = 30MeV.

10 1 1 1 1 1
48 52 54 60
Calcium Isotope (A)

39K

aTK

JT\'

Ecc (MeV)

Epxp (MeV)

Ecc (MeV)

Egxp (MeV)

3/27

0.00

0.00

0.00

0.00

1/2F

2.90

2.52

-0.75

-0.36

5/27F

5.84

4.51

2.22

3.00
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Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Shell evolution and the dripline in Oxygen isotopes

@ Evidence of new magic numbers in oxygen isotopes N = 14 and N = 16.

@ All shell model calculation in the s — d shell with realistic NN interactions
predicts dripline beyond 260.

@ Results from Otsuka et al. with inclusion of 3NF predicts 220 unstable.

@ Adding one more proton binds 6 more neutrons in fluorine isotopes.

@ Can Ab-initio theory throw light on this ?

T. Otsuka et al, Phys. Rev. Lett. 105, 032501 (2010)

T . 0
1 e R e
B <

op | 2p | 2 | 20p | 255 | 28p | 27E | 20F g

20 | 210 | 20 | %0 | | I
. b

1on | 20N | 2N | 2N | 2N — SDPF

— USD-B

18c | 19c | 200 20 8 14 16 20 8 1 16 20 8 14 16 20
Neutron Number (V) Neutron Number (V) Neutron Number (V)
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Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Shell evolution and separation energies in oxygen isotopes

(Mev)
PN S Y
T

L L L B B R B B B

ES)
5

5 5 %

8

5
&
5]
R
R

@ Low lying states in oxygen and fluorine isotopes calculated using
PA/PR-EOMCCSD with “bare” chiral interactions.

@ Model space consists of 15 major harmonic oscillator shells with fixed oscillator
frequency hw = 32MeV.

@ 250 is stable with respect to neutron emission. Interesting inversion of ground
state in 25F.

@ What is the role of continuum and three-body forces ?

CEA, May 13 Coupled-Cluster theory for nuclei



Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Cutoff dependence in *O and %F

@—e Lambda CCSD(T)
e—e cCSD

T
jl
k]

P Y Y Y A AU I
SPES

2 ool
ST
1851
r 24
100 (0]
1051
200
L | | | | | | |
3 28 3 32 34 36 38 4

@ Variation of the cutoff as a tool to probe the effects of missing many-body
forces.

@ No unique cutoff that will reproduce data in O and 2°F simultaneously.

@ Three-nucleon forces are needed. Continuum coupling might bring additional
binding in the low-lying states in 2°F.
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Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Cutoff dependence in 2°0

235~ —

@ Cuttoff dependence on the 3/27 state in 250.

@ Calculations done in 15 major oscillator shells with fixed oscillator frequency
hw = 32MeV.

@ There are no two-body forces within the family of phase-equivalent
low-momentum interactions derived from N3LO that will make 2°0O unstable.

@ Three-nucleon forces are needed to match theory with experiment in 220!

CEA, May 13 Coupled-Cluster theory for nuclei



Coupled-cluster approach to open-shell nuclei
Open-shell nuclei and CCM Shell-evolution towards the dripline

Can theory support the existence of 220 ?

T T T T T T T -124 T T T
of ,
* Experiment N°LO (600 Mev)  [cN=H
N oA = 600 MeV 126~ ( )| 7
_ . OA,= 500 Mev sl ]
® -
DR T
pivg = 10 b
: 8
5 g3 g
< ur
o 40l ]
10| 1zl ]
a3k i
a5l L L L L L . "
Z B u % % o B

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, Phys. Rev. C 80, 021306 (2009).

@ No sign of dramatic increase in binding energies of oxygen isotopes.
@ Ab-initio Coupled-Cluster calculations can not rule out the existence of 280.

@ Cutoff variation indicates that three-nucleon forces will play a crucial role in the
determination of the neutron dripline.
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Conclusion

Conclusion

@ Coupled-Cluster approach to medium mass and driplines with “bare”
chiral interactions. ~ 400keV/A missing for 1°0 and **Ca.

@ PA-EOM Coupled-Cluster method has been succesfully applied to the
description of weakly bound and unbound states in 17O and "F.

@ Coupling to the continuum plays a significant role on states close to the
particle emission threshold.

@ Ab-initio coupled-cluster computation of one-nucleon overlap functions
allows for a simple and intuitive description of nuclear reactions.

@ Presented the first successful calculation of scattering phaseshifts with
coupled-cluster theory, the results for 7O are very promising!

@ Study of evolution of proton and neutron single-particle energies in
Oxygen and Calcium isotopes.

@ Energy spacing between excited states in 3**’K and the level inversion in
7K are well reproduced.

@ Coupled-cluster calculations of oxygen isotopes cannot rule out a stable
280

CEA, May 13 Coupled-Cluster theory for nuclei



Conclusion

s1/2 and d3/, phase shifts for

elastic neutron scattering on

160 (Preliminary)

—s,,(CCM)

1

— d,,(CCM)
—-s,, (NCSM)

-~ d,,, (NCSM) ]

'
w
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Conclusion

Overlap functions for A 4 1 scattering states: Accuracy

ef)ﬂ (MeV) [r?? ¢ 8o
0.00025 0.99999 | 0.00000 | -0.01664
0.00716 0.99999 | 0.00000 | -0.08917
0.04465 0.99997 | 0.00003 | -0.22240
0.15869 0.99985 | 0.00015 | -0.41719
0.41917 0.99951 | 0.00049 | -0.67063
0.91951 0.99873 | 0.00127 | -0.97373
1.77221 0.99719 | 0.00281 | -1.31085
3.10046 0.99443 | 0.00557 | -1.66256
5.02790 0.98938 | 0.01061 | -2.00957
7.66533 0.97913 | 0.02087 | -2.33112
11.0793 0.95347 | 0.04652 | -2.58973
15.2047 0.86866 | 0.13133 | -2.69405
19.4601 0.52493 | 0.47506 | -2.32111
22.2231 0.27238 | 0.72762 | -0.76552

A + 1 scattering states from ab initio coupled cluster theory

The lowest lying J™ = 1/2+ single-particle energies with corresponding squared sum of
the 1p and 2plh amplitudes and computed phases shifts

CEA, May 13 Coupled-Cluster theory for nuclei




Conclusion

Coupled-Cluster versus DMC for quantum dots.

w | R 5 CCSD | CCSD(T) | A-CCSD(T) DMC
028 | 14 | 632557 | 62.0634 | 61.0265 61.9466

16 | 63.3032 | 62.0646 | 61.9214 61.9423

18 | 63.3369 | 62.0656 | 61.9181 61.9395

20 | 63.3621 | 62.0664 | 61.9156 61.9375 | 61.922(2)
05 | 14 | 954164 | 93.0921 | 93.8700 93.8833

16 | 954676 | 93.0004 | 93.8632 93.8771

18 | 955043 | 93.9805 | 93.8588 93.8730

20 | 955320 | 93.9891 | 93.8558 93.8702 | 93.867(3)
1.0 | 14 | 157.6437 | 1559740 | 155.8795 155.8863

16 | 157.7002 | 155.9669 | 155.8687 155.8758

18 | 157.7413 | 155.9627 | 155.8618 155.8690

20 | 157.7725 | 155.9601 | 155.8571 155.8646 | 155.868(6)

Table: Coupled-Cluster versus DMC for 20 electrons confined in a
two-dimensional quantum dot. M. Pedersen Lohne, G. Hagen, M.
Hjorth-Jensen, S. Kvaal, F. Pederiva, arXiv:1009.4833.
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Conclusion

CCSD results for Chiral N3LO (NN only)

-320 T T T
@ Mirror nuclei #8Ca and *8Ni differ CCSD results for “Cawith N'LO
by 1.38 MeV /A — close to mass
table predictions. £ ]
@ 3NF and triples expected to yield )
~ 1MeV/A ? =,-340p ]
w
@ Radii and and densities stronger
model space dependence. -350F E
@ G. Hagen et. al, Phys. Rev.
Lett. 101, 092502 (2008). -360;5 25 &0 % 20
< +w[Mev]
2 _1/2 2 _1/2
Nucleus | E/A V/A Q | AE/A | <r* >4 <r* >4 (Exp)
*He -5.99 | -22.75 | 0.90 1.08 1.673(1)
160 -6.72 | -30.69 | 1.08 1.25 2.72(5) 2.737(8)
#0Ca -7.72 | -36.40 | 1.18 0.84 [ 3.25(9) 3.4764
% Ca -7.40 | -37.97 | 1.21 1.27 3.24(9) 3.4738
#BNi -6.02 | -36.04 | 1.20 1.21 | 3.52(15) ?
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Conclusion

Coupled-Cluster method and the Center of Mass

Center of mass issues

@ s factorization of CoM wave function and intrinsic wave function possible
in finite spaces other than the NhQ space of the No-Core shell-model
approach ?

@ s the expectation value of Hem(w) = Tem + %mszRczm —3hw a
meassure of the quality of the calculated intrinsic energy ?

CEA, May 13 Coupled-Cluster theory for nuclei



Conclusion

1°0 with Viow_x (1.8/fm, smoot

) within CCSD

@ Center of mass energy Ecm(w) = (Hem) does vanish at fiw ~ 20MeV, and we
have d)intwcm-

@ Take expectation value of the generalized CoM Hamiltonian
Hem(®) = Tem + SmAG2R2, — 3 hio.

o

CC wave function factorizes and the CoM wave function is a Gaussian with

almost constant width Ao ~ 20MeV
G. Hagen, T. Papenbrock, D. J. Dean, Phys. Rev. Lett. 103, 062503 (2009).
G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).

-170 T T T T T 15 T T T T T
10 T T 5
o, T
< Ho (@) =T, + (V2mAGTR? - (312h
~ o an - <
s 4 i 1 3 ]
75t & 1z 2 20f 1
— m D
3 s g
D & 1 ~ 0.5+ A
=3 9% 20 30 0|m ~ 15 T
w o (MeV) = 10 15 20 25 30 35 40
180+ e 1 w’ fw (MeV)
— oo
0
0, V,,,,, (smooth, A=L8 fm™), chiral N°LO, 9 shells, CCSD %0, V,,, (smooth, A=L8 fmi*), chiral N°LO, 9 shells, CCSD
_1g6l A L . L 0sl L . A . L
189515 05 30 3 2 s 025 30 35 4
oo (MeV) oo (Mev)
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Conclusion

180 with Viow_x (1.8/fm, smooth) within CCSD

@ Center of mass energy Ecm(w) = (Hem) does vanish at Aiw ~ 20MeV.
@ At this model-space the CC wave function factorizes: ¥,:¥cm-

@ Approximate constancy of energy suggests that it factorizes approximately for
many frequencies.

@ What is 'l/)cm ?

G. Hagen, T. Papenbrock, D. J. Dean, Phys. Rev. Lett. 103, 062503 (2009).

=170, T T T T T -180. T T T T T T T T T T
10y T T 1
%‘ Hon (@) = Ty + (U2MAGTR?, - (312)hw 807 H, .+ BH,, (w=20MeV) 7]
2 5 ] -180.74 -
-175F 1 ~ 1
— w’ 3 18074 B
3 N . z ]
=3 9o 0 30 40{ "o b
w hw (MeV) 4 1
-180+ | PP -1074 i
180 o e ]
-180.75 -
0, V,,,,, (smooth, A=1.8 fm™), chiral N°LO, 9 shells, cCsD| %07 ]

| | | | | | | | |
-18 0 1‘5 2‘0 2‘5 3‘0 3‘5 40 180755 01 02 03 04 05 06 07 08 09 1
Hw (MeV) B
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Conclusion

If CC wave function factorizes what is ¢, ?

Assumption: CoM wave function is always a gaussian
(approximately).

Take expectation value of the generalized CoM Hamiltonian
Hem(©) = Tem + 3mAG?R2, — 2ho.

Use Ecm(&) =0 and <Tcm> = %h(:}

@ Determine unknown frequency from taking the expectation value of
the identity

Hem(w) + 30w — Tom = %5 (Hom(@) + 355 — Tem)

Gives quadratic equation for unknown frequency:
hio = i + 2 Eom() % 1/ $(Eem)? + 410 Ecm(w)
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Conclusion

Coupled-Cluster wave function factorizes: ©;,:0cm

@ CC wave function factorizes and the CoM wave function is a Gaussian with
almost constant width Ao ~ 20MeV for all different Aw values of the basis !

@ Expectation value of T¢m is 3/4 of oscillator spacing Ad.
@ Why is the CoM wave function a Gaussian ?

@ Why does the CoM wave function come at a constant Aw independent of basis ?

15 T T T T T T T T T T
25 T T T T T e
. 20 B
i W ]
= = 20+ ]
S E_EZO g = ]
= 3 ~
S0 b, 124 R ]
= 10 15 20 25 30 35 40 w 3 om
u’® fw (MeV) eo<T>
o o o E (@) 1
. . . 0, V,,,, (smooth, A=L.8 fm), chiral N°LO, 13 shells, CCSD
O,V (smooth, A=1.8 fm"), chiral N"LO, 9 shells, CCSD o
08 \ \ \ , \ N ! ; : n
0. 0 15 20 25 30 35 40 10 15 40
Hw (MeV)

0 25
+tw (MeV)
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Conclusion

Convergence of >*O and 20 with chiral interactions

@ A-CCSD(T) ground state calculations of 2*O and 220 using chiral interactions
with cutoffs 500 and 600 MeV respectively.

@ Convergence is slower for the 600 MeV cutoff interaction, and need N ~ 20
major shells to reach convergence for 260.

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, PRC(R), 80, 021306 (2009)

-124 . ; . ; . ,
14 T T L B
5 3 =
24 P 161 N°LO (B00MeV) [iINZH i
1491 (@] o—oN=1 —eN=16
-—e NflS L —eN=17 o
< oNzL o8l 28 N i
© 1501 7 - O =—aN=19
£ s 7 1
=asi E 130k i
£ S 130
- i
@ w2 1 §-132- 4
(@] ur L 4
? 153l i
= ,—,/ 4 T
= - o * ] [ |
-136F B
155, Il L L L
0 2 £ . 32 E3 20 r ?’_"‘ ‘ ]
29 Il n n n
1 24 28 32 36
hw
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Conclusion

Cutoff dependence and summary of results for Oxygen
isotopes

[ Energies H LTe) [ 220 [ 20 [ 20 ]
(Ayx = 500 MeV)
Eo 25.946 46.52 50.74 63.85
AEccsp -133.53 | -171.31 | -185.17 | -200.63
AE;3 -13.31 | -19.61 | -19.91 | -20.23
E -120.89 | -144.40 | -154.34 | -157.01
(Ay = 600 MeV)
Ey 22.08 46.33 52.94 68.57
AEccsp -119.04 | -156.51 | -168.49 | -182.42
AE; -14.95 | -20.71 | -22.49 | -22.86
E -111.91 | -130.89 | -138.04 | -136.71
Experiment -127.62 | -162.03 | -168.38
I H 160 [ 220 [ 240 [ 280 l
(r)1/2 || 2.206 2.405 2.658 2.825
Expt. 2.54(2) | 2.88(6) | 3.19(13)
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Conclusion

Low-lying states in O with Vi, (2.8/fm) and the center
of mass

@ Low-lying 1/2%,3/2%and5/2" states in 170 calculated using PA-EOM-CCSD in
13 major oscillator shells.

@ The expectation value of Hem(w) = Tem + %mAwZRgm — %ﬁw meassures to
what degree the CoM is a Gaussian with oscillator frequency w.

™en

E.c (MeV)

E;
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Conclusion

Coupled-Cluster wave function factorizes: ©;,:0cm

@ Assumption: CoM wave function is always a gaussian (approximately).

@ Take expectation value of the generalized CoM Hamiltonian
Hem(®) = Tem + SmAG2R2, — 3 hi.

@ CC wave function factorizes and the CoM wave function is a Gaussian with
almost constant width Al ~ 16MeV for all different fAw values of the basis.

T T 1 T
175 | ooF 17 el E
o oSy,
08F oody, E|
- B
o7f E
165 1 osb 3
r g
2 161 —Z osF E|
L 1uf
sl " oal E
1 os3f B
151 B
1 o2p 3
145 =4 oib 3
1 | | | | | | . | . | . | . |
20 2 28 2 E3 20 2 28 32 36
hw hw
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Conclusion

Most nuclei are open-shell. How to access these nuclei
with coupled-cluster method?

25Mg | 30Mg  3iMg | 32Mg

28Na  29Ma  30Na | 31Na

25Ne  26Ne 27Ne  28Ne  29MNe | 30Ne

CEA, May 13 Coupled-Cluster theory for nucl



Conclusion

Low-lying states in 1O and !'F

@ Low-lying states in 1’F and 17O using a Gamow-Hartree-Fock basis and a
Oscillator-Hartree-Fock basis.

£ (Mev)
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Conclusion

Approximate factorization also for “hard” interactions

@ Ground state of *He using HF basis and N = 18 for the bare N3LO (500 MeV)
chiral interaction.

@ CC wave function factorizes (approximately) and the CoM wave function is a
Gaussian with almost constant width ~ 19.1 MeV, for all different Aw values of
the basis.

= T .
g 0.4F “He, chira N*LO, ~19 shells E
3 02f E
£
Yoo | | } b
% =~ 8 & ="
S19b E
]
18 } : : +
—~-24F E
% &0 CCSD
= &8 A-CCSD(T)
< -25F — Faddeev-Y akubowski| J
w
o . -
% 35 50 55

0 5
10 (MeV)
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Conclusion

Approximate factorization also for “hard” interactions

@ Ground state of 10, using HF basis and N = 18 for the bare N3LO (500 MeV)
chiral interaction, factorizes approximately within A—CCSD(T).
@ RMS radii, <% Z,A:l r2— R2,)1/2 using intrinsic radius operator and

62.2071 ' 35suming a Gaussian for the center of mass agrees.
Ahw

subtracting (R2,) ~

@ Small negative values for Ecy(&) coming from cluster truncation and
non-varitional character of CCM.

B T T T 2.3 T T T

3

2 2.30F E

g% 1

= *°0, chira N°LO, ~19 shells, A-CCSD(T) | 2.20f E

,u-l\ -1 t t t _

3 Eoo8f E

S 20k i<

! S\S\e—e—e—e———e——-o

2 15 t : t 221 Sointinsc radius E
; -8 assuming Gaussian CoM wave function
S20F o o o o 1 226 " . -
o O, chiral N'LO, ~19 shells

12% 30 50 50 2230 ES 50

20
tw (MeV)
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Conclusion

CCSD results for Helium chain using Vigyw_«

@ Viow_k from N3LO with
A=1.9fm "

@ G. Hagen et al., Phys.
Lett. B 656, 169 (2007).
arXiv:nucl-th /0610072.

iy
(=]
T

*He'H esH esHe7HeBHe9HemHe _ o

First ab-initio calculation
of decay widths of a

whole isotopic chain.

Binding Energy (MeV)
IB \
T

3-body force

=301 @ CCM unique method for
e o | dripline nuclei.
e orbi
B o P P @ ~ 1000 active orbitals
6, 7, 8, 9, 10,

*He ‘He °He
@ Underbinding hints at
missing 3NF

V.
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