

Séminaires du SPP Wednesday, May 09, 2012, CEA-Saclay

New W boson mass results from the Tevatron

Hengne Li

Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France

New W mass results this winter

PRL Editors' Suggestion PRL Cover "Physics" Synopsis article

D0: 5.3 fb⁻¹: Phys. Rev. Lett. 108, 151804 (2012) **CDF:** 2.2 fb⁻¹: Phys. Rev. Lett. 108, 151803 (2012)

The Standard Model (SM) predicts a relationship between the W boson mass and other parameters of electroweak theory:

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

Radiative corrections $\Delta \mathbf{r}$

related to the Top quark mass as

related to the Higgs mass as

Precise knowledge of the W mass and top quark mass can indirectly constrain the mass of the hypothetical Higgs boson.

Higgs mass.

Motivation

Results from direct searches of Higgs boson

Most likely mass region @ 95% C.L. : Moriond EW 2012

Comparison of indirect constraints and direct searches of Higgs is an important test of the SM.

Motivation

The Tevatron

Proton-antiproton collider, at center-of-mass energy = 1.96 TeV 36 proton and antiproton bunches 396 ns between bunch crossing

The D0 detector The DØ Detector

The CDF detector

Integrated luminosity

Collider Run II Integrated Luminosity

10

Séminaires du SPP, May 09, 2012, CEA-Saclay

CITS IN2P3

Three observables:

A typical W→ev event in CDF and D0 detectors

 M_T, P_T^l, E_T

 $M_T^W = \sqrt{2P_T^l \not\!\!E_T (1 - \cos \Delta \phi)}$

A Fast MC model to generate templates of the **3** observables with different W mass hypotheses. Fit the templates to the data to extract W mass.

The Fast MC model:

- Theoretical Model: Resbos(CTEQ6.6)+Photos
- Parametrized Detector Model

Event selection

D0 analysis: 4.3 fb⁻¹

- $W \rightarrow ev events$
- Central electrons: |η| < 1.05
- **p**_T(e) > 25 GeV
- Missing $E_T > 25 \text{ GeV}$
- Hadronic recoil: u_T < 15 GeV
- After selection:
 - 1,677,394 W→ ev candidates

CDF analysis: 2.2 fb⁻¹

- W \rightarrow ev and W \rightarrow µv events
- Central leptons: |η| < 1.0
- p_T(l) > 30 GeV
- Missing $E_T > 25 \text{ GeV}$
- Hadronic recoil: u_T < 15 GeV
- After selection:
 - 470,126 W→ ev candidates
 - 624,708 W→ µv candidates

The observables

Can directly reconstruct two variables: \vec{P}_T^l

Lepton pT can be precisely measured, 0.01% precision.

 $\dot{U_T}$ Hadronic recoil: vectorial sum of the transverse energies of all the calorimeter cells outside the lepton reconstruction window.

- less precise, ~1% precision,
- low resolution, $\Delta u_T > 3.5 \text{ GeV}$
- hadronic energy response is only ~ 65%

Calculate three observables to extract the W boson mass :

$$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{arr$$

The observables

CITS IN2P3

Theoretical Model

The Fast MC model (generate templates, fit to the data to expect generation and boson p-

- Theoretical Model: Resbos(CTEQ6.6)+Photos
- Parametrized Detector Model
- Resbos: Next-to-leading order event generator with next-to-next-to-leading logarithm resummation of soft gluons, gives the best boson pT description so far. [C. Balazs and C. P. Yuan, Phys. Rev. D 56, 5558 (1997).]
- Photos: generates up to two final state radiation photons. [P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).]

CDF Z pT

The Fast MC model (generate templates, fit to the data to extract W mass):

- Event Generator: Resbos(CTEQ6.6)+Photos
- Parametrized Detector Model

The parametrized detector model has to simulate:

- Lepton energy response and smearing
- Hadronic recoil energy response and smearing
- Underlying energy:
 - additional ppbar interactions (pileup):
 - average number of primary vertices:

CDF ~ 2 ; D0 ~ 4

- spectator parton interactions
- Lepton selection efficiency
- Background

Correct/model non-linear energy responses:

- Correction of the energy loss due to dead material,
- Correction of the response decrease due to pileup
- Modeling underlying energy contamination from pileup and hadronic recoil

Final electron energy response is tuned using Z->ee events assuming a linear response.

Depends on electron energy and incidence angle (eta) 10

Intercryostat

About 3.7 X₀ dead material in front of EM calorimeter

- **Electrons start to loose energy before** flying to the EM calorimeter

dE/dX vs. depth

Dead material, electron energy loss

Response reduction due to pileup

Pileup causes reduction of energy response!

- Too much pileup creates high current in the readout
- The current that flows through resistive coat of the HV pads results in HV drops, thus, reduces the energy response

Unit cell of the LAr calorimeter readout

19

Fitted Z mass vs. Inst. Lumi.

Energy gain due to pileup

Electron Model:

ΔE_{corr} Model:

- **1.Energy loss due to FSR**
- 2.Recoil, spectator partons interactions and pileup contamination inside the electron reconstruction cone
- **3.Effects due to electronics noise subtraction** and baseline subtraction (to subtract residue energy deposition from previous bunch crossings)

Final electron energy scale

After the correction and modeling of the non-linear energy responses, the final electron energy response is calibrated using Z->ee events assuming a linear response:

$$R_{EM}(E_{true}) = \alpha \cdot (E_{true} - \bar{E}_{true}) + \beta + \bar{E}_{true}$$

Essentially, measuring the ratio M_W/M_Z , limited by the Z->ee statistics

Tracker calibration (for muon channel)

- tracker alignment using cosmic rays
- tracker momentum scale and non-linearity constrained using J/ψ->μμ and Y->μμ events
- confirmed using Z->μμ fits

EM calorimeter calibration (for electron channel):

- Transfer tracker momentum scale to EM calorimeter energy scale using fits to the E/p spectrum using W->ev and Z->ee events
- confirmed using Z->ee fits

Tracker alignment

Tracking alignment using cosmic rays

Tracking momentum scale

Tracking momentum scale is determined using $J/\psi \rightarrow \mu\mu$ and $Y \rightarrow \mu\mu$ events:

- High statistics $J/\psi \rightarrow \mu\mu$ and $Y \rightarrow \mu\mu$ events !! (in contrast to D0)
- Extract momentum scale by fitting J/ψ mass in bins of $p_T(\mu)$
- Also using fit to Y->µµ mass

Séminaires du SPP, May 09, 2012, CEA-Saclay

CDF II preliminary

orm independent measurement of Z mass using tuned momentum sc SCa • Fit central value kept blind during scale calibra

• $M_Z = 91180 \pm 12_{stat} \pm 9_{p-scale} \pm 5_{QED} \pm 2_{alignment} = 91180 \pm 16 \text{ MeV}$

ExanEine therman scale by Efficience to ge - 2944 88358 MeV)

IC

Examine the energy scale by fitting to Z ->ee mass

Calibrating reading the comparison of the compar

Similar to D0, just that at CDF the η-imbalance is defined as recoil resolution

- Recoil scale $\mathcal{O}_{T} \stackrel{\mathcal{O}_{T}}{\to} \stackrel{\mathcal{O}_{T}$
- Usetheniea Min-im Malance to tune the recoil respons
- Use the width of **η-imbalance to tune the recoil resolut**i

CITS IN2P3

 \vec{p}_T^T

 $\vec{p}_T^{l^+}$

W mass: Results

Results from D0:

W mass: Results

Results from CDF:

Method $(2.2 f b^{-1})$	M_W (MeV)	Method $(2.2 f b^{-1})$	M_W (MeV)		
$m_T(\mu, u)$	80379 ± 16 (stat)	$m_T(e, u)$	80408 ± 19 (stat)		
$p_T(\mu)$	80348 ± 18 (stat)	$p_T(e)$	$80393 \pm 21 (stat)$		
	80406 ± 22 (stat)	${\not\!\!E}_T(e,\nu)$	80431 ± 25 (stat)		
Combination $(2.2 f b^{-1})$		$80387 \pm 19MeV(syst+stat)$			

Most precise single experiment result!

D0 4.3 fb⁻¹, e-channel

Source	$\sigma(m_W)$ MeV m_T	$\sigma(m_W)$ MeV p_T^e	$\sigma(m_W) \operatorname{MeV} E_T$	
Experimental				
Electron Energy Scale	16	17	16	
Electron Energy Resolution	2	2	3	
Electron Energy Nonlinearity	4	6	7	
W and Z Electron energy	4	4	4	
loss differences				
Recoil Model	5	6	14	
Electron Efficiencies	1	3	5	
Backgrounds	2	2	2	
Experimental Total	18	20	24	
W production and				
decay model				
PDF	11	11	14	
QED	7	7	9	
Boson p_T	2	5	2	
W model Total	13	14	17	
Total Systematic Uncertainty	22	24	29	

CDF 2.2 fb-1, e- and µ-channels

	M_T		P_T^l		$ \not\!$	
Systematic (MeV)	Electrons	Muons	Electrons	s Muons	Electrons	s Muons
Lepton Energy Scale	10	7	10	7	10	7
Lepton Energy Resolution	4	1	4	1	7	1
Recoil Energy Scale	5	5	6	6	2	2
Recoil Energy Resolution	7	7	5	5	11	11
$u_{ }$ Efficiency	0	0	2	1	3	2
Lepton Removal	3	2	0	0	6	4
Backgrounds	4	3	3	5	4	6
$p_T(W)$ Model (g_2, g_3, α_s)	3	3	9	9	4	4
Parton Distributions	10	10	9	9	11	11
QED Radiation	4	4	4	4	4	4
Total	18	16	19	18	22	20

In principle, the transverse observables (e.g. mT, pT(e)) are insensitive to the uncertainties in the (longitudinal) parton distribution functions (PDF).

However, our cuts on the leptons η (η |<1.0) is not invariant under longitudinal boosts. Changes in PDFs can modify the shapes of the transverse observables under η cuts. Therefore, PDF uncertainties are introduced.

Ways to reduce the PDF uncertainties:

- Extending the η coverage as much as possible, including end-cap leptons:
 - Can reduce by a factor of two, need to understand the energy scale, pileup, and backgrounds for the end-cap leptons.
- Reduce the PDF uncertainties by other measurements:
 - e.g. W charge asymmetry measurements.

New world average

Step back...

LPSC Grenebie

The new world average

We were hoping

IN2P3

The new world average

We are again hoping

Summary and outlook

- New results from CDF and D0 this winter bring down the world average W boson mass uncertainty from 23 MeV to 15 MeV!

 New world average : $M_W = 80.385 \pm 0.015 \text{ GeV}$

 Constraints on the SM Higgs boson:
 $M_H = 94^{+29}_{-24} \text{ GeV}$
 $M_H < 152 \text{ GeV} @ 95\% \text{ C.L.}$

- Improve the measurement:
 - PDF uncertainty: can be reduced by including end-cap electrons and by other analysis e.g. W change asymmetry measurement
 - With the full Tevatron data sets
 - There is the LHC.

Backups

Published Results DØ RunIIa 1 fb-1

Central Calorimeter (CC) Electrons

Phys. Rev. Lett. 103, 141801 (2009).

W data

Here the error bars only reflect the finite statistics of the W candidate sample.

WCandRecoilPt_Spatial_Match_0 ×10³ D0 Run II 4.3 fb⁻¹ 100 **90** 80 **70** – 60 | **F 50** 40 30 20 **10**E 14 10 12

These are the same W candidates in the data. The blue band represents the uncertainties in the fast MC prediction due to the uncertainties in the recoil tune from the finite Z statistics.

Good agreement between data and parameterised Monte Carlo.

Jan Stark for the D0 Collaboration

Fermilab Wine&Cheese seminar, March 1st 2012

Efficiency modeling in the high inst. lumi. condition is challenging:

- pileup and hard recoil contaminate the electron reconstruction window,
- correlations with electron kinematics.

A two-step modeling:

- model the efficiency in a detailed simulation overlaid with pileup from collider data.

- check efficiency dependences using Z->ee events comparing data and detailed simulation.

т(е) (GeV)

Consistency checks

Split data sample into four bins of instantaneous luminosity and measure W mass separately for each bin:

Backgrounds

