Recent Results from the KamLAND-Zen 0v2β Experiment

Patrick Decowski <u>decowski@nikhef.nl</u>

UNIVERSITEIT VAN AMSTERDAM

Outline

- Past KamLAND oscillation results
- Mass scales and neutrinoless double-beta decay
- How KamLAND became KamLAND-Zen
- Recent KamLAND-Zen results on double-beta decay

Reactors for Oscillation Studies

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle; \quad \alpha = e, \mu, \tau$$

→ oscillations

Patrick Decowski / Nikbel

$\overline{\nu}_e$ from 54 Reactor Cores in Japan

Patrick Decowski / Nikbel

KamLAND detector

- 1 kton Scintillation Detector
 - 6.5m radius balloon filled with:
 - 20% Pseudocumene (scintillator)
 - 80% Dodecane (oil)
 - PPO
- 34% PMT coverage
 - ~1300 17" fast PMTs
 - ~550 20" large PMTs
- Multi-hit electronics
- Water Cherenkov veto counter

Patrick Decowski / Nikhel

Energy Spectrum

From Mar 9, 2002 to November 4, 2009 2135 live days, 4126 ton-year exposure

Illustration of Neutrino Oscillation

Patrick Decowski / Nikhel

3-flavor Oscillation

Patrick Decowski / Nikbel

Effect of 3-nu Oscillation

Patrick Decowski / Nikhel

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)} \sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$ Y. Abe et al. [Double Chooz], arXiv:1112.6353 F.P. An et al. [DAYABAY], arXiv:1203.1669

Double Chooz (France)

Yellow Sea

Near Detector

Reactors

RENO (South Korea)

J.K. Ahn et al. [RENO], arXiv:1204.0626 $\sin^2 2\theta_{13} = 0.113 \pm 0.013 (\text{stat.}) \pm 0.019 (\text{syst.})$

OK, so neutrinos oscillate...

Daya Bay (China)

Discovery of the neutrino mass scale

... But what is the absolute neutrino mass scale?

Masses of Fermions

Why are neutrinos 5-6 orders less massive than other fermions?

12

How to measure Neutrino Mass?

- Astrophysics
 - Supernovas waiting for one closeby! From 1987A < ~23eV
- Cosmology
 - WMAP: $\sum m_i < 0.6 eV$
- Oscillations
 - Only square of mass difference no absolute scale
- Decays
 - μ, τ decays: relatively poor sensitivity
 - β decay
 - ββ decay

Patrick Decowski/Nikhef

Beta decay

- Normal beta decay ${}^{A}_{Z}X \rightarrow^{A}_{Z+1}X + e^{-} + \overline{\nu}_{e}$ $n \rightarrow p + e^{-} + \overline{\nu}_{e}$
- Two neutrino double beta decay (2v2 β) A conventional 2nd-order nuclear physics process ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}X + e^{-} + \overline{\nu}_{e} + e^{-} + \overline{\nu}_{e}$ ${}^{76}Ge \rightarrow {}^{76}Se + e^{-} + \overline{\nu}_{e} + e^{-} + \overline{\nu}_{e}$
- Neutrinoless double beta decay (0v2 β) A hypothetical new process ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}X + e^{-}e^{-}$ ${}^{76}Ge \rightarrow {}^{76}Se + e^{-} + e^{-}$

Absolute mass from β decay

$$\langle m_{\beta} \rangle = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

[incoherent sum]

- The shape of the β decay energy spectrum near the endpoint depends on $<\!m_{\beta}\!>$
 - Based on kinematics and energy conservation

Current best limits on $< m_{\beta} >$

$$\langle m_{\beta} \rangle = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2} < 2.3 \,\mathrm{eV}$$

While these table-top experiments made impressive gains, they have run out of steam

Next: KATRIN experiment

Double beta decay Isotopes

A second-order process only detectable if first-order beta decay is energetically forbidden

Signal

Experiments only measure the energy of the two electrons

Witthenengyrgesektlation

Candidate $0\nu 2\beta$ Nuclei

[Candidates with Q>2 MeV]

7.8

9.2

2.8

9.6

11.8

7.5

5.64

34.5

8.9

5.6

Natural abundance of $0\nu 2\beta$ candidates is low \rightarrow enrichment necessary

$2\nu 2\beta$ has been measured

$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu}(Q,Z)|M_{2\nu}|^2$$

Phase Space Nuclea

factor

Nuclear Matrix Element

lsotope	T _{1/2} ² ∨ [yr]		
⁴⁸ Ca	4.2±1.0 x 10 ¹⁹		
⁷⁶ Ge	1.5±0.1 × 10 ²¹		
⁸² Se	$0.92 \pm 0.07 \times 10^{20}$		
⁹⁶ Zr	$2.0\pm0.3 \times 10^{19}$		
¹⁰⁰ Mo	$7.1\pm0.4 \times 10^{18}$		
¹¹⁶ Cd	$3.0\pm0.2 \times 10^{19}$		
¹²⁸ Te	$2.5\pm0.3 \times 10^{24}$		
¹³⁰ Te	0.9±0.1 × 10 ²¹		
¹⁵⁰ Nd	$7.8\pm0.8 \times 10^{18}$		
²³⁸ U	$2.0\pm0.6 \times 10^{21}$		

- Conserves lepton number
- Does not discriminate between Dirac and Majorana neutrinos
- Not sensitive to neutrino mass scale
- Nevertheless: slow process!

Lepton Number Violation

Neutrinoless double beta decay:

$$M_{\nu} \neq 0$$

$$\nu = \overline{\nu} \quad \text{Helicity has}$$

$$\Delta L| = 2 \quad \text{to flip}$$

Total Lepton Number Violation

See Saw Mechanism

In terms of chiral nu-fields can write mass term in Lagrangian:

$$\mathcal{L}_{m} = -m_{D}\overline{\nu_{R}^{0}}\nu_{L}^{0} - \frac{1}{2}M_{R}\overline{(\nu_{R}^{0})^{c}}\nu_{R}^{0} + \text{h.c.}$$

$$= -\frac{1}{2}\left[\overline{(\nu_{L}^{0})^{c}}, \overline{\nu_{R}^{0}}\right] \begin{bmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{bmatrix} \begin{bmatrix} \nu_{L}^{0} \\ (\nu_{R}^{0})^{c} \end{bmatrix} + \text{h.c.}$$
Neutrino Mass Matrix

Nothing in SM prevents M_R to be very large and m_D of the same order as other SM particles!

Diagonalizing Mass Matrix and rewriting fields in terms of **Majorana nus**:

Half of the neutrinos are "invisible" very heavy (~10¹⁵GeV) N's!

Patrick Decowski / Nikhef

What mass does $0v2\beta$ measure?

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q,Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$
Phase Space factor: Nuclear Matrix Element: Calculable Hard to calculate Interesting physics

Effective Majorana mass:

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

[coherent sum]

Where U_{ei} elements from the Lepton Mixing Matrix

$$U = \begin{array}{ccc} \nu_{1} & \nu_{2} & \nu_{3} \\ \nu_{e} & \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \\ \times \operatorname{diag} \left(e^{i\alpha_{1}/2}, \ e^{i\alpha_{2}/2}, \ 1 \right) \ .$$

Nuclear Matrix Elements

- Complicated theoretical calculations
 - Quasiparticle Random Phase Approximation (QRPA)
 - Shell Model

Shell Model calculations ~1.5-2x smaller than QRPA Chief reason for large uncertainties in <mββ>!! Patrick Decowski/Nikhef

Improving Nuclear Matrix Elements

- NME calculations are notoriously difficult
- Attempts to include experimental data on occupation of valence orbits
- Recent results from nucleon transfer reactions on ⁷⁶Ge & ⁷⁶Se
 - 25% correction on NME in QRPA
- Similar experiments done for ¹³⁰Te and in progress for ¹³⁶Xe

Claimed observation of $0v2\beta$ in Ge

5 detectors (10.96 kg) enriched to 86%

 $T_{1/2} = 1.6 \times 10^{25}$ years (4 σ C.L.)

Majorana v Mass (dep. on nuclear matrix element)

 $< m_{\beta\beta} > = 0.2-0.6 \text{ eV}$ $< m_{\beta\beta} >_{\text{best}} = 0.45 \text{ eV}$

Analysis controversial, however this has become a benchmark experiment

Effective Majorana Mass

What does observation of $0\nu 2\beta$ imply?

- Observation of $0\nu 2\beta$ would:
 - Establish that the neutrino is a massive Majorana particle
 - Demonstrate lepton number violation
 - Measure the effective Majorana mass
- Necessary ingredient for See-Saw mechanism

Q and Background

Natural radioactivity (⁴⁰K, ⁶⁰Co,^{234m}Pa, external ²¹⁴Bi and ²⁰⁸TI...) ²¹⁴Bi and Radon ²⁰⁸TI (2.6 MeV γ line) and Thorium γ from (n, γ) reactions Surface or bulk contamination in α emitters

Cosmogenic production

Experimental sensitivity

More conventional to express it in $T_{1/2}$:

Reminder: $\langle m_{\beta\beta} \rangle = M_{0\nu} [G_{0\nu} T_{1/2}^{0\nu}]^{-1/2}$

Incomplete overview of experiments

lsotope	Experiment	Technique	Mass	Enriched	Q _{ββ} [MeV]	Start/Stage
¹³⁰ Te	Cuoricino	TeO ₂ bolometers	40.7kg	No	2.6	Done
⁸² Se, ¹⁰⁰ Mo	NEMO-3	tracko-calo	0.9kg/6.9kg	Yes	3.37	Done
⁷⁶ Ge	GERDA	Ge diodes in LN ₂	34.3kg	86%	2.04	2009
¹³⁶ Xe	EXO-200	LXe [tracking]	I 50kg	80%	2.47	2010
¹³⁶ Xe	KamLAND	Isotope in LS	400kg	90%	2.47	2012
¹³⁰ Te	CUORE	TeO ₂ bolometers	204kg	No	2.53	2014
¹⁵⁰ Nd	SNO+	Isotope in LS	56kg	No/50%	3.37	2014
⁷⁶ Ge	Majorana	Ge diodes	30-60kg	86%	2.04	2015
⁸² Se, ¹⁵⁰ Nd	SuperNEMO	tracko-calo	100kg	Yes	3.37	2014
¹⁰⁰ Mo	MOON	tracking	lt	No	3.03	Prototype
116Cd	COBRA	CdZnTe semicond	?	No	2.80	Prototype
⁴⁸ Ca	CANDLES	CaF ₂ cryst in LS	few t	No	4.27	Prototype

Underground Labs with 0v2β Experiments

SNOLab

Frejus (LSM) Canfranc Gran Sasso (LNGS)

Kamioka

KamLAND-Zen Collaboration

A. Gando,¹ Y. Gando,¹ H. Hanakago,¹ H. Ikeda,¹ K. Inoue,^{1,2} R. Kato,¹ M. Koga,^{1,2} S. Matsuda,¹ T. Mitsui,¹ T. Nakada,¹ K. Nakamura,^{1,2} A. Obata,¹ A. Oki,¹ Y. Ono,¹ I. Shimizu,¹ J. Shirai,¹ A. Suzuki,¹ Y. Takemoto,¹ K. Tamae,¹ K. Ueshima,¹ H. Watanabe,¹ B.D. Xu,¹ S. Yamada,¹ H. Yoshida,¹ A. Kozlov,² S. Yoshida,³ T.I. Banks,⁴ J.A. Detwiler,⁴ S.J. Freedman,^{2,4} B.K. Fujikawa,^{2,4} K. Han,⁴ T. O'Donnell,⁴ B.E. Berger,⁵ Y. Efremenko,^{2,6} H.J. Karwowski,⁷ D.M. Markoff,⁷ W. Tornow,⁷ S. Enomoto,^{2,8} and M.P. Decowski^{2,9}

(The KamLAND-Zen Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
²Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568, Japan
³Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
⁴Physics Department, University of California, Berkeley, and
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁵Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
⁶Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
⁷Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and
Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill
⁸Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA

KamLAND Scintillator

One of the cleanest environments in the world!

Simulated ¹³⁶Xe $0\nu\beta\beta$ signal in KL

As of 2010...

EXO-200 ¹³⁶Xe 2νββ

EXO-200 August 2011 Data release

 $T_{1/2}^{2v} = [2.11 \pm 0.04 \text{ (stat)} \pm 0.21 \text{ (syst)}] \times 10^{21} \text{ yr}$

Towards the KamLAND-Zen detector

KamLAND

KamLAND-Zen

KamLAND-Zen advantages & disadvantages

- +Well-understood detector
- +Highly pure, self-shielding environment
- +Large $\beta\beta$ source mass, scalable
- Relatively poor energy resolution
- -No particle identification

Miniballoon

• Requirements

- Chemical compatibility with LS
- Mechanically strong, low radioactivity
- Barrier against Xe
- Transmission of scintillation light

Mini-Balloon Construction

May-Aug 2011

Xe-LS R&D

- Maximize Xe mass in LS, but maintain light yield and transparency
- Must also match density of KamLAND LS for balloon integrity

Xe Procurement

- Enrichment by gas centrifuge in Russia
- 190 kg purchased in 2009
- 215 kg purchased in 2010

Xe-LS Handling System

Mini-balloon Installation (August 2011)

Clean room at the top of detector

Filling the Mini Balloon

Aug-Sept 2011

Diagram of the detector

Calibration

KamLAND is well-understood. Previous reconstruction algorithms can be easily adapted

 $\sigma = (6.6 \pm 0.3)\% / \sqrt{MeV}$

In-situ ²¹⁴Bi Fit

from 222 Rn (T = 5.5 days) at start of data taking

²¹⁴Bi together with the ThO₂W source determine energy scale

$0\nu\beta\beta$ Candidate Selection

- Fiducial volume: R < 1.2 m
 Fiducial mass = 129 kg ¹³⁶Xe
- Vetos:
 - Muons (>10k p.e. or >5 OD hits) and 2ms following them
 - Bi-Po coincidences $(\Delta t < 3 \text{ ms}, 0.35 \text{ MeV} < E_{\text{prompt}} < 1.5 \text{ MeV})$
 - Anti-neutrinos ($\Delta t < I ms, E_{prompt} > I.5 MeV$)
- Noise cuts (good vertex)

```
Livetime = 77.6 days
```

ε > 99.9%

Systematic Uncertainties

• Fiducial Volume: R³ of ²¹⁴Bi in early data uniform to within 5.2%

- Xe concentration measured with gas chromatography to within 2.8%
- Enrichment, E-scale, efficiency, livetime, Xe-LS edge effect uncertainties all <0.3%

Combined systematic uncertainty: 5.9%

Energy Spectrum

Fukushima Fallout

Tohoku University and balloon fabrication ~100km from Fukushima NPP

Exhaustive search for $0\nu 2\beta$ -like signal

- Exhaustive search for unknown contamination
 - Spallation product
 - Fukushima fallout
- Spallation
- ¹¹C: 1.11 ± 0.28 ev/(ton-day)
- ${}^{10}C: 0.0211 \pm 0.0044 \text{ ev/(ton-day)}$
- Spallation neutron yield 13±6% higher (absorb in yield systematics)
- n capture on H, C; no evidence of n capture on Xe
- No evidence of muon followers with $\tau < 100s$

Results from the ENSDF search

- Search through thousands of isotopes in ENSDF and millions of decay paths that can give a peak between 2.4MeV and 2.8MeV
 - Account for all particle-dependent energy non-linearities
 - Require $\tau > 30$ days, or $100s < \tau < 30$ days if production cross section is fairly large

Fit of Backgrounds to Peak

Full Fit

Some fit parameters are free, others constrained

free parameter constrained

Components not shown have best fit = 0

Linear Scale

Alternative Hypotheses

→ Little further discriminating power

Is the background from Fukushima?

Isotopes found near Fukushima

lsotopes	Found in KL-Zen?		
¹³⁴ Cs, ¹³⁷ Cs, ¹¹⁰ Ag ^m	Yes		
¹²⁹ Te ^m , ⁹⁵ Nb, ⁹⁰ Y, ⁸⁹ Sr	Negligible		

- Is the background from Fukushima?
- ¹¹⁰Ag^m was found in soil samples around Sendai
- Both ¹³⁴Cs and ¹³⁷Cs reconstructed on miniballoon
 - Ratio ¹³⁴Cs / ¹³⁷Cs ~ 0.8, consistent with Fukushima fallout

→ Plausible that the background comes from Fukushima

[However, we cannot exclude cosmic activation of $Xe \rightarrow$ little known]

Balloon and Xe-LS Backgrounds

Stability of the events

Options to Explore $0\nu\beta\beta$ Peak

- ^{110m}Ag: τ = 360d; ⁸⁸Y: τ = 154 d
 Not practical
 Wait to see if a decay time emerges
- Purify the scintillator
 - Filtration

No change with 50-nm PTFE filter, 2.3 volume exchanges

- Destillation
- Run without ¹³⁶Xe

- Remove Xe-LS and replace with fresh "dummy" LS
- Distill & purify Xe while running with "dummy" LS
- Fill miniballoon with new, cleaner Xe-LS
- Deploy calibration sources inside miniballoon

Longer Term Future: KamLAND2-Zen

- 2nd Phase of KamLAND-Zen (~2016)
 - I ton of ¹³⁶Xe
 - Enhanced Xe-LS
 - Winston cone reflectors to increase PMT coverage from 24% → ~70%
- May be able to cover inverted hierarchy

For 17"PMT

For 20"PMT

Summary

- KamLAND-Zen released first data based on 77.6days of exposure 129kg of ¹³⁶Xe (380kg total)
 - $2\nu 2\beta$: $T_{1/2}^{2\nu} = [2.38 \pm 0.02 \text{ (stat)} \pm 0.14 \text{ (syst)}] \times 10^{21} \text{ yr}$
 - Confirms EXO-200 measurement
 - $0\nu 2\beta$: 5x better limit $\rightarrow T_{1/2}^{0\nu} > 5.7 \times 10^{24} \text{ yr} (90\% \text{ C.L.})$
- We will purify the detector to remove contaminants
- Plans to upgrade the detector for more light collection and I ton ¹³⁶Xe.
- Reactor and geo-neutrino measurements ongoing...

Reactor Signal Changes with Time

Spectrum at different radii

Residuals

free parameter constrained

Components not shown have best fit = 0