

XENON100 – The new Results

Marc Schumann CEA Saclay, 22.10.2012

10.2012

University of Zürich

www.physik.uzh.ch/groups/groupbaudis/xenon/

95% of the Universe is dark!

Dark Energy????

Dark Matter: (indirect) Evidence

Particle Dark Matter Candidates:

- WIMP → "WIMP miracle"
- Axion
- SuperWIMPs
- sterile neutrinos
- WIMPless dark matter
 - Gravitino

Direct WIMP Search

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
local WIMP density
velocity-averaged scatt. X-section
DensityDetectorLocal DM
DensityPhysics

Direct WIMP Search

Summary: Tiny Rates R < 0.01 evt/kg/day $E_R < 100 \text{ keV}$

How to build a WIMP detector?

- large total mass, high A 🖌 for Xe
- low energy threshold for Xe
- ultra low background for Xe

good background discrimination for Xe

Backgrounds

Experimental Sensitivitywithout background: ∞ (mt)-1with background: ∞ (mt)-1/2

Background Sources

environment: U, Th chains, K

- γ and β decays (electronic recoil)
- alphas no big problem for LXe (technology dependent)
- neutrons from (α,n) and sf in rocks and detector parts
- neutrons from cosmic ray muons

Why WIMP Search with Xenon?

- efficient, fast scintillator (178nm)
- high mass number A~131:
 SI: high WIMP rate @ low threshold
- high Z=54, high ρ~3 kg/l: self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes Kr can be removed to ppt level
- "easy" cryogenics @ –100°C
- scalability to larger detectors
- in dual-phase TPC: good background discrimination

Dual Phase TPC

O N

Dark Matter Project

Dual Phase TPC

3d Vertex Reconstruction

M. Schumann (U Zürich) - XENON

Signal/Background Discrimination

The XENON program

XENON Collaboration

XENON Collaboration Meeting, LNGS, October 2012

M. Schumann (U Zürich) – XENON

XENON100 Background

- 30 kg fiducial mass
- active LXe veto not used for this plot
- exploit anti-correlation between light and charge for better ER-energy scale

Xenon keVee-Scale not precisely known below 9 keVee

Measured Background in good agreement with MC prediction.

At low energies: Lowest background ever achieved in a Dark Matter Experiment!

Matter Project

Low Energy Response to ER

(spin-independent) WIMP Limit 2011

Dark Matter Project

XENON100 – New results of 2012

arXiv:1207.5988, accepted by PRL

M. Schumann (U Zürich) – XENON

Data Taking

Data taking over 13 months from Feb 28, 2011 to March 31, 2012 \rightarrow full annual cycle

3 interruptions for maintenance

224.56 live days of dark matter data

Stability

To our knowledge, no large LXe detector has ever been operated under such stable conditions for that long

Improvements

- Exposure more than doubled
- Lower threshold S2>150 PE, S1>3 PE (6.6 keVr)
- Lower Background
- Much more calibration data 35x more ER calibration in ROI AmBe before and after run
- Higher LXe purity → smaller corrections

ER/NR Discrimination

Discrimination comparable to previous runs: ~99.5% ER rejection @ 50% NR acceptance

rk Matter Project

Total ER Background

Matter Project

Data Analysis: All data

More information on XENON100 data analysis in arXiv:1207.3458

Single Scatter Selection

Threshold and Fiducial Volume

Dark Matter Project

Consistency Cuts

M. Schumann (U Zürich) – XENON

O N

Ν Dark Matter Project

Select Energy Range

οΝ

Dark Matter Project

ER Rejection

M. Schumann (U Zürich) – XENON

WIMPs are Nuclear Recoil-like

Dark Matter Project

Profile Likelihood Method PRD 84, 052003 (2011)

→ but this is required by any low background experiment (regardless of the type of analysis)

Cuts and Acceptance

Nuclear Recoil Energy Scale

- WIMPs interact with Xe nucleus
 - nuclear recoil (*nr*) scintillation (β and γ 's produce electronic recoils)
- absolute measurement of nr scintillation yield is difficult
 - → measure relative to ⁵⁷ CO (122keV)
- relative scintillation efficiency Leff:

 $\mathcal{L}_{\text{eff}}(E_{\text{nr}}) = \frac{\text{LY}(E_{\text{nr}})}{\text{LY}(E_{\text{ee}} = 122 \text{ keV})}$

measurement principle:

average over all direct measurements o Arneodo 2000 0.35 Bernabei 2001 Akimov 2002 Aprile 2005 Chepel 2006 0.25Aprile 2009 Manzur 2010 Leff Plante 2011 0.15E 0.1 0.05 2 5 6 7 8 910 20 30 40 50 100 3 4 Energy [keVnr]

most recent measurements:

■ Plante et al., PRC 84, 045805 (2011)

△ *Manzur et al., PRC 81, 025808 (2010)*

for discussion of possible systematic errors see *A. Manalaysay, arXiv:1007.3746*

Background Prediction

Neutron background:

- (α,n) +sf and muon induced neutrons
- MC simulation using the exact XENON100 geometry and measured contaminations

Expect: (0.17 +0.12 -0.07) events

ER background:

- γ activity of the detector and shield
- intrinsic radioactivity in the LXe
 - $(\rightarrow \text{considerably lowered this run})$
- use ER calibration to model background by scaling it to the observable DM data

Expect: (0.79 ± 0.16) events

Sum: (1.0 ± 0.2) events

The same background model is implemented in the PL analysis

... Unblinding

(1.0 ± 0.2) events expected **2 events observed**

 \rightarrow 26.4% probability that background fluctuated to 2 events

 \rightarrow PL analysis cannot reject the background only hypothesis

No significant excess due to a signal seen in XENON100 data.

Events in Benchmark Region

- visual inspection: valid waveforms
- at 7.1 keVr and 7.8 keVr both events between 3 and 4 PE
- rather low wrt the NR calibration data
- no low S2/S2-events below threshold

M. Schumann (U Zürich) – XENON

The new XENON100 Limit

M. Schumann (U Zürich) – XENON

Dark Matter Project

No Impact of Leff below 3 keVr

The new XENON100 Limit

What XENON100 sees...

O N

Dark Matter Project

A light mass WIMP...

 $m_x = 8 \text{ GeV/c}^2 \sigma = 3.0 \times 10^{-41} \text{ cm}^2$

A CRESST-like signal...

 $m_x = 25 \text{ GeV/c}^2 \sigma = 1.6 \text{ x} 10^{-42} \text{ cm}^2$

Dark Matter Project

What XENON100 excludes...

 m_x = 50 GeV/c² σ =3.0 x10⁻⁴⁵ cm²

Reminder:

Background is modeled using ER calibration data from Co60 and Th232 This data shows an increased probability for anomalous leakage below ~8 PE

Background prediction depends on the information which is put into the model

Relaxing the S2 threshold condition (S2>150 PE) leads to a band of events at very low S2/S1(below signal range)

- \rightarrow can the 2 events be in the tail of this band???
- \rightarrow further studies are required
- \rightarrow aim: quantify and put into background model for the next run

The next step: XENON1T

- 3t LXe ("1m³ detector")
 1t fiducial mass → 20x larger
- 100x lower background (~10 cm self shielding, low radioactivity components)
- background goal: <1 evt in 2 years

Low Radioactivity Photon Detectors (3", Total ~250)

low radioactivity stainless steel cryostat (or copper)

The next step: XENON1T

- 3t LXe ("1m³ detector")
 1t fiducial mass → 20x larger
- 100x lower background (~10 cm self shielding, low radioactivity components)
- background goal: <1 evt in 2 years
- Timeline: 2010 2017
- start construction early 2013

XENON1T @ LNGS

The new WIMP Landscape

Matter Project