## Dark Energy First results with BOSS

Ch. Yèche (CEA-Saclay Irfu)







### Outline:

- > Concepts : BAO
- > SDSS-III BOSS
- > Confirmation of BAO with galaxies
- > First observation of BAO with Ly- $\alpha$  forests

Irfu/SPP Seminar Saclay - November 19, 2012









Acceleration of Universe expansion > In 1998 revolution of cosmology with standard candles, SNIa > SNIa were dimmer (~0.2 mag), ~10% further away than expected with  $\Omega_m = 1$ 

### **Concordance Model**

- $\succ$   $\Lambda$  CDM with GR
- > Study of the nature of DE

 $w=P_{DF}/\rho_{DF}=w_0+w_az/(1+z)$ 



### A probe for Dark Energy: Baryonic Acoustic Oscillations



#### A special distance:

 Galaxies form in the overdense shells about 150 Mpc in radius.
 For all z, small excess of galaxies 150 Mpc (in comobile coordinates) away from other galaxies.

#### $\Rightarrow$ Standard Ruler

Ch. Yèche

Irfu/SPP Seminar

Acoustic propagation of an overdensity:
Sound wave through relativistic plasma (baryons, electrons, photons).
Baryon and photon perturbations travel together till recombination (z~1100).
Then, the radius of the baryonic overdensity is frozen at 150 Mpc.



Saclay, November 19, 2012

### Observation of baryonic acoustic peak



Irfu/SPP Seminar

> Transverse direction:

5

Ch. Yèche

## Status of BAO before BOSS





SDSS <z> ~0.35 : 80 000 LRG
SDSS <z> ~0.15 : 30 000 LRG
2dFGRS <z> ~0.15 : 140 000 Galaxies Percival et al., MNRAS, 401 2148 (2010)

# SDSS-III - BOSS -A brief overview

## BOSS in SDSS-III



### Sloan Telescope

- > 2.5m telescope at Apache Point (New Mexico)
- Wide field telescope ~ 7 deg<sup>2</sup>
- Camera equipped with 5 filters
- (~120 millions pixels)
- Extension of imaging survey in SGC ~10,700 deg<sup>2</sup>



Upgrade of spectrograph
 New fiber system

 > 1000 fibers

 Replacement of red CCDs

 > LRG at higher z
 > Replacement of blue (UV)
 ⇒ Lyman-α forest program



## **BOSS Observation Strategy**





#### Several steps (~3 months)

- > Target selections (~40 QSOs deg<sup>-2</sup> and ~150 galaxies deg<sup>-2</sup>)
- > Drill plates (1000 holes per plate)
- > Plug plates on cartridges during day
- $\succ$  Observation of 5-9 cartridges per night.

Ch. Yèche

Irfu/SPP Seminar

Saclay, November 19, 2012

## **BAO with BOSS**



## Additional method: Ly- $\alpha$ forests



### Principles

Use Ly-α forests of quasars (2.2<z<4)</li>
 HI absorption in IGM along the line of sight of QSOs

We expect low density gas (IGM) to follow the dark matter density (validations : measured 1D power spectrum, N-body simulations and 3D power spectrum...)

### **BAO** specifications:

> 3D BÅO: Correlation between the different lines of sight
> BAO measurement for z~2.3
> Better precision in radial direction (H(z) measurement).



Irfu/SPP Seminar

Saclay, November 19, 2012

### **BOSS Status**

### Observing plan

Fall 2008 + Fall 2009: Complete imaging survey (10 700 deg<sup>2</sup>)

- > Fall 2009: Commissioning of spectrograph
- > 14-15 Sept. 2009 : First light
- > Jan. 2010: Begin spectroscopic survey
- > July 2014: End survey

### Public data releases







## Status of the survey



QSO density



So far, ~120 000 QSOs and ~700 000 galaxies over ~6700 deg<sup>2</sup>

End of the survey (10700 deg<sup>2</sup>):
 1.2-1.5M galaxies !!!
 150k - 200k high-z QSOs !!!

LAL Seminar



Footprint - galaxy sample



Deeper and denser survey
 compare to SDSS-II
 z~0.5-0.6

1/3 of the final survey
Data released in summer
2012: DR9



## **BAO in Correlation Function**

Use a fiducial model to compare against observed features in spherical average statistics.
 Departures quantified by dilatation scales α:

⇒Fit of ξ(**α**r)





arXiv:1203.6565 (2012) ➤ BOSS-only 5-σ observation ➤ BOSS + SDSS-II:

**7-** $\sigma$  observation!!!

BAO scale consistent with WMAP: α=1.016±0.017

## **Isotropic BAO results**



Combine transverse and longitudinal direction with

 $D_V = (cz.H(z)^{-1}.(1+z)^2 D_A(z)^2)^{1/3}$ 

> New "Hubble" diagram with BAO like SNIa with  $D_V/r_s$ 



- BAO scale consistent with WMAP
  Mild tension...
- >  $\Omega_{m}$ =0.268±0.029 (WMAP)  $\Omega_{m}$ =0.293±0.012 (WMAP+SDSS)

## **Constraints on Friedman equation**



## Dark Energy: Equation of state



 Fitting the full shape of the correlation function.
 Broad bands model with N-body simulations
 WMAP+BAO+SN: w<sub>0</sub> = -1.08±0.11 w<sub>a</sub> = 0.23±0.42



-1.5

-1.0

Wo

-0.5

Saclay, November 19, 2012

0.0

-2.0

Irfu/SPP Seminar

> Eq. of state:  $w=P/\rho$ 

Ch. Yèche

20

## Large-scale Redshift Space Distortions



Acceleration toward overdense regions
 Flattening in radial direction from real space to redshift space (over tens Mpc)
 Distortion are quantitatively measured by multi-poles decomposition

 $\xi(r,\cos(\theta)) = \sum_{\ell=0,2,4\dots} b^2 C_{\ell} \xi(r) P_{\ell}(\cos(\theta))$ 

- *P<sub>l</sub>*: Legendre polynomials
- $\theta$  angle between pair vector and LoS
- b linear galaxy bias

> Amplitude of the flattening gives a dependence on  $f(z)\sigma_8(z) \propto dG/dln(a)$ , where G is linear growth rate

N. Kaiser, MNRAS 227, 1 (1987)

Ch. Yèche

## **Redshift Space Distortions**



Redshift distortion clearly at <z>~0.6 in BOSS
 Excellent agreement between data and N-body simulations

B. Reid et al., arXiv:1203.6641 (2012)



## Results of the anisotropic fit



> Test of GR with  $f\sigma_8$ 

>  $f(z)\sigma_8(z) \propto dG/dln(a)$ , G linear growth rate

- First independent measurements
   of H(z) et D<sub>A</sub>(z)
- Three configurations: Dotted: free growth (fσ<sub>8</sub>), free geometry, ΛCDM only for large scales Solid: free geometry, ΛCDM growth Dashed: WMAP, flat ΛCDM, ΛCDM growth



Ch. Yèche

# BAO with Ly-α forests

## **QSO** Selection with Photometry



Ch. Yèche et al., A&A 523, A14 (2010)

### Challenging target selection

QSOs and stars overlap: QSO with
 2.2<z<3.5 are in the stellar locus</li>
 Many more stars than QSOs (x
 200-500), worse at the edge of Galaxy
 At z=2.4/3.3 Ly-α emission line falls
 between two band filters



### BOSS: Selection of Ly- $\alpha$ QSO Using Photometry



N. Ross, A. Myers, E. Sheldon. Ch. Yèche et al., APJS 199,3 (2011)

### Target selection with Variability



 Intrinsic variability of QSOs (~90-95% of QSOs)
 QSO variability: Long period (~ few years)
 Possible background: variables stars, RR -Lyrae (tens of days)

Test with SDSS stripe 82 (observations over 7-9 years) with spectroscopically confirmed objects

 Results:
 only for stripe 82 (220 deg<sup>2</sup>)
 ~28 deg<sup>-2</sup> QSOs with z>2.15
 Proof of principle for future surveys (e-BOSS, BigBOSS) Saclay, November 19, 2012

## Visual inspection of all QSO targets



- All 180 000 guasars targets were visually inspected
- DLA and BALs tagged (~15% of the QSOs)  $\triangleright$
- DLA and BALS tagged (~15% of the QSOS)
   P. Petitjean et al.
   Validation of the pipeline classification and redshifts arXiv:1210.5166
- $\succ$  Detection and tag of reductions problems.

I. Pâris,

(2012)

## Measurement of HI absorbed flux



### Flux definition

 Transmitted Flux Fraction F: Flux/Continuum 0<F<1</li>
 The power spectrum of the δ<sub>F</sub> has the same shape as the power spectrum of matter density  $\delta = \rho/\overline{\rho} - 1$ 

Pedagogical example
Single absorbing "cloud" at z<sub>cloud</sub> with z<sub>cloud</sub> z<sub>qso</sub>
QSO Ly-α emission: 1216A(1+ z<sub>qso</sub>)
HI "cloud" absorption: 1216A(1+ z<sub>cloud</sub>)
In real life, many absorbing "clouds" + noise



## QSO Ly- $\alpha$ Forest

### Typical BOSS QSO

Redshift z = 3.28
 Very noisy QSOs (on average SNR~1-2)
  $\lambda > \lambda_{Ly-\alpha}$ : fluctuations from noise
  $\lambda < \lambda_{Ly-\alpha}$ : fluctuations from noise and absorption



Ly- $\alpha$  absorption correlations

$$\xi_F(\vec{r}) = \left\langle \delta_F(\vec{x}) \cdot \delta_F(\vec{x} + \vec{r}) \right\rangle$$









Projection over  $r = |\vec{r}|$ of the 3D correlation function





> Year one: 14000 QSOs

Correlations in HI seen to 50 Mpc/h

First observation in 3D of matter in IGM

Results consistent with ACDM simulations

> A.Slosar et al., JCAP, 09 1 (2011)

#### First look at BAO with Ly- $\alpha$ 0.4 Data Model w. peak Model w/o peak 0.2 $r^2\,\xi_0(r)$ Data Set: DR9: ~48000 selected QSOs -0.2I=O monopole with $2.1 < z_{Abs} < 3.5$ -0.4 50 100 150 200 $r [h^{-1}Mpc]$ Significance: 0.5 $\succ$ Fit the amplitude of peak I=2 quadrupole $\chi^{2}_{peak}$ = 93.7 (85) 0.0 > Fix the peak amplitude to zero $r^2\,\xi_2(r)$ $\chi^2_{no peak}$ = 111.8 (86) -0.5 > Local significance $\Delta \chi^2_{peak}$ = 18.1 $\rightarrow$ 4.2 $\sigma$ -1.0

150

Irfu/SPP Seminar

200

Saclay, November 19, 2012

N. Busca, T. Delubac, J. Rich et al.

arXiv:1211.2616 (2012)

33

Ch. Yèche

100

 $r [h^{-1}Mpc]$ 

50

## BAO in Ly- $\alpha$ Vs Galaxy



In radial direction
> 0.8<cos(θ)<1.0</li>
> Best image of the BAO peak
Much less dense region
> IGM is very scarce
> Several orders of magnitudes between galaxy and IGM, δρ/ρ

## **Cosmological** implications



#### Implications

First measurement of H at z~2.3
 (11 billions of years from now)
 Deceleration of the expansion of Universe for z>0.8!!!

### 2D Fit

> Determination of the two dilatations scales in transverse and radial directions,  $\alpha_{t}$  and  $\alpha_{l}$ 

 $\succ \alpha_{\rm I}$  much more precisely measured



# Conclusions and Prospects



- With only DR9 (1/3 of the final survey). BOSS has already fulfilled these three goals:
  - > Confirmation of  $BAO(7\sigma)$
  - > Measurement of BAO in transverse and radial directions
  - > First observation in Ly- $\alpha$

### Future DR9 science:

- Low z galaxy clustering
- > Neutrino masses (galaxy and Ly- $\alpha$ )

