

.

Circular Higgs Factories: LEP3, TLEP and SAPPHiRE

Frank Zimmermann Saclay, 25 February 2013

Thanks to R. Aleksan, R. Assmann, P. Azzi, M. Bai, A. Blondel, O. Bruning, H. Burkhardt, A. Butterworth, Y. Cai, A. Chao, W. Chou, P. Collier, J. Ellis, M. Fitterer, P. Janot, E. Jensen, M. Jimenez, M. Klein, M. Klute, M. Koratzinos, A. Milanese, M. Modena, S. Myers, K. Ohmi, K. Oide, J. Osborne, H. Piekarz, L. Rivkin, L. Rossi, G. Roy, D. Schulte, J. Seeman, V. Shiltsev, M. Silari, D. Summers, V. Telnov, R. Tomas, J. Wenninger, U. Wienands, K. Yokoya, M. Zanetti, ...

work supported by the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579

4 July 2012 - X(125) "Higgs" discovery

pp Higgs factories LHC & LHC upgrades

LHC is the 1st Higgs factory! E_{COM} =8-14 TeV, \hat{L} ~10³⁴cm⁻²s⁻¹ total cross section at 8 TeV: 22 pb 1 M Higgs produced so far – more to come 15 H bosons / min – and more to come

 $8 \rightarrow 14$ TeV: ggH x1.5 F. Cerutti, P. Janot

HE-LHC: in LHC tunnel (2035-) E_{COM} =33 TeV, $\hat{L} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

HL-LHC (~2022-2030) will deliver ~9x more H bosons! E_{COM} =14 TeV, \hat{L} ~5x10³⁴cm⁻²s⁻¹ with luminosity leveling

VHE-LHC: new 80 km tunnel E_{COM} =84-104 TeV, $\hat{L} = 5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

J. Osborne, C. Waaijer, S. Myers

LEP3 / TLEP

Higgs *e⁺e⁻* production cross section

Figure 5: The Higgs boson production cross section as a function of the centre-of-mass energy. The red curve corresponds to the Higgsstrahlung process only, $e^+e^- \rightarrow HZ$, and the blue curve includes the WW and ZZ fusion processes as well, together with their interference with the Higgsstrahlung process. The right graph is a zoom of the left graph around the maximum of the cross section.

Prospective Studies for LEP3 with the CMS Detector

Patrizia Azzi³, Colin Bernet¹, Cristina Botta¹, Patrick Janot¹, Markus Klute², Piergiulio Lenzi¹, Luca Malgeri¹, and Marco Zanetti²

> ¹ CERN, Geneva ² Massachusetts Institute of Technology ³ INFN, Sezione di Padova

A. Blondel

best for tagged *ZH* physics: Ecm= m_H+111±10 W. Lohmann et al LCWS/ILC2007

take 240 GeV

Higgs production mechanism

in e⁺e⁻ collisions a light Higgs is produced by the "Higgstrahlung" process close to threshold ; production section has a maximum at near threshold ~200 fb

 $10^{34}/\text{cm}^2/\text{s} \rightarrow 20'000 \text{ H-Z}$ events per year

Z-tagging, missing mass

total rate $\propto g_{HZZ}^{2}$ ZZZ final state $\propto g_{HZZ}^{4}/\Gamma_{H}$ → measure total width Γ_{H}

for a Higgs of 125GeV, a centre of mass energy of 240 GeV is sufficient → kinematical constraint near threshold for high precision in mass, width, selection purity

A. Blondel

e⁺e⁻ Higgs factories LEP3 & TLEP options

- installation in the LHC tunnel "LEP3"
 - + inexpensive (<0.1xLC)
 - + tunnel exists
 - + reusing ATLAS and CMS detectors
 - + reusing LHC cryoplants
 - interference with LHC and HL-LHC
- new larger tunnel "TLEP"
 - + higher energy reach, 5-10x higher luminosity
 - + decoupled from LHC/HL-LHC operation & construction
 - + tunnel can later serve for HE-LHC (factor 3 in energy from tunnel alone) with LHC remaining as injector
 - 4-5x more expensive (new tunnel, cryoplants, detectors)

LEP3, TLEP

 $(e^+e^- \rightarrow ZH, e^+e^- \rightarrow W^+W^-, e^+e^- \rightarrow Z, [e^+e^- \rightarrow t\bar{t}])$

key parameters

	LEP3	TLEP
circumference	26.7 km	80 km
max beam energy	120 GeV	175 GeV
max no. of IPs	4	4
luminosity at 350 GeV c.m.	-	$0.7 x 10^{34} cm^{-2} s^{-1}$
luminosity at 240 GeV c.m.	10 ³⁴ cm ⁻² s ⁻¹	$5x10^{34}$ cm ⁻² s ⁻¹
luminosity at 160 GeV c.m.	$5x10^{34}$ cm ⁻² s ⁻¹	$2.5 x 10^{35} cm^{-2} s^{-1}$
luminosity at 90 GeV c.m.	$2x10^{35}$ cm ⁻² s ⁻¹	$10^{36} cm^{-2} s^{-1}$

at the Z pole repeating LEP physics programme in a few minutes...

other LEP3 parameters

arc optics

- same as for LHeC: $\varepsilon_{x,LHeC} < 1/3 \varepsilon_{x,LEP1.5}$ at equal beam energy,
- optical structure compatible with present LHC machine (not optimum!)
- small momentum compaction (short bunch length)
- assume $\varepsilon_v/\varepsilon_x \sim 5x10^{-3}$ similar to LEP (ultimate limit $\varepsilon_v \sim 1$ fm from opening angle)

RF

- RF frequency 1.3 GHz, 700 MHz or 800 MHz
- ILC/ESS-type RF cavities high gradient (20 MV/m assumed, 2.5 times LEP gradient)
- total RF length for LEP3 at 120 GeV similar to LEP at 104.5 GeV
- short bunch length (small β_y^*)
- cryo power ≤LHC

synchrotron radiation

- energy loss / turn: E_{loss} [GeV]=88.5×10⁻⁶ (E_b [GeV])⁴/ ρ [m].
- higher energy loss than necessary
- arc dipole field = 0.153 T
- compact magnet
- critical photon energy = 1.4 MeV
- 50 MW per beam (total wall plug power ~200 MW ~ LHC complex) \rightarrow 4x10¹² e[±]/beam

a new tunnel for TLEP in the Geneva area?

Pre-feasibility study of an 80km tunnel project at CERN

GEOTECHNIQUE APPLIQUEE DERIAZ S.A

TLEP tunnel in the Geneva area – "best" option

«Pre-Feasibility Study for an 80-km tunnel at CERN» John Osborne and Caroline Waaijer, CERN, ARUP & GADZ, submitted to ESPG

HE_LHC 80km option potential shaft location

Cr2012 Google Image 3:2312 ScoHyo Image 0:2012 IGN France

Geneva

saleve ...

Lake Geneva

SuperTRISTAN 40

屈括机

筑波山顶宫 回女体山

人和法律

下田城林

筑波高原 Fャンプ#

李 薬王院

TLEP tunnel in the KEK area?

つつしケ丘

つくばねオ

SuperTRISTAN in Tsukuba: 40 km ring Proposal by K. Oide, 13 February 2012

KEK

沼体育菌

HUR INCOM

TOIL

八郷植物センター

富士山

偏立中的

11 (C) (C 11

い町ふれあい

石岡市

105 km tunnel near FNAL

(+ FNAL plan B from R. Talman)

H. Piekarz, "... and ... path to the future of high energy particle physics," JINST 4, P08007 (2009)

West Coast design, 2012

FNAL site filler, 2012 O LEP3 on LI, 2012

LEP3 in Texas, 2012

UNK Higgs Factory, 2012

> Chinese Higgs Factory, 2012

SuperTristan 2012

circular e⁺e⁻ Higgs factories become popular around the world

luminosity formulae & constraints

LEP3/TLEP parameters -1 $\frac{\text{soon at SuperKEKB:}}{\beta_x^*=0.03 \text{ m}, \beta_Y^*=0.03 \text{ cm}}$

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t		
beam energy Eb [GeV]	104.5	60	120	45.5	120	175		
circumference [km]	26.7	26.7	26.7	80	80	80		
beam current [mA]	4	100	7.2	1180	24.3	5.4		
#bunches/beam	4	2808	4	2625	80	12		
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0		
horizontal emittance [nm]	48	5	25	30.8	9.4	20		
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1		
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0		
partition number J_{ϵ}	1.1	1.5	1.5	1.0	1.0	1.0		
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0		
SR power/beam [MW]	11	44	50	50	50	50		
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2		
β* _v [cm]	5	10	0.1	0.1	0.1	0.1		
σ* _x [μm]	270	30	71	78	43	63		
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32		
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65		
ΔE ^{SR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3		
SuperKEKB:ε _v /ε _x =0.25%								

LEP2 was not beam-

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
V _{RF,tot} [GV]	3.64	0.5	12.0	2.0	6.0	12.0
δ _{max,RF} [%]	0.77	0.66	5.7	4.0	9.4	4.9
ξ_x/IP	0.025	N/A	0.09	0.12	0.10	0.05
ξ _v /IP	0.065	N/A	0.08	0.12	0.10	0.05
f _s [kHz]	1.6	0.65	2.19	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f _{RF} [MHz]	352	721	700	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.06	0.15	0.22
σ ^{SR} _{z,rms} [cm]	1.61	0.69	0.31	0.19	0.17	0.25
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	N/A	94	10335	490	65
number of IPs	4		/	/	/	/
Rad.Bhabha b.lifetime [min]	360	N/A	18	74	32	54
Υ _{BS} [10 ⁻⁴]	0.2	0.05	9	4	15	15
n _v /collision	0.08	0.16	0.60	0.41	0.50	0.51
$\Delta \delta^{BS}$ /collision [MeV]	0.1	0.02	31	3.6	42	61
$\Delta \delta^{\rm BS}_{\rm rms}$ /collision [MeV]	0.3	0.07	44	6.2	65	95

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)

Stuart's Livingston Chart: Luminosity

Stuart Henderson, Higgs Factory Workshop, Nov. 14, 2012

beam lifetime

LEP2:

- beam lifetime ~ 6 h
- dominated by radiative Bhahba scattering with cross section $\sigma^{\sim}0.215$ barn

TLEP:

SuperKEKB: τ~6 minutes!

- with $L^{5x10^{34}}$ cm⁻²s⁻¹ at each of four IPs:
- τ_{beam,TLEP}~16 minutes from rad. Bhabha
 additional beam lifetime limit due to beamstrahlung requires: (1) large momentum acceptance (δ_{max,RF} ≥ 3%), and/or (2) flat(ter) beams and/or (3) fast replenishing (Valery Telnov, Kaoru Yokoya, Marco Zanetti)

circular HFs – beamstrahlung energy spectrum after 1 collision

- simulation w 360M macroparticles
- τ varies exponentially w energy acceptance η
- post-collision *E* tail \rightarrow lifetime τ

```
M. Zanetti (MIT)
```


circular HFs – beamstrahlung

- simulation w 360M macroparticles
- τ varies exponentially w energy acceptance η
- post-collision *E* tail \rightarrow lifetime τ

beam lifetime versus acceptance η for 1 IP:

beamstrahlung luminosity spectrum

LEP3 & ILC:

circular HFs - momentum acceptance

circular HFs – top-up injection double ring with top-up injection supports short lifetime & high luminosity

top-up experience: PEP-II, KEKB, light sources

top-up injection

SPS-LEP experience:

 e[±] from 3.5 to 20 GeV (later 22 GeV) in 265 ms (~62.26 GeV/s) [K. Cornelis, W. Herr, R. Schmidt, EPAC1988]

injection sequence [P. Collier, G. Roy]:

- SPS-> top-up accelerator at 20 (22) GeV
- acceleration from 20 (22) to 120 GeV
- synchroton injection (like SuperKEKB!)

overall acceleration time = 1.6 s

total cycle time = 10 s looks conservative

- (\rightarrow refilling ~1% of the TLEP beam, for
- τ_{beam} ~16 min)

top-up injection: schematic cycle

almost constant current

beam current in collider (15 min. beam lifetime)

energy of accelerator ring

不

100%

99%

top-up performance at PEP-II/BaBar

J. Seeman

Hübner factor *H* not from 1:

- for one day (July 3, 2006): *H*≈0.95
- for one month (August 2007): *H*≈0.63

Circular Collider & SR Experience

Emittances in Circular Colliders & Modern Light Sources

circular HFs: synchrotonradiation heat load

	PEPII	SPEAR3	LEP3	TLEP-Z	TLEP-H	TLEP-t
E (GeV)	9	3	120	45.5	120	175
I (A)	3	0.5	0.0072	1.18	0.0243	0.0054
rho (m)	165	7.86	2625	9000	9000	9000
Linear Power (W/cm)	101.8	92.3	30.5	8.8	8.8	8.8

LEP3 and TLEP have 3-10 times less SR heat load per meter than PEP-II or SPEAR! (though higher photon energy)

N. Kurita, U. Wienands, SLAC

synchrotron radiation - activation

NEUTRON PRODUCTION BY LEP SYNCHROTRON RADIATION USING EGS

A. Fasso 3rd TLEP3 Day

TLEP polarization

LHeC equilibrium polarisation vs ring energy, full 3-D spin tracking results (D. Barber, U. Wienands, in LHeC CDR, J. Phys. G: Nucl. Part. Phys. 39 075001)

"... by adopting the levels of alignment that are now standard for synchrotronradiation sources and by applying harmonic closed-orbit spin matching, there is reason to hope that high polarisation in a flat ring can ... be obtained"

TLEP/LEP3 key components

- tunnel
- SRF system
- cryoplants
- magnets
- injector ring
- detectors

tunnel is main cost:

3x LEP tunnel = 2.1 BCHF

9x LHeC tunnel cost estimate = 2.25 BCHF

inofficial/official TLEP tunnel cost ~3.5 BCHF

TLEP/LEP3 key issues

- SR handling and radiation shielding
- optics effect energy sawtooth
 [separate arcs?! (K. Oide)]
- beam-beam interaction for large Q_s
 and significant hourglass effect
- IR design with large momentum acceptance
- integration with LHC or VHE-LHC
- Pretzel scheme for TERA-Z operation?
- impedance effects for high-current running at Z pole

comparing expected performance on Higgs coupling

 Table 2.1: Expected performance on the Higgs boson couplings from the LHC and e⁺e⁻ colliders, as compiled from the Higgs Factory 2012 workshop.

 Many studies are quite recent and still ongoing.

Accelerator \rightarrow	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity ↓	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 1.4 TeV (1.5 ab ⁻¹)	240 GeV 2 ab ⁻¹ (*)	240 GeV 10 ab ⁻¹ 5 yrs (*)
			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 5 yrs (*)
N _H	$1.7 imes 10^7$	$1.7 imes10^8$	6×10^4ZH	$\frac{10^5~ZH}{1.4\times10^5~Hvv}$	$\begin{array}{l} 7.5\times10^{4}~\mathrm{ZH}\\ 4.7\times10^{5}~\mathrm{Hvv} \end{array}$	$4\times 10^{5}ZH$	$\begin{array}{c} 2\times10^{6}ZH\\ 3.5\times10^{4}H\nu\nu\end{array}$
$m_{\rm H}({ m MeV})$	100	50	35	35	100	26	7
$\Delta\Gamma_{\rm H}$ / $\Gamma_{\rm H}$	(<u> </u>		10%	3%	ongoing	4%	1.3%
$\Delta\Gamma_{ m inv}$ / $\Gamma_{ m H}$	Indirect (30%?)	Indirect (10%?)	1.5%	1.0%	ongoing	0.35%	0.15%
$\Delta g_{H\gamma\gamma} / g_{H\gamma\gamma}$	6.5 - 5.1%	5.4 - 1.5%		5%	ongoing	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	< 3%	2.2%	0.7%
$\Delta g_{ m Hww}$ / $g_{ m Hww}$	5.7-2.7%	4.5 - 1.0%	4.3%	1%	~1%	1.5%	0.25%
$\Delta g_{ m HZZ}$ / $g_{ m HZZ}$	5.7-2.7%	4.5 - 1.0%	1.3%	1.5%		0.65%	0.2%
$\Delta {f g}_{ m HHH}$ / ${f g}_{ m HHH}$		< 30% (2 expts)	-	~30%	(~11% at 3 TeV)		
$\Delta g_{ m H\mu\mu}/~g_{ m H\mu\mu}$	< 30%	$\leq 10\%$		()	10%	14%	7%
$\Delta g_{ m H\tau\tau}$ / $g_{ m H\tau\tau}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	1 5 A	1.5%	0.4%
$\Delta g_{ m Hcc}$ / $g_{ m Hcc}$			3.7%	2%	2%	2.0%	0.65%
$\Delta g_{ m Hbb}$ / $g_{ m Hbb}$	15 - 6.9%	11-2.7%	1.4%	1%	1%	0.7%	0.22%
$\Delta g_{\rm Htt}$ / $g_{\rm Htt}$	14-8.7%	8.0-3.9%		5% CC	paoiit	les	30%

(*) The total luminosity is the sum of the integrated luminosity at four IPs.

Report of the ICFA Beam Dynamics Workshop *"Accelerators for a Higgs Factory: Linear vs. Circular"* (HF2012) by Alain Blondel, Alex Chao, Weiren Chou, Jie Gao, Daniel Schulte and Kaoru Yokoya, FERMILAB-CONF-13-037-APC, IHEP-AC-2013-1, SLAC-PUB-15370, CERN-ATS-2013-032, arXiv:1302.3318 [physics.acc-ph]

extrapolation from past experience

	LEP2-→TLEP-H	SLC→ILC 250
peak luminosity	x400	x2500
energy	x1.15	x2.5
vertical geom. emittance	x1/5	x1/400
vert. IP beam size	x1/15	x1/150
e ⁺ production rate	x1/2 !	x65
commissioning time	<1 year \rightarrow ?	>10 years \rightarrow ?

& e[±] (120 GeV) – p (7, 16 & 50 TeV) collisions ([(V)HE-]TLHeC) ≥50 years of e⁺e⁻, pp, ep/A physics at highest energies a long-term strategy for HEP!

Mikhail S. Gorbachev

If what you have done yesterday still looks big to you, you haven't done much today.

further pushing TLEP luminosity

- charge compensation counteracting the electric field of the incoming beam by a second beam of opposite charge
- 4-beam collisions at DCI, Orsay, 1971
 - not a spectacular success
- new idea (V. Telnov, M. Koratzinos): use charge compensation to suppress beamstrahlung and push luminosity in crab-waist scheme
- potential gain: factor 10 (→5x10³⁵ cm⁻²s⁻¹)

Large Hadron electron Collider (LHeC)

At 2012 CERN-ECFA-NuPECC LHeC workshop ERL-LHeC was selected as baseline (*RR LHeC issues: HL-LHC schedule, tunnel work, interference*)

LHeC Conceptual Design Report

DRAFT 1.0 Geneva, September 3, 2011 CERN report ECFA report NuPECC report LHeC-Note-2011-003 GEN

LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012)

http://cern.ch/lhec

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group THIS IS THE VERSION FOR REFEREEING, NOT FOR DISTRIBUTION

LHeC Study Group

J. Abelleira Fernandez^{10,15}, C.Adolphsen³⁹, S.Alekhin⁴⁰,¹¹, A.N.Akai⁰¹, H.Aksakal³⁰, P.Allport¹⁷, J.L.Albacete³⁷ V.Andreev²⁵, R.B.Appleby²³, N.Armesto³⁸, G.Azuelos²⁶, M.Bai⁴⁷, D.Barber¹¹, J.Bartels¹², J.Behr¹¹, O.Behnke¹¹, S.Belyaev¹⁰, I.BenZvi⁴⁷, N.Bernard¹⁶, S.Bertolucci¹⁰, S.Bettoni¹⁰, S.Biswal³², J.Bluemlein¹¹, H.Boettcher¹¹, H.Braun⁴⁸, S.Brodsky³⁹, A.Bogacz²⁸, C.Bracco¹⁰, O.Bruening¹⁰, E.Bulyak⁰⁸, A.Bunyatian¹¹, H.Burkhardt¹⁰ I.T.Cakir⁵⁴, O.Cakir⁵³, R.Calaga⁴⁷, E.Ciapala¹⁰, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole²⁹, J.C.Collins⁴⁶, J.Dainton¹⁷, A.De.Roeck¹⁰, D.d'Enterria¹⁰, A.Dudarev¹⁰, A.Eide⁴³, E.Eroglu⁴⁵, K.J.Eskola¹⁴, L.Favart⁰⁶, M.Fitterer¹⁰, S.Forte²⁴, P.Gambino⁴², T.Gehrmann⁵⁰, C.Glasman²², R.Godbole²⁷, B.Goddard¹⁰, T.Greenshaw¹⁷, A.Guffanti⁰⁹ V. Guzey²⁸, C.Gwenlan³⁴, T.Han³⁶, Y.Hao⁴⁷, F.Haug¹⁰, W.Herr¹⁰, B.Holzer¹⁰, M.Ishitsuka⁴¹, M.Jacquet³³, B.Jeanneret¹⁰, J.M.Jimenez¹⁰, H.Jung¹¹, J.M.Jowett¹⁰, H.Karadeniz⁵⁴, D.Kayran⁴⁷, F.Kocac⁴⁵, A.Kilic⁴⁵, K.Kimura⁴¹, M.Klein¹⁷, U.Klein¹⁷, T.Kluge¹⁷, G.Kramer¹², M.Korostelev²³, A.Kosmicki¹⁰, P.Kostka¹¹ H.Kowalski¹¹, D.Kuchler¹⁰, M.Kuze⁴¹, T.Lappi¹⁴, P.Laycock¹⁷, E.Levichev³¹, S.Levonian¹¹, V.N.Litvinenko⁴⁷, A.Lombardi¹⁰, C.Marquet¹⁰, B.Mellado⁰⁷, K.H.Mess¹⁰, S.Moch¹¹, I.I.Morozov³¹, Y.Muttoni¹⁰, S.Myers¹⁰, S.Nandi²⁶, P.R.Newman⁰³, T.Omori⁴⁴, J.Osborne¹⁰, Y.Papaphilippou¹⁰, E.Paoloni³⁵, C.Pascaud³³, H.Paukkunen³⁸ E.Perez¹⁰, T.Pieloni¹⁵, E.Pilicer⁴⁵, A.Polini⁰⁴, V.Ptitsyn⁴⁷, Y.Pupkov³¹, V.Radescu¹³, S.Raychaudhuri²⁷, L.Rinolfi¹⁰, R.Rohini²⁷, J.Rojo²⁴, S.Russenschuck¹⁰, C.A.Salgado³⁸, K.Sampei⁴¹, E.Sauvan¹⁹, M.Sahin⁰¹, U.Schneekloth¹¹, A.N.Skrinsky³¹, T.Schoerner Sadenius¹¹, D.Schulte¹⁰, H.Spiesberger²¹, A.M.Stasto⁴⁶, M.Strikman⁴⁶, M.Sullivan³⁹, B.Surrow⁰⁵, S.Sultansoy⁰¹, Y.P.Sun³⁹, W.Smith²⁰, I.Tapan⁴⁵, P.Taels⁰², E.Tassi⁵², H.Ten.Kate¹⁰, J.Terron²², H.Thiesen¹⁰, L.Thompson²³, K.Tokushuku⁴⁴, R.Tomas.Garcia¹⁰, D.Tommasini¹⁰, D.Trbojevic⁴⁷, N.Tsoupas⁴⁷, J.Tuckmantel¹⁰, S.Turkoz⁵³, K.Tywoniuk¹⁸, G.Unel¹⁰, J.Urakawa⁴⁴, P.VanMechelen⁰², A.Variola³⁷ R. Veness¹⁰, A. Vivoli¹⁰, P. Vobly³¹, R. Wallny⁵¹, G. Watt¹⁰, G. Weiglein¹², C. Weiss²⁸, U. A. Wiedemann¹⁰, U. Wienands³⁹, F.Willeke⁴⁷, V.Yakimenko⁴⁷, A.F.Zarnecki⁴⁹, F.Zimmermann¹⁰, F.Zomer³³

About 150 Experimentalists and Theorists from 50 Institutes Tentative list Thanks to all and to CERN, ECFA, NuPECC

~600 pages

LHeC Higgs physics

- precision coupling measurements $(Hb\overline{b}, H\gamma\gamma, H4I,...)$
- reduction of theoretical QCD-related uncertainties in *pp* Higgs physics
- potential to find new physics at the cleanly accessible WWH (and ZZH) vertices

parameter [unit]	LHeC		
species	<i>e</i> [±]	<i>p</i> , ²⁰⁸ <i>Pb</i> ⁸²⁺	
beam energy (/nucleon) [GeV]	60	7000, 2760	
bunch spacing [ns]	25, 100	25, 100	
bunch intensity (nucleon) [10 ¹⁰]	0.1 (0.2), 0.4	17 (22), 25 eter	
beam current [mA]	6.4 (12.8)	360 (21 10), 6	
rms bunch length [mm]	0.6 hod P	75.5	
polarization [%]	90 (et 105e)	none, none	
normalized rms emittance [µm]	50	3.75 (2.0), 1.5	
geometric rms emittance [m]	0.43	0.50 (0.31)	
IP beta function by and	0.12 (0.032)	0.1 (0.05)	
IP rms shor size [µm]	7.2 (3.7)	7.2 (3.7)	
synchrotron tune	-	0.0019	
hadron beam-beam parameter	0.0001 (0.0002)		
lepton disruption parameter D	6 (30)		
hourglass reduction factor H _{hg}	0.91 (0.67)		
pinch enhancement factor H_D	1.35 (0.3 for <i>e</i> ⁺)		
luminosity/ nucleon [10 ³³ cm ⁻² s ⁻¹]	1 (10), 0.2		

LHeC ERL layout

two 10-GeV SC linacs, 3-pass up, 3-pass down; 6.4 mA, 60 GeV e⁻'s collide w. LHC protons/ions

X(125) seems to strongly couple to $\gamma\gamma$

a new type of collider?

t, W, ...

s-channel production; lower energy; no *e*⁺ source

"most" sensitive to new physics

γ

another advantage: no beamstrahlung \rightarrow higher energy reach than e⁺e⁻ colliders

H

γγ collider Higgs factory

$\gamma\gamma$ collider based on e^-

combining photon science & particle physics!

which beam & photon energy / wavelength?

$$E_{\gamma,max} = \frac{x}{1+x} E_{beam}$$
$$x = \frac{4E_e \omega_L}{m_e^2} \cos^2 \frac{\theta}{2}$$
example $x \approx 4.3$

(for *x*>4.83 coherent pair production occurs)

with $E_{beam} \approx 80 \text{ GeV}$: $E_{\gamma,max} \approx 66 \text{ GeV}$ $E_{CM,max} \approx 132 \text{ GeV}$

 E_{photon} ~3.53 eV , λ ~351 nm

Higgs $\gamma\gamma$ production cross section

Left: The cross sections for $\gamma\gamma \rightarrow h$ for different values of M_h as functions of $E_{CM}(e-e-)$.

Right: The cross section for $\gamma\gamma \rightarrow h$ as a function of M_h for three different values of $E_{CM}(e-e-)$.

Assumptions: electrons have 80% longitudinal polarization and lasers are circularly polarized, so that produced photons are highly circularly polarized at their maximum energy.

S.A. Bogacz et al, arXiv:1208.2827v1

Reconfiguring *LHeC* → *SAPPHiRE*

SAPPHIRE*

*Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

SAPPHiRE: a Small $\gamma\gamma$ Higgs Factory

SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

SAPPHIRE	symbol	value
total electric power	Р	100 MW
beam energy	Ε	80 GeV
beam polarization	P _e	0.80
bunch population	N _b	10 ¹⁰
repetition rate	f _{rep}	200 kHz
bunch length	σ	30 µm
crossing angle	θ_{c}	≥20 mrad
normalized horizontal/vert. emittance	γε _{x,y}	5,0.5 μm
horizontal IP beta function	β_x^*	5 mm
vertical IP beta function	β,*	0.1 mm
horizontal rms IP spot size	σ_x^*	400 nm
vertical rms IP spot size	σ_v^*	18 nm
horizontal rms CP spot size	σ_x^{CP}	400 nm
vertical rms CP spot size	σ_y^{CP}	440 nm
e ⁻ e ⁻ geometric luminosity	L _{ee}	2x10 ³⁴ cm ⁻² s ⁻¹

SAPPHiRE $\gamma\gamma$ luminosity

luminosity spectra for SAPPHiRE as functions of $E_{CM}(\gamma\gamma)$, computed using Guinea-Pig for three possible normalized distances $\rho \equiv I_{CP-IP}/(\gamma\sigma_{\gamma}^{*})$ (left) and different polarizations of in-coming particles (right)

synchrotron radiation - energy loss

- energy loss per arc: $\Delta E[GeV] = 8.864 \times 10^{-5} \frac{E^4[GeV]}{2\rho[m]}$
- Sapphire (LHeC): ρ=764m => electrons lose 4 GeV
- can be compensated by increasing linacs to 10.5 GeV

beam energy [GeV]	$\Delta E_{ m arc}$ [GeV]	$_{\rm c}$ [GeV] $\Delta\sigma_{\rm E}$ [MeV]	
10	0.0006	0.038	
20	0.009	0.43	
30	0.05	1.7	
40	0.15	5.0	
50	0.36	10	
60	0.75	20	
70	1.39	35	
80	1.19	27	
total	3.89	57 (0.071%)	

e⁻ beam emittance growth due to SR

• horizontal emittance growth of the electron beam may be a severe limitation: $2\pi C_{q}r_{e} = \frac{6}{4}$

$$\Delta \varepsilon_{N} = \frac{2\pi C_{q} r_{e}}{3\rho^{2}} \gamma^{6} \langle H \rangle$$

• LHeC optics (I_{bend} =10m, ρ =764m, <H>=1.2x10⁻³m) leads to too high an emittance growth ($\Delta \epsilon_{N}$ =13µm at 60 GeV)

- 80 GeV instead of 60

- <H> scale as /³_{bend}/ρ² => shorten /_{bend} by factor 4=> down to 1μm at 80 GeV

flat polarized e- guns

FNAL A0 line injector test facility:

starting with γε~4-5 μm at 0.5 nC, achieved emittances of 40 μm horizontally and 0.4 μm vertically (ε_x/ε_y~100)

SAPPHIRE needs only $\varepsilon_x/\varepsilon_v=10$, but:

- larger bunch charge 1.6 nC and smaller initial $\gamma\epsilon$ ~1.5 μ m
- altogether, within state of the art

main question is whether we can get polarized beams with SAPPHiRE parameters

ongoing efforts:

- low-emittance DC guns
 - MIT-Bates, Cornell, JAEA, KEK [E. Tsentalovich, I. Bazarov, et al]
- polarized SRF guns
 - FZD, BNL, etc. [J. Teichert, J. Kewisch, et al]

Schreiber, and Andreas Tünnermann, Applied Optics, Vol. 49, No. 25 (2010)

passive optical cavity

Y. Zaouter, SAPPHiRE Day, 19 Ferbuary 2013

LAL *MightyLaser* experiment at KEK-ATF non-planar high finesse four mirror Fabry-Perot cavity; first Compton collisions observed in October 2010

self-generated or separate FEL pulses (instead of laser)?

Edward Nissen

Town Hall meeting Dec 19 2011

Possible Configurations at JLAB

85 GeV Electron energy γ c.o.m. 141 GeV 103 GeV Electron energy γ c.o.m. 170 GeV

Possible Configurations at FNAL Edward Nissen Tevatron Tunnel Filler Options

80 GeV

4

661.9 m

10.68GeV

80 GeV

5

701.1 m

8.64GeV

5 Linacs

2)

	δρ/ρ	8.84x10 ⁻⁴	8.95x10-	
1A	ϵ_{nx} Growth	2.8µm	2.85µm	
	Top Energy	80 GeV	80 GeV	
	Turns	3	4	
	Magnet p	644.75 m	706.65 m	
S.	Linacs (5)	5.59GeV	4.23GeV	
X	δp/p	6.99x10 ⁻⁴	7.2x10 ⁻⁴	
	ϵ_{nx} Growth	1.7µm	1.8µm	
and the second				

Top Energy

Avg. Mag. ρ

Linacs (2)

Turns

•	Both versions assume an
	effective accelerating
	gradient of 23.5 MeV/m

- Option 1: would require more civil construction, but would only require two sets of spreader /recombiner magnets, and only two linacs, for greater simplicity.
- Option 2: would require 10 sets of spreader /recombiner magnets and 5 linacs but would achieve better beam parameters

SAPPHiRE R&D items

- γγ interaction region
- Iarge high-finesse optical cavity
- high repetition rate laser
- FEL in unusual regime
- separation scheme for beams circulating in opposite directions
 polarized low-emittance e⁻ gun

vertical rms IP spot sizes in nm

in regular font: achieved

in italics: design values

LEP2	3500	0 *
KEKB	940	β_{γ} : 5 cm \rightarrow
SLC	500	1 mm
LEP3	320	
TLEP-H	220	
ATF2, FFTB	72 (<i>35</i>), 65	LEP3/TLEP will learn
SuperKEKB	50	from ATF2 & SuperKEKB
SAPPHiRE	18	· ·
ILC	5 – 8	SAPPHiRE a step
	4 2	towards

Conclusions

- LEP3, TLEP, SAPPHiRE & LHeC are exciting and popular projects
- **LEP3 and SAPPHiRE** may be the **cheapest possible options to study the Higgs** (cost ~1BEuro scale), feasible, **"off the shelf", but**, esp. SAPPHiRE, **not easy**
- **TLEP** is **more expensive** (~5 BEuro?), but **clearly superior in terms of energy & luminosity**, and it would be **extendable towards VHE-LHC**, preparing
- ≥50 years of exciting e^+e^- , pp, ep/A physics at highest energies
- SuperKEKB will be TLEP demonstrator!
- **TLEP deserves a detailed design study**

HF Accelerator Quality (My Opinion)

	Linear C.	Circular C.	LHeC	Muon C.	γ–γ C .
maturity	\odot		00	8	8
size	8	8	\odot		\odot
cost	8	🙂 - 😐		8	\odot
power					
#IPs	1	4	1	1	1
com. time	10 yr	2 yr	2 yr	10 yr	5 yr
H factor	0.2 (SLC)	0.5 (1/2 PEP-II)	0.2?	0.1?	0.1?
Higgs/IP/yr	7 k [10 k]	20-100 k	5 k	5 k	10 k
expanda- bility	1-3TeV e⁺e⁻, γγ C.	100 TeV <i>pp</i>	γγ C.	10 TeV μμ	LC later

inspired by S. Henderson, FNAL
the path forward for TLEP

- set up international collaboration(s) & work structure
 - ERC proposal on large-acceptance IR
 - design by Rogelio Tomas
 - TLEP Design Study Proposal for ECFA
 - CEA-Saclay could play a strong role!
- goal: publish TLEP Conceptual Design Study Report by 2014/2015!

R. Tomas

Part B1

THALES

European Research Council

ERC Consolidator Grant 2013

Research proposal [Part B1]

(to be evaluated in Step 1)

Towards a Higgs factory Accepting Large Energy Spread

THALES

Cover Page:

Name of the Principal Investigator (PI): Rogelio Tomas Garcia

- Name of the PI's host institution for the project: CERN
- Proposal full title: Towards a Higgs factory Accepting Large Energy Spread
- Proposal short name: THALES
- Proposal duration in months: 60 months

A key issue for particle accelerators is to focus beams with the largest possible intensity so as to maximize collision rates. This issue has gained importance with the discovery in 2012 at the LHC of a Higgs-like particle. Among recent proposals for studying this particle are a new generation of circular e^+e^- colliders (Higgs factories) with higher energies and collision rates (luminosities) than LEP2. Achieving unprecedented Higgs production event rates will require squeezing the vertical beam sizes at the Interaction Point (IP) to a few 100 nm, requiring about a factor 50 lower vertical beta function at the collision point than at LEP2. This proposal will show how to meet this requirement, making technical advances that also have applications to a wide range of other accelerators. The performance of high-luminosity machines will be restricted by beamstrahlung, i.e., synchrotron radiation in the field of the opposing beam emitted during the collision, coupled with a limited momentum acceptance. Therefore, the first goal of the proposed project is to develop a low-beta interaction region (IR) and the associated non-linear ring optics for a circular Higgs factory collider with large momentum acceptance, so that particles with an energy error of 3% or more, suddenly introduced by the emission of highly-energetic beamstrahlung photons, circulate until they are damped back into the core of the beam by conventional synchrotron radiation in the collider arcs. The proposed study will produce a new type of final-focus design together with additional non-linear elements in the collider arcs to control remaining aberrations. In parallel, an IR design for a very-high-energy proton collider in the same tunnel with up to 100 TeV in the centre of mass will also be developed. This will open the way to a nextgeneration collider complex at the energy frontier. The novel IR concepts developed for these circular machines will have significant spin-offs that could be used to improve the design and performance of linear colliders, muon storage rings, light sources, and medical accelerators. In particular, there is a strong synergy with the laser-beam collision IR in the Compton storage ring for a polarized positron source, in which circulating electrons undergo large energy changes when they collide with the laser beam. This project is therefore of broad interest for a wide range of future accelerators with applications beyond high-energy physics.

ERC Consolidation Grant Proposal "THALES"

PI: Rogelio Tomas

includes international network for feeding new ideas, guidance, local support for experimental tests, review & collaboration

draft work topics: TLEP accelerator

- parameter optimization with regard to lifetime and luminosity, at different energies, & different tunnels
- RF system design, prototyping & integration for collider and accelerator ring
- optics design for collider ring including lowbeta IRs, off-momentum dynamic aperture, different energies
- beamstrahlung: lifetime, steady state beam distribution, dependence on tune etc.
- beam-beam interaction with large hourglass effect
- emittance tuning studies, errors, tolerances, etc.
- optics design and beam dynamics for the accelerator ring, ramping speed etc
- impedance budget, CSR, instabilities
- cryogenics system design

- magnets design: collider ring dipole, accelerator ring dipole, low-beta quadrupole
- radiation, shielding, cooling for 100 MW
 SR power
- vacuum system design
- engineering study of 80-km tunnel
- design of injector complex including e+ source, and polarized e- source
- machine detector interface, integration of accelerator ring at detector (s), low-beta quadrupoles, shielding (e.g. against beamstrahlung)?
- injection scheme
- polarization, Siberian snakes, spin matching, acceleration & storage, polarized sources

(19 September 2012)

Draft 2.0

CERN, 13 February 2013

TLEP

A design study of high-luminosity e⁺e[−] circular colliders for precise measurements of the properties of the Higgs-like H(126) boson and physics at the electroweak scale

(DRAFT)

Author list to be expanded and ordered by institute: R. Aleksan (CEA-Saclay), Alain Blondel (Geneva), John Ellis (King's College London), Patrick Janot (CERN-PH), Mike Koratzinos (Geneva), Marco Zanetti (MIT), Frank Zimmermann (CERN-BE)......

Possible site layout and schematic for the TLEP collider

Abstract

We propose to carry out the design study of a high-energy, high-luminosity electron-positron storage ring collider operating in the energy range 90-350 GeV. Such a study was recommended as an outcome of the ICFA beam dynamics workshop on Higgs Factories and is in line with the proposed update of the European Strategy for Particle Physics. If situated in a 80km tunnel, this machine could be the precursor of a 80-100 TeV hadron collider as part of a possible long-term vision for CERN.

TLEP Design Study Proposal (*draft*)

to be submitted to ECFA

TLEP design study –p for disc	reliminary structure ussion	International
Institutional board	Steering group web site, mailing lists, speakers board, etc	Advisory board
Accelerator	Experiments	Physics
 Optics, low beta, alignment and feedbacks Beam beam interaction Magnets and vacuum RF system Injector system Integration w/(SHE)-LHC Interaction region Polarization &E-calib. Elements of costing 	 H(126) properties Precision EW measurements at the Z peak and W threshold 3. Top quark physics 4. Experimental environment 5. Detector design 6. Online and offline computing 1. H(126) properties 2. Precision EW measurements at the Z peak and W threshold 3. Top quark physics 4. Experimental environment 5. Detector design 6. Online and offline computing 5. Online 6. Online 6. Online 6. Online 6. Online 6. Online 7. Online	 1. Theoretical implications and model building 2. Precision measurements, simulations and monte-carlos 3. Combination + complementarity with LHC and other machines ; global fits

TLEP/LEP3 events & references

- A. Blondel, F. Zimmermann, <u>"A High Luminosity e⁺e⁻ Collider in the LHC Tunnel to</u> <u>study the Higgs Boson,"</u> arXiv:1112.2518v1, 24.12.'11
- K. Oide, *"SuperTRISTAN A possibility of ring collider for Higgs factory,"* KEK Seminar, 13 February 2012

1st EuCARD LEP3 workshop, CERN, 18 June 2012

- A. Blondel et al, <u>"LEP3: A High Luminosity e+e- Collider to study the Higgs Boson,"</u> arXiv:1208.0504, submitted to ESPG Krakow
- P. Azzi et al, <u>"Prospective Studies for LEP3 with the CMS Detector,"</u>

arXiv:1208.1662 (2012), submitted to ESPG Krakow

2nd EuCARD LEP3 workshop, CERN, 23 October 2012

P. Janot, <u>"A circular e⁺e⁻ collider to study H(125),"</u> PH Seminar, CERN, 30 October 2012

ICFA Higgs Factory Workshop: Linear vs Circular, FNAL, 14-16 Nov. '12

A. Blondel, F. Zimmermann, <u>*"Future possibilities for precise studies of the X(125)</u> Higgs candidate,"* CERN Colloquium, 22 Nov. 2012</u>

3rd TLEP3 Day, CERN, 10 January 2013

4th TLEP mini-workshop, CERN, 4-5 April 2013

https://espace.cern.ch/LEP3 https://cern.ch/accnet

SAPPHiRE/LHeC events & references

S. A. Bogacz, J. Ellis, L. Lusito, D. Schulte, T. Takahashi, M. Velasco, M. Zanetti, F. Zimmermann, <u>"SAPPHiRE: a Small Gamma-Gamma Higgs Factory,"</u> arXiv:1208.2827

- D. Asner et al., <u>"Higgs physics with a gamma gamma collider based on CLIC I,"</u> Eur. Phys. J. C 28 (2003) 27 [hep-ex/0111056].
- J. Abelleira Fernandez et al, "Large Hadron Electron Collider at CERN Report on the

Physics and Design Concepts for Machine and Detector," Journal of Physics

G: Nuclear and Particle Physics 39 Number 7 (2012) arXiv:1206.2913

- Yuhong Zhang, <u>"Design Concept of a γ-γ Collider-Based Higgs Factory Driven by</u> <u>Energy Recovery Linacs,"</u> arXiv:1211.3756
- E. Nissen, "Optimization of Recirculating Linacs for a Higgs Factory," prepared for HF2012

ICFA Higgs Factory Workshop: Linear vs Circular, FNAL, 14-16 Nov. '12

J. Limpert, T. Schreiber, A. Tünnermann, <u>"Fiber lasers and amplifiers: an ultrafast</u> <u>performance evolution,"</u> Applied Optics, Vol. 49, No. 25 (2010)

1st EuCARD SAPPHiRE Day, CERN, 19 February 2013

https://cern.ch/accnet

"A circle is a round straight line with a hole in the middle."

Mark Twain, in "English as She Is Taught", Century Magazine, May 1887

back-up slides

- HE-LHC/VHE-LHC parameters
- TLHeC/VHE-TLHeC parameters
- TLEP/VHE-LHeC tunnel layout
- Lucio Rossi'es "plan for all"

HE/VHE-LHC parameters – 1

smaller?! (x1/4?)

1

parameter	LHC	HL-LHC	HE-LHC	VHE-LHC
c.m. energy [TeV]	14	14	33	100
circumference C [km]	26.7	26.7	26.7	80
dipole field [T]	8.33	8.33	20	20
dipole coil aperture [mm]	56	56	40	40
beam half aperture [cm]	~ 2	~ 2	1.3	1.3
injection energy [TeV]	0.45	0.45	>1.0	>3.0
no. of bunches n_b	2808	2808	1404	4210
bunch population N_b [10 ¹¹]	1.125	2.2	1.62	1.59
init. transv. norm. emit. $[\mu m]$	3.73,	2.5	2.10	3.37
initial longitudinal emit. [eVs]	2.5	2.5	5.67	17.2
no. IPs contributing to tune shift	3	2	2	2
max. total beam-beam tune shift	0.01	0.015	0.01	0.01
beam circulating current [A]	0.584	1.12	0.412	0.401
rms bunch length [cm]	7.55	7.55	7.7	7.7
IP beta function [m]	0.55	0.15	0.3	0.9
init. rms IP spot size $[\mu m]$	16.7	7.1	6.0	7.5

available now at LHC!

O. Dominguez, L. Rossi, F.Z.

HE/VHE-LHC parameters – 2

parameter	\mathbf{LHC}	HL-LHC	HE-LHC	VHE-LHC
full crossing angle $[\mu rad]$	285	590	240	100
stored beam energy [MJ]	362	694	601	5410
SR power per ring [kW]	3.6	6.9	82.5	2356
arc SR heat load dW/ds [W/m]	0.21	0.40	3.5	33?
energy loss per turn [keV]	6.7	6.7	201.3	5857
critical photon energy [eV]	44	44	575	5474
photon flux $[10^{17}/m/s]$	1.0	1.9	1.6	1.3
longit. SR emit. damping time [h]	12.9	12.9	1.0	0.32
horiz. SR emit. damping time [h]	25.8	25.8	2.0	0.64
init. longit. IBS emit. rise time [h]	57	21.0	77	634
init, horiz. IBS emit. rise time [h]	103	15.4	40	306
peak events per crossing	19	$140 \ (\text{lev.})^{*100?}$	190	190
peak luminosity $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	7.4	5.0	5.0
beam lifetime due to burn off [h]	45	11.6	6.3	18.6
optimum run time [h]	15.2	8.9	6.5	12.2
opt. av. int. luminosity / day $[fb^{-1}]$	0.47	3.7	1.5	2.3

parameters for TLHeC & VHE-TLHeC (examples)

collider parameters	TLHeC		VHE-TLHeC		
species	<i>e</i> [±]	p	e [±]	p	
beam energy [GeV]	120	7000	120	50000	
bunch spacing [µs]	3	3	3	3	
bunch intensity [10 ¹¹]	5	3.5	5	3.5	
beam current [mA]	24.3	51.0	24.3	51.0	
rms bunch length [cm]	0.17	4	0.17	2	
rms emittance [nm]	10,2	0.40	10,2	0.06	
$\beta_{x,y}$ *[cm]	2,1	60,5	0.5,0.25	60,5	
σ _{x,y} * [μm]	15, 4		6, 2		
beam-beam parameter ξ	0.05, 0.09	0.03,0.01	0.07,0.10	0.03,0.007	
hourglass reduction	0.63		0.42		
CM energy [TeV]	1.	8	4.9		
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	0.	5	1.6		

arrangement in VHE-LHC tunnel

VHE-LHC's LER magnets compatible with TLEP and VLHeC – 100 MW SR

Lucio Rossi CLIC workshop 28 Jan. 2013

- **cheap**, like resistive magnets
- central gap could be shortcircuited
- magnets separated: provides electrons at 120 GeV and protons at 5 TeV/beam
- **limited cryopower (HTS)** in shadow of SCRF cavities
- SC cables developed already for SC links (HiLumi) and power applications
- SR taken at 300 K

86

QRL

Lucio Rossi

CLIC workshop

«plan for all»

28 Jan. 2013

1995	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	2055
Proto & Industr.	Constr. &	Install.	Physics			LHC						
HL-LH	łC	Stuty- R&D	Proto & Industr.	Constr &	Install.	Physics						
HE-L	HC		Study. R	&D	Proto & Industr.	Construc and Insta	tions Illation	Physics	•		reuse HE-I magnets?	-HC
VHE- leptor	LHC ns	+	Study - R	&D	Tunnel construc	tion	Install LER	Physics TLEP LHeC	Constr. a Install. VI	nd HE	Physics V	HE
-						Constr. L	ER	Constr. V	HE			

according to physics needs, the 80 km tunnel can:

- be alternative to HE-LHC
- or be complementary to HE-LHC
- accommodate at negligible extra cost TLEP and VLHeC
- modular detector design allows evolution from TLEP-H/TLHeC to VHE-LHC