# $H \rightarrow \tau \tau$ in CMS, A Particle Flow Analysis

Colin Bernet (CERN, CRNS/LLR)

## Discovery of a Higgs boson



gluon-gluon fusion Dominant Higgs production mechanism

- mass ~ 125.6 ± 0.5 GeV
- σ x BR compatible with SM
  - couples to Z and W
  - couples to top quark (probably)
- does it couple to leptons?

ATLAS-CONF-2013-012, CMS-PAS-HIG-13-002

### Probe lepton coupling: $H \rightarrow \tau \tau$



 $BR(H \to \tau \tau) = 6\%$ 

Yukawa coupling to fermions proportional to fermion mass  $m_f$  $BR(H \to \mu\mu) = \left(\frac{m_\mu}{m_\tau}\right)^2 BR(H \to \tau\tau)$ 

~1/300

LHC Higgs o Working Group

# Part I

- Principles of the  $H \rightarrow \tau \tau$  search
  - fighting the main background sources
  - need for high-performance physics objects
- Particle flow reconstruction
  - What and why?
  - The algorithm
  - Physics object performance
- The CMS  $H \rightarrow \tau \tau$  analysis
  - specific techniques
  - results

## The $\tau$ , a massive (and challenging) lepton





- m = 1.78 GeV
- cτ = 90 μm
- Branching ratios:
  - $65\% \tau^{\pm} \rightarrow \tau_{had}^{\pm} \nu_{\tau}$ 
    - 75%,  $\tau^{\pm} \rightarrow \mathbf{1} \pi^{\pm} + [\pi^{0}(s)] + v_{\tau}(\mathbf{1 prong})$
    - 23%, τ<sup>±</sup>→3π<sup>±</sup> + [π<sup>0</sup>('s)] + ν<sub>τ</sub> (3 prongs)
  - $35\% \tau^{\pm} \rightarrow I^{\pm} v_{I} v_{\tau}$
  - Decays into 1 or 2 neutrinos
     → MET in the event
  - Narrow "jet" with only a few particle
     → high jet to τ fake rate (few %)

# $H \rightarrow \tau \tau$ channels



• cτ = 90 μm



- Branching ratios:
  - $65\% \tau^{\pm} \rightarrow \tau_{had}^{\pm} \nu_{\tau}$ 
    - 75%,  $\tau^{\pm} \rightarrow \mathbf{1} \pi^{\pm} + [\pi^{0}(s)] + v_{\tau}(\mathbf{1 prong})$
    - 23%, τ<sup>±</sup>→3π<sup>±</sup> + [π<sup>0</sup>('s)] + ν<sub>τ</sub> (3 prongs)
  - $35\% \tau^{\pm} \rightarrow l^{\pm} v_{\mu} v_{\tau}$
- Decays into 1 or 2 neutrinos
   → MET in the event
- Narrow "jet" with only a few particle
   → high jet to τ fake rate (few %)

## $H \rightarrow \tau \tau$ channels



# The $H \rightarrow \tau \tau \rightarrow \mu \tau$ channel

- Inclusive selection:
  - identified and isolated  $\mu \& \tau$ , with pT > 20 GeV
  - rejects QCD & W+jets
    - This background yield is proportional to the jet→τ fake rate

- mT < 20 GeV
  - rejects W+jets & ttbar
    - $H \rightarrow \tau \tau$  at low mT like  $Z \rightarrow \tau \tau$
  - separation performance depends on E<sub>T</sub><sup>miss</sup> resolution

CMS Preliminary, 
$$\sqrt{s} = 8$$
 TeV, L = 19.4 fb<sup>-1</sup>  
 $\mu \tau$  H $\rightarrow$   $\tau \tau$  is observed  
 $25000$   $\mu \tau$  here  
 $25000$   $(small!)$   $QCD$   
 $20000$   $bkg. uncertainty$   
 $10000$   
 $5000$   $0$   $20$   $40$   $60$   $80$   $100$   $120$   $140$   $160$   
 $m_{\tau}$  [GeV]

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos(\Delta\phi))}$$

#### Transverse mass

mass of the  $\mu$  +  $E_T^{miss}$  system in the transverse plane

CMS-PAS-HIG-13-004

# The H $\rightarrow$ $\tau\tau$ $\rightarrow$ µ $\tau$ channel

- Inclusive selection:
  - identified and isolated  $\mu \& \tau$ , with pT > 20 GeV
  - rejects QCD & W+jets
    - This background yield is proportional to the jet→τ fake rate



- rejects W+jets & ttbar
  - $H \rightarrow \tau \tau$  at low mT like  $Z \rightarrow \tau \tau$
- separation performance depends on E<sub>T</sub><sup>miss</sup> resolution



#### Full ττ mass

includes neutrinos; reconstructed from  $\mu$ ,  $\tau$ ,  $E_{T}^{miss}$ (more later)



# The H $\rightarrow$ $\tau\tau$ $\rightarrow$ µ $\tau$ channel: VBF cuts

- VBF selection:
  - 2 jets pT > 30 GeV
  - |Δη| > 3.5
  - m<sub>ii</sub> > 500 GeV
  - no jet in between
- Rejects  $Z \rightarrow \tau \tau$
- Uncertainty in jet energy scale
   → 5% uncertainty in signal yield



Full ττ mass

includes neutrinos; reconstructed from  $\mu$ ,  $\tau$ ,  $E_{T}^{miss}$ (more later)

# The H $\rightarrow$ $\tau\tau$ $\rightarrow$ µ $\tau$ channel: VBF cuts

- VBF selection:
  - 2 jets pT > 30 GeV
  - |Δη| > 3.5
  - m<sub>ii</sub> > 500 GeV
  - no jet in between
- Rejects  $Z \rightarrow \tau \tau$
- Uncertainty in jet energy scale
   → 5% uncertainty in signal yield



Full ττ mass

includes neutrinos; reconstructed from  $\mu$ ,  $\tau$ ,  $E_T^{miss}$ (more later)

# The H $\rightarrow$ $\tau\tau$ $\rightarrow$ µ $\tau$ channel: VBF cuts

- $H \rightarrow \tau \tau$  separated from  $Z \rightarrow \tau \tau$  using  $m_{\tau \tau}$ 
  - $-\tau$  energy scale uncertainty
    - error results in shifted peak
  - $E_T^{miss}$  resolution
    - drives the peak width



Full ττ mass

includes neutrinos; reconstructed from  $\mu$ ,  $\tau$ ,  $E_{T}^{miss}$ (more later)

# Part II

- Principles of the  $H \rightarrow \tau \tau$  search
  - fighting the main background sources
  - need for high-performance physics objects —

| <ul> <li>Particle flow reconstruction</li> </ul> | - τ ID efficiency and fake rate             |
|--------------------------------------------------|---------------------------------------------|
| — What and why?                                  | - τ energy scale syst. uncertainty          |
| – The algorithm                                  | - E <sub>T</sub> <sup>miss</sup> resolution |
| - Physics object performance                     | - jet energy scale syst. uncertainty        |
| - Thysics object performance                     | - and much more!                            |

- The CMS  $H \rightarrow \tau \tau$  analysis
  - background estimation & main uncertainties
  - statistical procedure
  - results

- Particle flow
  - a.k.a energy flow
  - reconstruct & identify all stable particles in the event.

- Make use of the whole CMS system
  - tracker
  - ECAL
  - HCAL
  - Solenoid
  - Muon chambers



#### Zoom



#### Particle Jets



For the first time in a hadron collider experiment

# Missing Transverse Energy Momentum



For the first time in a hadron collider experiment

# Why Particle Flow?



- Calorimeter jet:
  - $E = E_{HCAL} + E_{ECAL}$
  - σ(E) ~ calo resolution
     to hadron energy:
     120 % / √E
  - direction biased (B = 3.8 T)
- Particle flow jet:
  - 65% charged hadrons
    - σ(pT)/pT ~ 1%
    - direction measured at vertex
  - 25% photons
    - $\sigma(E)/E \simeq 1\% / VE$
    - good direction resolution
  - 10% neutral hadrons
    - $\sigma(E)/E \simeq 120 \% / VE$
  - Need to resolve the energy deposits from the neutral particles...

#### **ECAL Surface**



#### **HCAL Surface**



#### 2 charged hadrons, 3 photons from tracks from ECAL clusters



# Effects of particle flow in CMS

#### • Jets

- energy resolution / 2
- angular resolution / 3
- Flavour dependence of response / 3
- Systematic error on JES / 2
- « electron in jet » b tagging
- quark-gluon jet tagging
- MET:
  - resolution / 2
  - pile-up control
  - smallest tails
- τ
  - jet fake rate / 3 @ same eff.
  - energy resolution / 4

- Electrons
  - down to pT = 3 GeV
  - in jets
- μ
  - 4% more efficient ID @ same bgd rate
  - better momentum assignment at high pT
- e, μ, τ, γ isolation
  - pile-up control
- Physics analyses
  - Better trigger for jets, MET, taus (PF@HLT)
  - e.g:
    - FSR photon recovery in  $H \rightarrow ZZ$
    - embedding in  $H \rightarrow \tau \tau$
    - jet substructure

# τ Reco & ID in CMS



- Select decay particles according to decay mode
- Isolation w/r to other particles



CMS-PAS-TAU-11-001

# τ ID performance



*CMS-PAS-TAU-11-001* 

## τ Energy Scale



 $m_{\tau\tau}$  [GeV]

• fully hadronic (ττ) channel

- 3% shift of  $\tau$  E scale = 1-2 x signal expectation

- Important to calibrate τ energy
  - done using the  $\tau$  mass

Unofficial plots

#### τ mass before calibration



Unofficial plots

#### τ mass after calibration



## $E_T^{miss}$ resolution: $m_{\tau\tau}$



- $H \rightarrow \tau \tau$  better separated from  $Z \rightarrow \tau \tau$  (main, irreducible background)
- Resolution on  $m_{\tau\tau} \sim 20\%$  (resolution on  $E_T^{miss}$  important)

# PF vs Calorimeter $E_T^{miss}$



Resolution twice better

# Multivariate PF $E_T^{miss}$



- Additional factor 2 improvement @ 20 pile-up vertices
- MVA PF MET Almost insensitive to pileup

### Jet Response: Flavour Sensitivity



PF jet response almost independent from the flavour of the jet-initiating parton

### Jet Energy Scale Uncertainty



1-3 % Jet Energy Scale Systematic uncertainty

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsJME2013JEC

# Part III

- Principles of the  $H \rightarrow \tau \tau$  search
  - fighting the main background sources
  - need for high-performance physics objects
- Particle flow reconstruction
  - What and why?
  - The algorithm
  - Physics object performance —

- $\tau$  ID efficiency and fake rate
- τ energy scale syst. uncertainty
- $E_T^{miss}$  resolution
- jet energy scale syst. uncertainty
- and much more!

- The CMS  $H \rightarrow \tau \tau$  analysis
  - background estimation & main uncertainties
  - statistical procedure
  - results

# Background : $Z \rightarrow \tau \tau$



- Select data  $Z \rightarrow \mu \mu$  events
- Replace muons by particles reconstructed from simulated  $Z \rightarrow \tau \tau$  decay, and apply selection
- Jets and E<sub>T</sub><sup>miss</sup> from data. Main remaining uncertainties:
  - $-\tau$  ID efficiency uncertainty (8%)  $\rightarrow$  affects the yield
  - $-\tau$  energy scale uncertainty (3%) $\rightarrow$  affects the shape



- Select data  $Z \rightarrow \mu \mu$  events
- Replace muons by particles reconstructed from simulated  $Z \rightarrow \tau \tau$  decay, and apply selection
- Jets and  $E_T^{miss}$  from data. Main remaining uncertainties:
  - $-\tau$  ID efficiency uncertainty (8%)  $\rightarrow$  affects the yield
  - $-\tau$  energy scale uncertainty (3%) $\rightarrow$  affects the shape

# Background : W+Jets

CMS PAS HIG-13-004



- normalization to data in high mT region
- assume simulated shape → yield in signal region
   yield syst. uncertainty = 20%

# Background : QCD



• VBF category: not enough events in SS region

- yield 
$$QCD_{VBF} = f_{inclusive \rightarrow VBF}QCD_{inclusive}$$
  
20 % uncertainty

– shape from control region with non-isolated  $\boldsymbol{\mu}$ 

## Event categories

CMS PAS HIG-13-004



# Combined mass distribution



- Combination of all categories of all major channels
- Each is weighted by the expected S/B in the signal region

# $H \rightarrow \tau \tau$ significance



CMS PAS HIG-13-004

## $H \rightarrow \tau \tau$ significance



First Strong indication that the new boson couples to  $\tau$  as the SM Higgs

# H→ττ mass measurement



Due to low mtt resolution, compatible with: - expectation for  $m_H = 125 \text{ GeV}$ 

-  $H \rightarrow ZZ \rightarrow 4$  lepton mass measurement

## Summary



# Back-up

#### Statistics





$$q_0 = -2 \ln \frac{\mathcal{L}(\operatorname{obs} | b, \hat{\theta}_0)}{\mathcal{L}(\operatorname{obs} | \hat{\mu} \cdot s + b, \hat{\theta})},$$

 $p_0 = \mathrm{P}(q_0 \ge q_0^{obs} \,|\, \mathrm{b}).$ 

# Recipe for a good particle flow



- Separate neutrals from charged hadrons
  - Field integral (BxR)
  - Calorimeter granularity
- Efficient tracking
- Minimize material before calorimeters
- Clever algorithm to compensate for detector imperfections

# Neutral/charged separation (1) Field Integral



- Strong magnetic field:
  3.8 T
- ECAL radius 1.29 m
- BxR = 4.9 T.m
  - ALEPH: 1.5x1.8 = 2.7 T.m
  - ATLAS: 2.0x1.2 = 2.4 T.m
  - CDF: 1.5x1.5 = 2.25 T.m
  - DO: 2.0x0.8 = 1.6 T.m

# PF Clustering, HCAL



# PF Clustering, HCAL



#### PF Clustering, ECAL - Validation



# Iterative Tracking (1/2)



# Iterative Tracking (2/2)

- Efficient also for secondary tracks
- Secondary tracks used in PF:
  - Charged hadrons from nuclear interactions
    - No double-counting of the primary track momentum
  - Conversion electrons
    - Converted brems from electrons (cf electron slide later)

Nuclear interaction vertices



## Linking – ECAL view



## Linking – HCAL view



#### **Link Validation**



- the track impact and
- the closest HCAL cluster

1

# Links and blocks

Links: • The block building rule: ullet- Track-ECAL 2 linked PF elements are put in the same blocks - Track-HCAL - ECAL-HCAL - Track-track HCAL - ECAL-preshower 3 typical ECAL ECAL blocks Track Track

### Result: 2 PF "Blocks"



#### Photons



#### Photons





## **Block simplification**



## **Block simplification**





## Charged hadrons, overlapping neutrals



- For each HCAL cluster, compare:
  - Sum of track momenta p
  - Calorimeter energy E
    - Linked to the tracks
    - Calibrated for hadrons  $E = a + bE_{ECAL} + cE_{HCAL}$
- E and p compatible
  - Charged hadrons
- E > p + 120% √p
  - Charged hadrons +
  - Photon / neutral hadron
- E<<p
  - Need attention ...
  - Rare: muon, fake track

# Charged+neutrals: $E \approx p$



- Charged hadron energy from a fit of p<sub>i</sub> and E
  - i = 1, ..., Ntracks
  - Calorimeter and track resolution accounted for
- Makes the best use of the tracker and calorimeters
  - Tracker measurement at low pT
  - Converges to calorimeter measurement at high E

# Charged+neutrals: $\bar{E} \geq p^{E_{ECAL} + cE_{HCAL}}$



http://cdsweb.cern.ch/record/1194487?In=en

- Significant excess of energy in the calorimeters:
   E > p + 120% √E
- Charged hadrons [p<sub>i</sub>]
- Neutrals:
  - E from ECAL or HCAL only:
    - HCAL  $\rightarrow h^0$  [E-p]
    - ECAL  $\rightarrow \gamma$  [  $E_{ECAL} p/b$  ]
  - E from ECAL and HCAL:
    - E-p > E<sub>ECAL</sub> ?
      - [E<sub>ECAL</sub>]
      - h<sup>0</sup>

-γ

with the rest

• Else:

-γ [(E-p)/b]

Always give precedence to photons

#### Validation of the calibration



between data and Monte-Carlo

## 2 charged hadrons, 3 photons

