Update on Selected HTS Magnet Activities at FBML, Including A New Design Concept for Persistent-Mode HTS Shim Coils & A 1st-Cut Design of a 100-T DC magnet

> Yukikazu Iwasa MIT Francis Bitter Magnet Laboratory Cambridge, MA 02139-4208

> > CEA. Saclay

June 26, 2013

Y lwasa (MIT) lwasa@jokaku.mit.edu

A Happening in Weston, MA, during the night of June 2, 2013

Y lwasa (MIT) lwasa@jokaku.mit.edu

Outline

- Magnet Technology Division
- Research Activities
 - A. On-going (7)
 - B. Being proposed (1)
 - C. Proposed (not expected to be funded)
- Conclusions

Magnet Technology Division (MTD)

Yuki IWASA, Head Juan BASCUÑÀN, Assistant Head, cryogenics Seungyong HAHN, magnet (design; analysis; experiment) John VOCCIO, magnet (design, assembly, experiment) Jiayin LING, MIT ME grad student (PhD): Tsingua Roger LO, MIT undergrad research intern (freshman) Scott McDONALD, MIT undergrad research intern (freshman) Egor TSIAULOUSKI, MIT undergrad research intern, a Cambridge U exchange student Julio COLOQUE, Technician Peter ALLEN, Technician Nicholas CANDELINO, Technician, Northeastern U. undergrad intern Youngjae KIM, Postdoc (April 2012—): Yonsei U. Jungbin SONG, Postdoc (December 2012—): Korea U Thibaut LÈCREVISSE, Postdoc (Fall 2013—): CEA Saclay Kazuhiro KAJIKAWA, Visiting Scientist (April 2013—March 2014): Kyushu U. Yung CHU, VS (May 2013—April 2014): NFRI (Kstar) Yasuaki TERAO, VS (June 2013—May 2014): JASTEC Frederic TRILLAUD, VS (July—August 2013): Universidad Nacional Autonom W Mexico,

Y lwasa (MIT) lwasa@jokaku.mit.edu

MIT FBML Magnet Technology Division Activities

A. On-Going

- A1. 1.3 GHz LTS/HTS NMR magnet (NIH)*—To Be Described (TBD)
- A2. SN₂-cooled MgB₂ 0.5 T/240 mm MRI magnet (NIH)** TBD
- A3. Compact YBCO Annulus NMR magnet (NIH)***
- A4. 1.5-T/75-mm slow magic-angle-spinning NMR magnet (NIH)^
- A5. No-insulation (NI), multi-width (MW) windings for HTS NMR magnet (NIH)^^
- A6. NI HTS magnet for wind power generator (KETEP)^^^
- A7. Partial NI winding technique for NbTi MRI magnets (JASTEC)
 - * Bascunan, et al. MT23 (Coils); Kim, et al. MT23 (Overbanding)
- ** Ling, et al. MT23 (Coil performance); Voccio, et al. MT23 (Joints, unreacted & reacted)
- *** Hahn, et al. MT23
- ^ Voccio, et al. MT23
- ^A Hahn, et al. MT23
- ^^^ Song, et al. MT23

Y lwasa (MIT) lwasa@jokaku.mit.edu

FBML MTD Activities (cont.)

- B. Being proposed
- B1. Persistent-mode HTS shim coils (NIH)* TBbD
- C. Proposed
- C1. A 100-T DC magnet (NIH—Paper Study)** TBbD
- * Yukikazu Iwasa, et al., accepted for publication in *Appl. Phys. Lett.* (July 2013)
 ** Iwasa, et al., MT23

MIT 1.3 GHz LTS/HTS NMR Magnet:

Update Plan 2012

Y lwasa (MIT) lwasa@jokaku.mit.edu

H800

- Comprises 3 nested HTS coils
- Each coil, an assembly of GdBCO No-Insulation (NI) DP coils
- Each coil, overbanded
- Unique Features of NI DP coils
 - Mechanically robust—no weak materials* within winding
 - Self-protecting
 - * LHe or insulation

H800: Coil 1 (GdBCO) NI-DP

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Phase 3B

New, **competitive** application, i.e., funding not assured: Our plan: 6/01/2015 – 5/31/2018

- H800 and L500 assembled, by 12/31/2015
- 1.3-GHz field, 30.5 T, by 5/31/2016
- Special NbTi shims for SCF of H800 installed, 12/31/2016
- A high-resolution 1.3 GHz NMR magnet, by 5/31/2018

MgB₂ 0.5-T/80-cm Whole-Body MRI Magnet

- Consists of 8 coils (4 Main; 4 Correction), each with PCS and terminated with its superconducting joint
- Each coil wound with ~300-m long, φ0.84 mm monofilament MgB₂ wire

Copper matrix (35%)

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Reacted Coil (#1) & 3 Wound Coils

Y lwasa (MIT) lwasa@jokaku.mit.edu

Monofilament MgB₂ Wire Joints

 Joint technique with unreacted monofilament (φ0.4 mm) MgB₂ wires (HyperTech) very reliable, i.e., nearly 100% but still NOT 100%

• Good joints: >300 A @10 K; >225A @15K, all s.f.

Y lwasa (MIT) lwasa@jokaku.mit.edu

Coil #1 Test: Charging at 12 K—Driven mode

Y lwasa (MIT) lwasa@jokaku.mit.edu

Coil #1 Test: Discharge at 12 K — Joint fails at 50 A

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

1st-cut Design of a100-T DC Magnet, at FBML CEA Saclay (6/26/2013)

Protection

Adiabatic, no NZP Heating

19

0.5-T/240 mm MgB₂ MRI Magnet

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Persistent-Mode HTS Shim Coils

 $X \operatorname{shim} \operatorname{coil}$

Y lwasa (MIT) lwasa@jokaku.mit.edu

Advantages of HTS Shims

- Can operate >12-T field (vs. < 12-T for NbTi)
- Can operate >10-K temperature (vs. near 4.2 K for NbTi)
- Radial build, < 5 mm (vs. >15 mm for NbTi)
- Placeable inside main magnet assembly (vs. outside for NbTi)
 - Immune from "diamagnetic" effects of main magnet assembly

Y lwasa (MIT) lwasa@jokaku.mit.edu

An Example of "Diamagnetic Wall" Effects on Shim Field

Y lwasa (MIT) lwasa@jokaku.mit.edu

Z1 Shim Coil: Cut from 46-mm Wide YBCO/RABiTS Tape

Y lwasa (MIT) lwasa@jokaku.mit.edu

Variations of *Z1* Shim Coil With 46-mm Wide Tape (cont.)

Axially Longer ($\sqrt{3a} > 46 \text{ mm}$, e.g., 92 mm – w)

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Results

• $I_{loop} / I_{charging} \propto L_{heated} / L_{coil}$

Overlapping: Virtually ideal

• Side/side: higher harmonics errors

Y lwasa (MIT) lwasa@jokaku.mit.edu

Conclusions

Unique Features of HTS Shim Coils

- Only YBCO coils that can operate in persistent mode
- Placeable, like RT coils, close to the magnet center,
 i.e., sample location (> 12 T) where NbTi shim cannot operate
- > 10 K operation capability—useful for LHe-free magnets
- More compact than NbTi shims

Market Prospect

- Niche market for NMR magnets:
 - high-field;
 - LHe-free

Y lwasa (MIT) lwasa@jokaku.mit.edu

1st-Cut Design of a 100-T DC HTS Magnet

- Review of high-field magnet techniques
 - DC (Copper) & Pulse (Steel)
 - Pulse (Ag/Steel)
- Why > 40 T *DC* magnets feasible only with HTS
- A 100-T **DC** HTS magnet: first-cut design
- A Plan to achieve a 100-T *DC* HTS magnet
 - Key parameters of 1st cut 40-T, 50-T, 60-T DC HTS magnets
- Conclusions

Y lwasa (MIT) lwasa@jokaku.mit.edu

Why **DC** Field?

"My own thoughts ran in the direction of producing constant magnetic fields.*

There are many experiments that are extremely difficult or impossible to perform in a hundredth of a second." (c. 1930)

Francis Bitter, Magnets: The Education of a Physicist (Doubleday, 1959)

* Unlike pulse (1920s—1930s) fields of Peter Kapitza

Three Most Important Issues for *High-Field* Superconducting Magnets

- Superconductor—critical current density, $J_c(B)$
- Mechanical integrity—magnetic pressure, $B^2/2\mu_o$
- *Protection—to ensure repeatable operation*

$$\frac{E_m}{\text{Volume}} = \frac{B^2}{2\mu_o} = B$$

 $\frac{1}{ne} = \frac{D}{2\mu_o} = P_m$

<i>B</i> [T]	P_m [MPa]	$\sigma_{\!\scriptscriptstyle \mathcal{Y}}$ [MPa] of selected metals
10	40	<mark>Cu</mark> : 70
25	250	"1/2 hard" Cu: 280
50	1000	Austenitic steel: 900
75	2250	Hastelloy 700
100	4000	316LN: 1400 (@ 77 K)

Y lwasa (MIT) lwasa@jokaku.mit.edu Update on HTS Magnet Activities, including HTS Shims & 1st-cut Design of a100-T DC Magnet, at FBML CEA Saclay (6/26/2013)

B

High-Field Magnets

LTS: $J_c(B)$

Cu: Material strength of copper and copper alloys; Power

Hybrid: Combination of Cu & LTS

Pulse: Material strength of high-strength steel alloys; Power HTS: $J_c(B)$; material strength of reinforcement steel alloys

Y lwasa (MIT) lwasa@jokaku.mit.edu

- Cooling power of the same enormous magnitude must match P
- < 40 T likely a limit</p>

Y lwasa (MIT) lwasa@jokaku.mit.edu

Why a Large Steel Magnet must be of a Short Duration?

Power density, $p \, [W/m^3] = \rho_{cd} J^2$

Field duration Δt to keep conductor temperature rise ΔT , under adiabatic Joule heating density of $\rho_{cd}J^2$:

$\Delta t \leq$	$\frac{c_p \Delta T}{\rho_{cd} J^2}$
Illustration	
$c_p = 4 \text{ x } 10^6 \text{ J/}$	m ³ K;
$\Delta T = 100$ K;	
$ ho_{cd}=$ 10 ⁻⁶ Ω m	ו;
$J = 2 \times 10^8 \text{A/n}$	n ² :

 $\Delta t = 10 \text{ ms}$

*B*_o [T] Bore [mm] Location $\Delta t \,[\text{ms}]$ 200* < 0.001 Tokyo U 5 15 Los Alamos 100 < 0.1 Dresden 100 20 10 Toulouse 73 15 10 10 8 Leuven 70 Osaka 10 70 7 FBML (<1990) 13 7 65 Nijmegen 60 23 5

Selected Pulse Magnets

* One-shot—destructive—magnet, i.e. unprotected

Update on HTS Magnet Activities, including HTS Shims &

Y lwasa (MIT) lwasa@jokaku.mit.edu

1st-cut Design of a100-T DC Magnet, at FBML CEA Saclay (6/26/2013)

Why a Silver/Steel 1-s High-Field Magnet Impractical?

Power density, $p \; [{\rm W/m^3}] = \rho_{cd} J^2$

To limit T_{op} of a silver/steel magnet in the range 4.2-30 K (to keep silver resistance constant) over a period of ~1 s (τ_{ah}), under adiabatic heating, $J_{mo} = 250 \times 10^6 \text{ A/m}^2$, or $\lambda J \le 200 \times 10^6 \text{ A/m}^2$ $Z(T_f, T_i) \equiv \int_{T_i}^{T_f} \frac{C_m(T)}{\rho_m(T)} dT$

With $(\lambda J)_{max} = 200 \times 10^{6} \text{ A/m}^{2}$, a ballpark design shows that a 50-T/10 mm cold bore 1-s silver/steel magnet will require a power of >>10 MW, and the same cooling power at 4.2 K: Impractical!

 $(\lambda J)_{max} > 200 \times 10^{6} \text{ A/m}^{2}$, feasible with an HTS magnet: Size "practical" and, most importantly, in **DC**

Y lwasa (MIT) lwasa@jokaku.mit.edu

$\mu_o H_{c2}$ vs. T_c Plots for LTS & HTS

• With YBCO, a 100-T HTS magnet not inconceivable

Y lwasa (MIT) lwasa@jokaku.mit.edu

$$B_{\circ} = \mu_{\circ} \lambda J a_1 F(\alpha, \beta)$$

Illustration

$$B_{o} = 100 \text{ T}$$

$$\mu_{o} = 4\pi \times 10^{-7} \text{ H/m}$$

$$2a_{1} = 10 \text{ mm} \text{ (winding i.d.)}$$

$$\lambda J = 270 \times 10^{6} \text{ A/m}^{2} \text{ (overall current density)}$$

$$F (\alpha, \beta) \sim 60$$

$$\alpha = 80; \ \beta = 47 \text{ (minimum volume)}$$

$$2a_{2} = 800 \text{ mm} \cdot 2b = 470 \text{ mm}$$

• Even for a 10-mm bore, a 100-T magnet is "large"

$$F(\alpha,\beta) = \beta \ln \left(\frac{\alpha + \sqrt{\alpha^2 + \beta^2}}{1 + \sqrt{1 + \beta^2}} \right)$$

• Because $\lambda J = 270 \times 10^6$ A/m² unsustainable (because of stresses) over the entire winding *without reinforcement*, a real 100-T magnet *much* bigger

Y lwasa (MIT) lwasa@jokaku.mit.edu

Why a Large Magnet must be of a Nested-Coil Assembly?

- Conductor grading—standard procedure for LTS magnets
- Hoop stress, σ_{θ} , particularly for high-field magnets

$$\begin{split} \sigma_{\theta} &= \frac{\lambda J B_1 a_1}{\alpha - 1} \Biggl\{ (\alpha - \kappa) \Biggl[\frac{2 + \nu}{3} \Biggl(\frac{\alpha^2 + \alpha + 1 + \alpha^2 / \rho^2}{\alpha + 1} \Biggr) - \frac{1 + 2\nu}{3} \rho \Biggr] \\ &- (1 - \kappa) \Biggl[\frac{3 + \nu}{8} \Biggl(\alpha^2 + 1 + \frac{\alpha^2}{\rho^2} \Biggr) - \frac{1 + 3\nu}{8} \rho^2 \Biggr] \Biggr\} \end{split}$$

•
$$\sigma_{\theta_{max}}$$
 occurs at $\rho = 1$ ($r = a_1$)

• For most nested coils,
$$\kappa \sim 0.9$$
,
 $\sigma_{\theta_{max}} \gg \lambda JB_1a_1$ for $\alpha > 3$
 $\sigma_{\theta_{max}} \gg \lambda JB_1a_1$ for $\alpha > 1.2$
 $\sigma_{\theta_{max}} \approx \lambda JB_1a_1$ for $\alpha \approx 1$
 $\sigma_{\theta_{max}} \approx 51 \lambda JB_1a_1$ for $\alpha \approx 80$ ($\kappa \approx -0.1$)
 $\alpha = 2a_2/2a_1$
 $\rho = r/a_1$
 $\kappa = B_2/B_1$
 $\nu = Poisson's ratio -0.3$

Y lwasa (MIT) lwasa@jokaku.mit.edu Update on HTS Magnet Activities, including HTS Shims & 1st-cut Design of a100-T DC Magnet, at FBML CEA Saclay (6/26/2013)

X–

Basic Design Approach

- Nested-coil formation, each coil (mostly $\alpha \cong 1$) of HTS tape and high β (to reduce its $B_{//c-axis}$ field), i.e., minimum-volume approach unsuitable
 - SuperPower 12-mm wide, 0.095-mm thick (0.050-mm thick Hastelloy)
 GdBCO tape used in a 39-double-pancake (DP) coil assembly
 - Overbands of high-strength SS tape of "large" thicknesses, to limit conductor strains (<0.6%) and keep radial strains against large magnetic stresses
- No-insulation winding technique, now being developed at MIT
 A promising technique to make GdBCO DP coils: 1) mechanically robust;
 2) high λJ (efficient); 3 self-protecting—proven, with small GdBCO DP coils
 - Further R&D: 1) with larger NI DP coils; 2) under fault-mode conditions

A 100-T **DC** GdBCO (12 mm × 95 μm) Magnet: 1st - Cut Design — Cold bore: 20 mm; 4.2 K (close-loop) —

	Î	Center field [T]	100
		Outer diameter / height [m]	5.6 / 16.7
		# Nested Coils	39
	16 662 m	# DP Coils	14,589
		# Joints	14,588
		Maximum tape length/DP [m]	2,973
	10.002 11	Total 12-mm wide tape length [km]	12,367
		I_{op} [A] / # Parallel tapes (@600 A)	2400 / 4
		$[\lambda J]_{overalwinding}$ [A/mm ²]	30.9
		Inductance [kH]	42.4
		$E_{mag} @ I_{op} [GJ]$	122
100T		Charging time @400 V [day]	2

- Each coil requires "thick" overbands of high-strength stainless steel
- No Insulation winding technique: make 100T self-protecting

Y lwasa (MIT) lwasa@jokaku.mit.edu

Table 1A: 100-T *D***C** GdBCO Magnet—1st-Cut Design — I_{op} = 2400 A (4 × 600 A); T_{op} = 4.2 K; L= 42.4 kH; E_{mag} = 122 GJ —

Coil	$2a_1 (a_2-a_1)$ [mm]	αΙβ	λJ [A/mm²]	B _{max} [T]	# Turns/ DP (# ^{1,000,0}	# Total	I enath (12-mm) At 4.2 K Unless	Total (12-mm)
1	20 (5.3)	1.53000 / 301	520.8	100.0	28 (24 100,0		Otherwise Stated	
2	60.6 (5.3)	1.17492 / 99.3	520.8	96.5	28 (2 ² ^{50,00}	0 1.9 k		1
3	101.2 (6.4)	1.12648 / 59.4	520.8	93.0	34 (24 5	00		1
10	833.4 (4.9)	1.011876/ 7.22	520.8	67.0	<u>مج</u> 1,0 26 (24	00 B)2223 tape B⊥ B/2223		Bi2212 round wire Nb ₃ AI
15	1634.0 (3.4)	1.00416 / 3.68	520.8	53.5	18 (24	00 MaB		Nb ₃ Sn 1.8 K
20	2430.8 (2.6)	1.00214 / 3.00	520.8	44.0	14 (30	10 0 5	MgB2 Nb3Sn Nb3Sn tape ITER International Internatione International Internatione Inte	Sn + 4 (Sn + 4 25 30 35
37	5199.2 (5.3)	1.00204 / 3.00	520.8	13.1	28 (64 ,	10002	<i>B</i> [T] *	201.020.4
38	5371.0 (8.3)	1.00309 / 3.00	520.8	9.8	44 (665)	29260	743.6*	494.475 × 4
39	5549.0 (7.6)	1.00274 / 3.00	520.8	4.6	40 (687)	27480	698.3 *	479.700 × 4
	2a = 5.6 m; 2b = 16.7 m						Total length (12 n	nm): 10.100 km

- $J_c = 50,000 \text{ A/mm}^2$ $I_{op} = 600 \text{ A}$ @4. 2 K and 100 T (Coil 1) for GdBCO layer thickness 1-µm, i.e., GdBCO layer area: 12 mm × 0.001 mm—If needed, GdBCO layer to 2-µm thick
- * Longer than longest GdBCO tape readily available now: a *challenge*

Y lwasa (MIT) lwasa@jokaku.mit.edu

Table 1B: 100-T *D***C** GdBCO Magnet—1st-Cut Design — I_{op} = 2400 A (4 × 600 A); T_{op} = 4.2 K; L= 42.4 kH; E_{mag} = 122 GJ —

 To compensate for the maximum winding strain of 0.27%; Total strain at 398 MPa: 0.60% (=0.27% + 0.33%) Young's modulus: GdBCO (12 mm × 0.095 mm): 120 GPa; Young's modulus: stainless steel: 200 GPa

Y lwasa (MIT) lwasa@jokaku.mit.edu

Table 1C: 100-T *D***C** GdBCO Magnet—1st-Cut Design — I_{op} = 2400 A (4 × 600 A); T_{op} = 4.2 K; L= 42.4 kH; E_{mag} = 122 GJ —

• $B_{r_{max}} = 11.1 \text{ T}$ (Coil 38) I_c down to ×1.8 I_c (77 K); probably OK

- For $\beta = 100$ (Coil 1), $B_{r_{max}} = 1.9$ T
 - $B_{r_{max}}$ always reducible $\rightarrow B_{r_{max}}/B_{center} = 0$ for $\beta = \infty$
 - Penalty: Taller magnet & more conductor
- 100-T: $\beta = 3$ (outer coils) \rightarrow a huge magnet; tons of conductor: but *feasible*

Y lwasa (MIT) lwasa@jokaku.mit.edu

Comparison

Magnet	Superconductor	Conductor Tonnage	Magnetic Energy [GJ]
100T	GdBCO	125	122
ITER TF	Nb ₃ Sn	410	41
LHC ATLAS	NbTi	360	10

Y lwasa (MIT) lwasa@jokaku.mit.edu

A Plan

Proceed in steps: 40-T; 50-T; 60-T, 70-T; 80-T; 90-T; finally 100-T

In each step:

- Nested-coils are stressed ~equal to those expected in a 100-T magnet
- Test (& further develop) overbands reinforcement technique
- Test (& further develop) NI winding technique
- Measure GdBCO performance
- If required, modify basic design approach

Y Iwasa (MIT) Iwasa@jokaku.mit.edu

Conclusions

- A 100-T **DC** GdBCO magnet, at least technically, achievable
 - 1st –cut design is what it is: a 1st-cut; it obviously requires further design iterations and optimization
- 40 60-T *DC* GdBCO magnets achievable, in 3-10 years
- Our > 40-T DC GdBCO magnets, though each only of a 20-mm cold bore (RT bore ~10 mm) offer:
 - Incredibly exciting opportunities in high-field areas in superconducting magnet technology, physics, materials sciences, medical sciences; perhaps even entirely new areas of research
 - Ultimate hallmark of the enabling technology of superconductivity
 - Will have a sweeping impact on superconductivity and most decisively challenge superconducting magnet technology to its utmost limit

Thank you

Y lwasa (MIT) lwasa@jokaku.mit.edu