

Some Issues In Neutrino Physics (At TAUP 2013)

Saclay, October 14th 2013

Th. Lasserre

Open questions in v physics

What are the masses of the mass eigenstates v_i?

• Is there any conserved Lepton Number (Dirac or Majorana v)? $\beta\beta 0 \nu$

v flavor

- Precise measurements of the leptonic mixing matrix?
- Do the behavior of ν violate CP?
- Is leptonic CP responsible for the matter-antimatter asymmetry?
- Are there additional (sterile) neutrino states v flavor, Astro/Cosmo

 θ_{13}

- Need to connect the v_e flavour with the isolated neutrino (Δm_{atm}²)
 - L~1 km, E~MeV
 - disappearance expt. @reactor
 - θ_{13} only \rightarrow 'clean'

L~1000 km, E~GeV

- accelerator experiments
- appearance expt. @Beam
- ■(θ₁₃, NH/IH, δ_{CP})
- \rightarrow correlations & degeneracies

→ Complementary projects

 $\nu_{e} \square |U_{ei}|^{2} \quad \nu_{\mu} \square |U_{\mu i}|^{2} \quad \nu_{\tau} \square |U_{\tau i}|^{2}$

Th. Lasserre – Neutrino Summary 2013

V-Beam: Oscillation Physics

- Complex oscillation formula
- → depends on sin²(2 θ_{13}), Δm_{31}^2 , sign(Δm_{31}^2), δ
- >> MeV muon antineutrinos → appearance experiments
- → $sin^2(2\theta_{13})$ measurement depends on δ -CP
- >> MeV neutrinos + >>100 km baseline → matter effects
- → $sin^2(2\theta_{13})$ measurement independent of $sign(\Delta m^2_{13})$

Very sensitive to apparition

Correlation & degeneracies

- Channel: $v_{\mu} \rightarrow v_{e}$ (1st goal: search for non-zero θ_{13} , beam contamination, NC-1 π_{0}) • Channel: $v_{\mu} \rightarrow v_{\mu}$ (sin² 2 θ_{23} @ 1% & Δm^{2}_{23} @ 2%, single pion production)
- Detection, CCQE: $\nu_{1} + n \rightarrow p + l^{-}$ (l=e, μ)

Beam Setup:

- Off-axis beam (2.5°), ramping to 750 kW...
- Quasi-monochromatic ν_{μ} beam (400 MeV)
- Small intrinsic ν_{e} contamination
- Reduced high-E non-CCQE backgrounds
- Far Detector at 295 km:
 - Super Kamiokande (50 kt)
- Near Detector at 280 m:
 - On & Off-Axis detectors (Ingrid & ND280)

T2K (Tokai to Kamioka) @JPARC

Reactor: Oscillation Physics

 $P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2}(2\theta_{13}) \left[\sin\left(1.27 \frac{\Delta m_{atm}^{2} (eV^{2})L(m)}{E(MeV)}\right) + O(\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}}) \right]$

- Simple oscillation formula
- → depends sin²($2\theta_{13}$) & Δm_{atm}^2 , weakly on Δm_{sol}^2
- → sin²(2θ₁₃) measurement independent of δ-CP
- MeV neutrinos + 1 km baseline → no matter effects O[10⁻⁴]
- → $sin^2(2\theta_{13})$ measurement independent of $sign(\Delta m_{13}^2)$

'clean' information on θ_{13}

Just Released

....

BERKELE

Aug. 2013: Daya Bay Spectral Analysis

Th. Lasserre – Neutrino Summary 2013

Daya Bay

Summary of the θ_{13} Results

Question 2) What is the spectral mass pattern ?

Sign of Δm^2_{31}

Cea

MH: middle term projects

2012: Large θ_{13} open the door to new initiatives:

- Atmospheric neutrino L/E measurement
 Pingu (Ice-Cube) & Orca (KM3net)
- 50 kt scale reactor experiment at 55 km
 Daya-Bay II
- Atmospheric neutrino in magnetized detector
 INO
- Beam of Neutrinos in Matter
 - LBNÖ
- **Prospects:** results before 2020?

IceCube Neutrino Telescope

Existing: 1 km³ antarctic ice instrumented with 5160 PMTs + Deep Core 20 strings to reduce threshold

Next: PinGU → Add 20 strings within DeepCore

MH with PINGU (& ORCA)

- Lower Threshold to few GeV
 - Fine mesh string array
- Keep Megaton volume
- Matter Effects:

IH/NH has up to a 20% difference in oscillation probability for specific energies and zenith angles

- Promising but sensitivity under study...
- Deployment by 2018
- Similar project in the Mediterranean see (Orca)

Length (km)

PINGU Sensitivity

3 different studies performed. Sys uncertainties include norm (30%), spectral index (±0.05), energy scale (10%), zenith bias (10%) Realistic energy and direction resolutions 2 extreme cases of true param values. $\Delta E/E = 25\%$ and $\Delta \theta/\theta = 0.6 \sqrt{(m_p/E)}$ 5% Flavor mis-id Method : $\Delta \chi^2$ (optimistic III E. Cuifolli et al 1305.5150)

ORCA Sensitivity

To optimally distinguish between IH and NH: likelihood ratio test with nuisance parameters \rightarrow deal with degeneracies by fitting!

 $\Delta \log(L^{\max}) = \sum \log P(\text{data}|\hat{\theta}^{\text{NH}}, \text{NH}) - \log P(\text{data}|\hat{\theta}^{\text{IH}}, \text{IH})$ bins maximum-likelihood estimates for the Δm2's and angles using $\hat{\theta}^{H}$ significance (50% chance) _ both data and constraints from global fit. nb; constraints are different for H=IH and H=NH # sigmas Perfect muon direction Uncertainty on the mixing parameters Conservative as a function of the exposure assumed efficiency Eres = 25%, 1-100 GeV E (GeV) $\mathrm{Mton} \ge \mathrm{yr} \quad \sigma(\Delta m^2_{\ \text{large}}) \ (\mathrm{eV}^2)$ $\sigma(\theta_{13})$ (°) $\sigma(\theta_{23})$ (°) 8.0e-5 1.30(now)0.455 years with 4.3e-050.610.423 Mton 2.3e-050.320.445101.8e-050.220.3920.0% 201.4e-050.160.39=30.0% 301.2e-050.130.37

20

exposure (Mton*years)

Question 4)

What are the masses of the mass eigenstates ?

Neutrino Mass Scale

Finding the Neutrino Mass Scale

- Astrophysics
 - Supernovae, from 1987A m < 23eV</p>
- Cosmology
 - CMB+ Large Scale Structures +... $\sum m_i < 1 \text{ eV}$
- Fermion Decays
 - μ , τ decays relatively poor sensitivity
 - β decay
 - β β decay
- Neutrino Oscillations
 - No absolute scale but only square of mass differences

Beta Decay

•
$$\beta^{-}$$
 Decay: $_{Z}^{A}X \rightarrow _{Z+1}^{A}X + e^{-} + \overline{\nu_{e}}$

- Energy spectrum shape depends on ν mass

- Based on kinematics and energy conservation
- Weak dependence on theory
- Sensitive to incoherent sum:

$$\langle \mathbf{m}_{\beta} \rangle = \sqrt{\sum_{1,2,3,\dots} |\mathbf{U}_{ei}|^2 \mathbf{m}_i^2}$$

 Best constraint by Mainz & Troitsk Experiments

■ <m_β> < 2.2 eV

Absolute Mass From Beta decay

Tritium beta decay ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + e^{-} + \overline{\nu_{e}}$

Th. Lasserre – Neutrino Summary 2013

Beta Decay: KATRIN

 Measure both energy of e⁻ in the last few eV's below the Tritium beta decay endpoint energy

- Detector:
 - Gaseous Tritium Source (³H decay, t_{1/2}=12.3 y, Q=18.57 keV)
 - I0 m diameter Magnetic Spectrometer (MAC-E Filter)
- Status: commissioning detector components. Data in 2015
- 90% C.L sensitivity : 0.2 eV

KATRIN First Light

"First Light"

First time pre-spectrometer, main spectrometer, and detector are all connected.

First electrons in this combined system now recorded.

Background at 1 Hz, appears to be radon-dominated.

Will be reduced when cold baffles & screening potential are applied.

Commissioning program of the main spectrometer well underway!

Calorimetric Thechniques

Question 5)

Is there a conserved Lepton Number? Eq. Dirac or Majorana ν ?

Double Beta Decay (ββ)

 Second-order process only detectable if first-order β decay is energetically forbidden

•
$$2v:_{Z}^{A}X \rightarrow _{Z+2}^{A}X + 2e^{-} + 2\overline{v_{e}}$$
 (detected)

•
$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |M_{2\nu}|^2 \approx 10^{18-21} \text{ y}$$

• $\mathbf{0}\mathbf{v}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}X + 2e^{-}$ (not yet seen) • $\Delta \mathbf{L}=\mathbf{2} - \mathbf{M}$ ajorana Neutrino • $\left(T^{0\nu}_{1/2}\right)^{-1} = G_{0\nu} \left|\mathbf{M}_{0\nu}\right|^{2} \left|\mathbf{m}_{\beta\beta}\right|^{2}$ • $\beta\beta$ mass: $\left\langle \mathbf{m}_{\beta\beta}\right\rangle = \left|\sum_{1,2,2} U^{2}_{ei}\mathbf{m}_{i}\right|$

N,Z=0,0

N,Z=e,e

^{cea} 2v0β: experimental signature

- Peak at Q = E_{e1} + E_{e2} $2m_e \rightarrow$ Calo (Gerda, KamLAND-Zen)
- Two electrons from same vertex \rightarrow Tracking (Super Nemo)
- Production of grand-daughter isotope \rightarrow EXO

GERDA at **LNGS**

Target: ⁷⁶Ge

- Low $2\nu\beta\beta$ rate (T_{1/2}=1.4×10²¹ y)
- High $Q_{\beta\beta}$ value (2039 keV)
- Detector: high purity ⁷⁶Ge-diodes (source & detector) in Lar as shielding and coolant
- Status (Phase 1):
 - 21.6 kg yr of exposure since 2011
 - Bkg 10⁻² counts/(keV·kg·yr)
 - \rightarrow Factor 10 bkg reduction wrt HDM
 - Blind analysis, no positive signal
- Future (Phase 2):
 - Factor 10 bkg reduction by LAr scintillation and novel HP-Ge detectors

GERDA & Klapdor Claim

Comparison with Phys. Lett. B 586 198 (2004) claim

Compare two hypotheses

• H_1 : $T_{1/2}^{0v} = 1.19^{+0.37}_{-0.23} \cdot 10^{25} \text{ yr}$ (*) vs. H_0 : background only

Expected Signal (w/ PSD): (5.9 ± 1.4) cts in $\pm 2\sigma$ Expected Bckgd (w/ PSD): (2.0 ± 0.3) cts in $\pm 2\sigma$ Observed: **3.0** in $\pm 2\sigma$ (0 in $\pm 1\sigma$)

<u>GERDA only:</u> Profile likelihood: **P (N⁰ = 0|H₁)=0.01** Bayes factor **P(H₁)/P(H₀)=0.024**

<u>GERDA+HdM+IGEX</u>: Bayes factor P(H₁)/P(H₀)=0.0002

Prospect of $\beta\beta0\nu$

■ 1- Test the ⁷⁶Ge Claim – $m_{\beta\beta} \approx 100 \text{ meV} \rightarrow \text{ongoing}$ 2- Test the IH scheme - $m_{\beta\beta} \approx 10 \text{ meV}$ 3- Need new ideas / technology - $m_{\beta\beta} \approx 1 \text{ meV}$?

Question 5) Are there additional (sterile) ν states?

Anomalous & Regular Results

Anomalous	Source	Туре	Signal	Channel	Significance
LSND	Meson Decay- at-Rest	$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	<u>Total Rate</u> , Energy	CC	3.8 σ
MiniBooNE	Meson Decay- in-Flight	$\nu_{\mu}\!\rightarrow\nu_{e}$	<u>Total Rate</u> , Energy	CC	3.8 σ
Gallium	Electron Capture	v _e dis.	Total Rate	CC	2.7-3.0 σ
Reactor	Beta-decay	v _e dis.	<u>Total Rate</u> , Energy	CC	2.7 σ
Regular	Source	Туре	Signal	Cł	nannel
KARMEN Icarus/Opera	Meson Decay - at-Rest & Flight	$\nu_{\mu}\!\rightarrow\nu_{e}$	<u>Total Rate</u> , Energy	CC	
CDHS/ MiniBooNE	Meson Decay- in-Flight	$\nu_{\mu} \mathop{\longrightarrow} \nu_{\mu}$	<u>Total Rate</u> , Energy	СС	
Minos	Meson Decay- in-Flight	$\nu_{\mu}\!\rightarrow\nu_{s}$	Total Rate	CC	

The (light) sterile neutrino hypothesis

Add a light v_R to SM, no SM interaction but mixing with active v' s

Reactor v Proposals

Experiment Type	Projects	P _{Th}	M _{det}	L	Depth
Mature Gd-doned I S	Nucifer (FRA)	70 MW	0.7 tons	7 m	Few mwe
detector Technology	Stéréo (FRA)	50 MW	2 tons	[8-11] m	10 mwe
	Neutrino 4 (RU)	100 MW	2 tons	[6-12] m	Surf.
Highly segmented detector for	DANSS (RU)	1 GW	1 ton	[10-12] m	50 mwe
background reduction	SoLid (UK)	45-80 MW	3 tons	8 m	10 m
Enhanced					
neutron Tagging	Hanaro (KO)	30 MW	0.5 t	6 m	Few mwe
2 detector complex	US project	20-120 MW	-	4m & 15m	Surf.
or Moving detector	China project	-			
	DANSS/Neutrino4	Movable detector			

Stéréo @ ILL (Gd-LS)

Start Data Taking in 2015

Neutrino-4 @ SM3 (Gd-LS)

- 2.5 m³ LS target, 5 section movable detector [6-12] m
- 100 MW compact core
- Detector at Surface
- Status:

cea

- Shielding integrated
- Start in 2015

US effort: 2-Detector Oscillation

- LS target based technology
- 3 reactor sites
 - NIST 20 MW
 - ATR 85 MW
 - HFIR 120 MW
- Surface location
- 2-detector concept
- Status:
 - Site characterization ongoing
 - Start 2016?

Influence of Source/Detector Parameters

All current project have the sensitivity to test the reactor anomaly space of parameters, $\Delta m^2 > 0.1$, $\sin^2 2\theta > 0.05$

Source

Detector

v Generator Proposals

Туре	Detection	Background	Isotope	Production	Activity	Projects
	$ u_e e \rightarrow v_e e 5% E_{res} 15cm R_{res}$	Detector Radioactivity	⁵¹ Cr	n _{th} irradiation	>3 MCi	Sage LENS
		Solar <i>v</i> (irreducible) ∨ generator impurities	0.75 MeV t _{1/2} =26d	in Reactor	>10 MCi	SOX (SNO+)
ν_{e}				n _{fast} irradiation v in Reactor d (breeder)	>1 MCi	-
	or Radio- chemical		³⁷ Ar 0.8 MeV t _{1/2} =35d		5 M Ci	Ricochet
$\overline{\nu}_{e}$	$\overline{\mathcal{V}}_{e}^{} p \rightarrow e^{+} n$ E _{th} =1.8 MeV	e ⁺ n leV	¹⁴⁴ Ce E<3MeV	spent nuclear fuel reprocessing + REE extraction	75 kCi	CeLAND SOX
	(e ⁺ n)	geo ν ,	t _{1/2} =285d		500 kCi	Daya-Bay
	5% E _{res} 15cm R _{res}	v generator impurities	⁹⁰ Sr ¹⁰⁶ Rh		-	-
	³ H→He <u>e</u> ⊽ _e EC/β-decay	Kink search	³ H E<18 keV	Irradiation in reactors	3 Ci	KATRIN (Mare/Echo)

⁵¹Cr neutrino generator

- erc
 - ⁵¹Cr EC
 E = 0.75 MeV
 t_{1/2} = 26 days
 - Production through n_{th} irradiation of enriched
 ⁵⁰Cr in a nuclear reactor
 - Need 10 MCi ⁵¹Cr
 2 MCi in Gallex/Sage
 - Detection:
 ⁷¹Ga + v_e → ⁷¹Ge + e⁻
 ν scattering off electrons

⁵¹Cr: SOX (Borexino)

- Re-use Gallex 36 kg of enriched chromium
- Production reactors
 Oak Ridge (US)
 Ludmila (Ru)
- Source 8.25 m from center
- •Detection as for ⁷Be solar ν
 - Well known background
- Status:

 Preparation for irradiation and transportation (10 MCi)

Staged approach: ⁵¹Cr & ¹⁴⁴Ce

¹⁴⁴Ce-¹⁴⁴Pr \overline{v} generator

- erc
 - 1st Trick: \overline{v}_e source detected via \overline{v}_e + p > e⁺ + n (Thr=1.8 MeV)
 - High IBD cross section \rightarrow 75 kCi activity
 - (e⁺,n) detected in coincidence \rightarrow Strong background reduction
 - 2nd Trick: ¹⁴⁴Ce-¹⁴⁴Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β
 Enough time to produce, transport, use
 - ¹⁴⁴Pr: short-lived & high- $Q_{\beta} \rightarrow \overline{v}_{e}$ -emitter above threshold

¹⁴⁴Ce-¹⁴⁴Pr: CeLAND (KamLAND)

erc

- 75 kCi of ¹⁴⁴Ce-¹⁴⁴Pr (CeO₂)
- Production feasible at Mayak
 Facility (RU) in 2014 (1 y)
 - Standard SNF reprocessing
 - Ce extraction through displacement chromatography
- Need 16 cm tungsten-shield
- KamLAND being prepared
 - Deployment
 - in water veto (3-16 m)
 - In Xenon Room (5-18 m)
 - Run in // with KamLAND-zen
- Deployment in 2015

v-Generator sensitivities

CeLAND (KamLAND)

SOX (Borexino)

 10^{-1}

10⁻²

 $m_1 = 0$, 90% C.L. $m_1 = 1$ eV, 90% C.L. $m_1 = 2$ eV, 90% C.L. global fit, 90% C.L. Bugey3, 99% C.L. Bugey4+Rovno, 99% C.L.

 10^{-1}

 $Sin^2 2\theta$.

 KATRIN –as designed- can test the v_e disappearance anomalies

v Beam Proposals

Туре	Source	App. /Dis.	Oscillation Channels	Projects	
Isotope Decay at Rest	p + ⁹ Be → ⁸ Li + 2p n + ⁷ Li→ ⁸ Li ⁸ Li→ ⁹ Be + e ⁻ + $\overline{\nu}_{e}$	Dis.	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	IsoDAR	
Pion (Kaon) Decay at Rest	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ $\downarrow \bullet e^{+} \overline{\nu}_{\mu} \nu_{e}$	App. & Dis.	$v_{\mu} \rightarrow v_{e}$ $v_{e} \rightarrow v_{e}$	OscSNS, DAE δ ALUS, KDAR	
Pion Decay in Flight	$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$ $ \downarrow \mathbf{e^{+}} \overline{\nu}_{\mu} \nu_{\mathbf{e}}$	App. & Dis.	$\begin{array}{c} \nu_{\mu} \rightarrow \nu_{e} \\ \nu_{\mu} \rightarrow \nu_{e} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{e} \rightarrow \nu_{e} \end{array}$	MINOS+, MicroBooNE, LAr1kton Icarus/Nessie	
Low-E Neutrino Factory	$\mu^{+} \rightarrow \mathbf{e}^{+} \overline{\nu}_{\mu} \nu_{\mathbf{e}}$ $\mu^{-} \rightarrow \mathbf{e}^{-} \nu_{\mu} \overline{\nu}_{\mathbf{e}}$	App. & Dis.	$\begin{array}{c} \nu_{\underline{e}} \rightarrow \nu_{\underline{\mu}} \\ \overline{\nu_{e}} \rightarrow \nu_{\mu} \\ \nu_{\underline{\mu}} \rightarrow \nu_{\underline{\mu}} \\ \overline{\nu_{e}} \rightarrow \nu_{e} \end{array}$	ν STORM	

Question 6) Do the behavior of ν violate CP?

Towards CP-violation Search

$$P(v_{e} \rightarrow v_{\mu}) = |A|^{2} + |S|^{2} + 2 A S \sin \delta$$

$$P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})$$

$$A_{CP} \alpha \frac{P(v_{e} \rightarrow v_{\mu}) - P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}{P(v_{e} \rightarrow v_{\mu}) + P(\overline{v_{e}} \rightarrow \overline{v_{\mu}})}$$

$$A_{CP} = \frac{2 \text{ AS } \sin \delta}{|A_1|^2 + |S_1|^2} = \frac{\sin (\Delta m_{12}^2 \text{ L/4E}) \sin \theta_{12} \sin \theta_{13} \sin \delta}{\sin^2 2\theta_{13} + \text{ solar term...}}$$

MH & CPV: long term projects

$\overset{\text{cea}}{=} \text{LBNO: Mass Hierarchy} (\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

Excellent prospect – Earliest schedule for 5\sigma : 2026 (start + 3 years)

HK: CPV signal $(\vec{v}_{\mu} \rightarrow \vec{v}_{e})$

- Identity CC v_e events
- Comparison between $P(v_{\mu} \rightarrow v_{e}) \& P(anti-v_{\mu} \rightarrow anti-v_{e})$
 - Up to 25% difference expected
- Need statistics → 1 Mt H₂O for HK (x25 SK)

Th. Lasserre – Neutrino Summary 2013

CPV Signal in LBNO (1.5e21 pot)

- Search for a P($v_{\mu} \rightarrow v_{e}$) / P(anti- $v_{\mu} \rightarrow$ anti- v_{e}) asymmetry
- LBNO: 20 kt, 12 years of data → limited by statistics
 - Maximize #events at 1st max osc. peak
 - While enhancing 1st / 2nd oscillation peak ratio

Th. Lasserre – Neutrino Summary 2013

LBNO(E), HK: CPV Sensitivity

Rejection of the null hypothesis for different CP values

Th. Lasserre – Neutrino Summary 2013

LBNO Technological Prototype

Conclusion (1/2)

Neutrinos mix and oscillate. A lot's of momentum to understand the neutrino mixing properties ! Neutrino ≠ Quark mixing

	1	0.2	0.001		0.8	0.5	0.16
U _{CKM} =	0.2	1	0.01	U _{PMNS} =	0.4	0.6	0.7
	0.001	0.01	1		0.4	0.6	0.7

 Large undergoing program towards the measurement of neutrino masses (Katrin, Gerda, EXO/KamLAND-Zen...)

- Two mixing angles and mass splitting measured
- NEW: θ₁₃ measured (T2K/DC/DB/RENO)
- \rightarrow Lot's of prospects for Mass Hierarchy determination
- \rightarrow Open the way for CP violation measurements (LBNÖ, HK)

Conclusion (2/2)

A bunch of anomalies calling for clarification:

- LSND (ν_s , $\Delta m^2 \approx eV^2$?) & Miniboone ?
- Gallium Anomaly (ν_{s} , $\Delta m^{2} \approx eV^{2}$?)
- Reactor Anomaly (ν_s , $\Delta m^2 \approx eV^2$?)
- Hint in favor of sterile neutrinos not in contradiction with cosmological data, if <1 eV-scale mass
- Bunch of 2 to 3 σ effects but cannot be ignored...
- Need for new conclusive short baseline experiments, more than 15 projects, a few already being funded