Alpha Magnetic Spectrometer

The Alpha Magnetic Spectrometer on the International Space Station on behalf of the AMS-02 collaboration

S.Rosier-Lees

LAPP-CNRS-IN2P3-Université de Savoie

CEA Seminar – 6th November 2013

- Introduction
- Nuclei flux measurements
 - Hydrogen, helium nuclei
 - Boron/carbon
- Positron fraction, positron and electron fluxes
- Summary

References: S.Ting Cern Seminar, April 2013, ICRC2013 July 2013, Phys.Rev.Lett. 110 (2013) 14, ICRC2013_1257,1261,1266,1265, 1264,1267,1263 **ICRC2013 talks and proceedings**

AMS: A TeV precision, multipurpose spectrometer in space

Cape Canaveral, May 16 2011. STS 134 Mission, Launch of Endeavour Shuttle

AMS02 on board of the ISS

AMS02 is grappled by the Shuttle Remote Manipulator System (SRMS) May 19, 2011

May 19 2011: AMS installation completed on ISS at 5:15 CDT, start taking data 9:35 CDT Until 2020

(CDT Central Daylight Time)

ISS orbit

ISS velocity: 8km/s, one orbit every 90 mn

Altitude 340-400 km

Orbital DAQ parameters

Particle rates vary from 200 to 2000 Hz per orbit

On average: DAQ efficiency 85% DAQ rate ~700Hz

AMS Data Flow

Science Operations Centers (POCC, SOC) at CERN since June 2011

AMS Computers at MSFC, AL

AMS Physics Potential

- Searches for primordial antimatter:
 - Anti-nuclei: anti He, ...

Dark Matter searches:

- e⁺, e[±], anti p, γ...
- simultaneous observation of several signal channels.
- Searches for new forms of matter:
 - strangelets, ...
- Measuring CR spectra refining propagation models;
- Study effects of solar modulation on CR spectra over 11 year solar cycle

Data sample and data taking time

Data take from : 19 May 2011 to : 19 May 2013 (1.5 or 2 years) Total exposure time : $T_{exp.}$ (*Rigidity* > 25 GV) = 51.2 × 10⁶ s

AMS-02 Trigger

Trigger efficiency is estimated with an unbiased trigger sample.

AMS-02 Nuclei Properties Measurement

Rigidity, Direction and Charge Sign

Tracker

Bending Coordinate Resolution 6 to 7 μ m MDR (Z=2) \approx 3.2 TV

Velocity and Direction TOF $\Delta\beta/\beta^2(Z=2) \approx 2\%$

Charge Magnitude Along He Trajectory TRD, Tracker, RICH ,TOF, ECAL ΔZ (Z=2) \approx 0.08-0.2

Rigidity measurement

Challenges:

Alignment feature: Inner and external layers (due to the temperature variations on the ISS)

Track resolution depends on the number of layers included in the reconstruction

Tracker Alignement Occuracy

Rigidity measurement

Charge measurement (|Z|)

Charge Measurement

Nuclei Identification in AMS: ToF and Tracker

Energy Measurement

The AMS-02 electromagnetic calorimeter: a 3-D sampling calorimeter made out of lead and scintillating fibers

High granularity: ~ 0.9 x 0.9 cm 18 Longitudinal samplings 72 Lateral samplings 17 X₀, λ_{I}/X_{0} ~ 22

Flux and Ratio Determination

Flux is given by:

K_n is the kinetic energy per nucleon, or the momentum for electron, positron is measured from TOF and RICH (beta) or from Tracker (rigidity) or ECAL(leptons)

Spectrum unfolding

18

protons - Systematic errors

Proton Fluxes

Proton Flux

Protons- Comparison with previous measurements

AMS-02 Protons- Comparison with Pamela

measurements

Helium Nuclei Selection

Helium Selection

Proton background: <10⁻⁵

Main Remaining Background: Ions Interacted on Top of AMS < 10⁻³

Ams-02 Helium flux Comparison with previous measurements

Helium - Comparison with Pamela measurements

Power law behaviour, index < 2.7

B/C : Identification of Fragmentation Events

The first layer do play a key role in the selection

Estimation of the fragmentation

- Acceptance is convolution of geometry and fragmentation effects.
- Carbon selected with L1 and UTOF. Fragmentation distribution evaluated with LTOF.

B/C

AMS-02 Boron/Carbon Ratio

AMS-02 Boron/Carbon Ratio band recent measurements

e+,e- Identification in AMS

Proton rejection goal > 1/100000 => 3 independent detectors are used

Energy (GeV)

Proton rejection

Electron rejection

Charge confusion average Tracker patterns

2 sources

- Multiple scattering and finite resolution of the tracker
- Secondary tracks produced along the the path of primary e⁺⁻ (tagged and controlled with the lower TOF)

Good agreement Data/MC

Analysis: 2D fit to measure **Ne[±]** and **Np**

Large statistics: 2-D reference spectra for the signal and background are fitted in the (E/P –TRD estimator) plane for each energy bin, after a pre-selection on the ECAL

The large redundancy allows to control precisely the systematics uncertainties 3

Representative bins of the positron fraction

	positron fraction				Systematic Errors					
	Energy [GeV]	N _{e+}	Fraction	statistical error	acceptance asymmetry	event selection	bin-to-bin migration	reference spectra	charge confusion	total systematic uncertainty
	Energy[GeV]	N _{e+}	Fraction	$\sigma_{stat.}$	$\sigma_{acc.}$	$\sigma_{sel.}$	$\sigma_{mig.}$	$\sigma_{ref.}$	σ _{с.с.}	$\sigma_{syst.}$
	1.00 -1.21	9 335	0.0842	0.0008	0.0005	0.0009	0.0008	0.0001	0.0005	0.0014
•	1.97 -2.28	23 893	0.0642	0.0004	0.0002	0.0005	0.0002	0.0001	0.0002	0.0006
	3.30 -3.70	20 707	0.0550	0.0004	0.0001	0.0003	0.0000	0.0001	0.0002	0.0004
	6.56 -7.16	13 153	0.0510	0.0004	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
	09.95 -10.73	7 161	0.0519	0.0006	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
	19.37 -20.54	2 322	0.0634	0.0013	0.0001	0.0001	0.0000	0.0001	0.0002	0.0003
	30.45 -32.10	1094	0.0701	0.0022	0.0001	0.0002	0.0000	0.0001	0.0003	0.0004
•	40.00 -43.39	976	0.0802	0.0026	0.0002	0.0005	0.0000	0.0001	0.0004	0.0007
	50.87 -54.98	605	0.0891	0.0038	0.0002	0.0006	0.0000	0.0001	0.0004	0.0008
	64.03 -69.00	392	0.0978	0.0050	0.0002	0.0010	0.0000	0.0002	0.0007	0.0013
	74.30 -80.00	276	0.0985	0.0062	0.0002	0.0010	0.0000	0.0002	0.0010	0.0014
	86.00 -92.50	240	0.1120	0.0075	0.0002	0.0010	0.0000	0.0003	0.0011	0.0015
	100.0 -115.1	304	0.1118	0.0066	0.0002	0.0015	0.0000	0.0003	0.0015	0.0022
	115.1 -132.1	223	0.1142	0.0080	0.0002	0.0019	0.0000	0.0004	0.0019	0.0027
	132.1 -151.5	156	0.1215	0.0100	0.0002	0.0021	0.0000	0.0005	0.0024	0.0032
	151.5 -173.5	144	0.1364	0.0121	0.0002	0.0026	0.0000	0.0006	0.0045	0.0052
•	173.5 -206.0	134	0.1485	0.0133	0.0002	0.0031	0.0000	0.0009	0.0050	0.0060
•	206.0 -260.0	101	0.1530	0.0160	0.0003	0.0031	0.0000	0.0013	0.0095	0.0101
•	260.0 -350.0	72	0.1550	0.0200	0.0003	0.0056	0.0000	0.0018	0.0140	0.0152

Positron fraction

Positron fraction : measurement comparison

Positron fraction

Physics Example: Comparing data with a minimal model.

Positrons: $\Phi_{e^+} = C_{e^+} E^{-\gamma e^+} + C_s E^{-\gamma s} e^{-E/E_s}$ Secondaries plus source component

Electrons :

 $\Phi_{e^{-}} = C_{e^{-}}E^{-\gamma e^{-}} + C_{s}E^{-\gamma s}e^{-E/E_{s}}$ Secondaries + Astrophysics

primaries (SNR+..) plus the same source component

Positron source components: pulsars, Dark matter, ...

Positron mode : features and strategy

Positron flux (Signal in data)

Particle Physics e+ (annihilation modes) 10 ⊨⊤ m_{DM} = 300 GeV $\frac{\langle \sigma_{ann}v \rangle}{2m_{WIMP}^2} \sum_f \frac{dN_{e^+}^f}{dE_{e^+}} B_f$ 1⊧ s sr)⁻¹×E³ 10-1 Elux (GeV m² Flux (GeV m² 10⁻³ 100% t t final state 100% bb final state 100% $\tau^+\tau^-$ final state 100% ZZ final state 10⁻⁴ 100% W⁺W⁻ final state $B \times$ 100% e⁺e⁻ final state 10⁻⁵ 10² 1 10 E (GeV) Diffusive halo Dark matter halo 20 kpc **Propagation effect:** probed zones for e+,ewithin 1-4 kpc Boost factor: over Turbulent magnetic fields: "random walk" of cosmic rays densities (clumps) $-LZP \rightarrow e^+$ (total) $-LZP \rightarrow e^+$ (total) after - qq Φ (GeV².cm⁻².s⁻¹.sr⁻¹) source" $= e^+e^-$ direct e+e direct propagation $B \propto \frac{\langle \rho^2 \rangle}{2}$ —μ+μ-– τ⁺τ⁻ τ⁺τ⁻ **Background** б protons: $\Phi_p \sim 10^{3-4} * \Phi_{e+}$ E (GeV)¹⁰ electrons : $\Phi_{e-} \sim 10 * \Phi_{e+}$ E (GeV) \bar{p}, e^+, \bar{D} : specific propagation equations

⇒ Important to constraint the propagation model parameters to draw any interpretations (B/C and δ) **40**

 \Rightarrow Important also to look at the positron and electron fluxes separately

Impact of the precision of the measurement: shape

If 100% WIMP DM origin: different masses are tested

MicrOmegas 50% branching ration into tau tau

- 25% branching ratio into W+W- pairs
- 25% into e=e- and mu+mu- pairs
- Low masses are disfavored (Energy cut off)
- Large masses are disfavored (very high boost factor)

Extended analysis (low mass exclusion <90 GeV) see: L.Bergstrom et al.arXiv: 1306.398 [astro-ph.HE]

Pulsars: Possible sources of primary positrons

	LIST C			
SNR	Distance (kpc)	Age (yr)	E_{\max}^{a} (TeV)	
SN 185	0.95	1.8×10^{3}	1.7×10^{2}	
S147	0.80	4.6×10^{3}	63	
HB 21	0.80	1.9×10^{4}	14	
G65.3+5.7	0.80	2.0×10^4	13	
Cygnus Loop	0.44	2.0×10^{4}	13	
Vela	0.30	1.1×10^{4}	25	
Monogem	0.30	8.6×10^{4}	2.8	
Loopl	0.17	2.0×10^{5}	1.2	
Geminga	0.4	3.4×10^{5}	0.67	

e Mart A. Carleb generationski

- Mechanism : the spinning B of the pulsar strips electrons that emit gamma => production of e+epair that are trapped in the cloud, further accelerated and later released
- The pulsar must be young (< 10⁵ years) and nearby (<1 kpc)
- Predicted Flux: $\Phi_{e^{\pm}} = E^{-\alpha} exp(-\frac{E}{E})$ $alpha \sim 2 E_c = few TeV$

Statistical errors only

Index > 3 for electrons, 500 electrons expected in 4 years above 500 GeV

AMS-02 Positron Flux up to 350 GeV

AMS-02 lepton Flux up to 350 GeV

Anisotropy Measurements

- Selected events are grouped in 5 cumulative energy bins: 16-350, 25-350, 40-350, 65-350 and 100-350 GeV
- Their arrival directions are used to build sky maps in the galactic coordinate(b,l)

Anisotropy Measurements

The relative fluctuations of the ratio across the observed sky map show no evident pattern

- The coefficients of the multiple expansion are found to be consistent with the expectations from isotropy.
- Upper limits on the dipole parameter δ are set.
- After 20 years a sensitivity of the order of **0.014** is expected
 ⇔ could it constraint the pulsar component ?

First flux measurements by AMS

Summary

- AMS02 is operating on the ISS since the 19th May 2011 and has collected more than 35 billions of events: All AMS subsystems are fully operational and behaves as expected.
- Variations of ambient conditions (temperature in first place) are accounted for, with proper calibrations and alignments
- For most of the measurements, systematics uncertainties are estimated from the data thanks to the redundancy of AMS-02
- **Proton flux** from 1 GV to 1.8 TV and **Helium flux** from 2GV to 3.2GV for have been measured by AMS during the first two years of operation on ISS
 - In high rigidity region (R > 100 GV) : The spectra are consistent with a single power law and shows no structure nor break
- **B/C ratio** has been measured between 05 to 670 GeV/n. the behaviour at high energy will become more clear with more statistics
- Positron fraction has been measured from 0.5 to 350 GeV using the first 6.8 million positron and electrons. Nearby Primary positron sources are needed to explain the measurement.
- An electron spectrum in the energy 1-500 GeV and and a positron spectrum in the energy range 1-300 GeV were shown with different spectral indices of electrons and positrons. Systematic errors being under study. **The behaviour at high energy will become more clear with more statistics.**

Errors and binning

R < ~30 GV : Variation due to the solar modulation and solar events

Helium Nuclei Selection

Rigidity>20 GV He Events Selected by Tight Cut on Tracker Layer1 Charge

10

Isotopic Fraction Evaluation

Positron fraction

Physics Example: Comparing data with a minimal model.

Results of the fit to the data in the energy range 1 to 350 GeV yields:

• $\gamma_{e_{-}} - \gamma_{e_{+}} = -0.63 \pm 0.03$, *i.e.*, the diffuse positron spectrum is less

• energetic than the diffuse electron spectrum;

• $\gamma_{e_{-}} - \gamma_{s} = 0.66 \pm 0.05$, *i.e.*, the source spectrum is more energetic than the diffuse electron spectrum;

• C_{e^+}/C_{e^-} = 0.091 ± 0.001, *i.e.*, the weight of the diffuse positron flux amounts to ~10% of that of the diffuse electron flux;

• $C_{\rm s}/C_{\rm e-}$ = 0.0078 ± 0.0012, *i.e.*, the weight of the common source constitutes only ~1% of that of the diffuse electron flux;

•1/ E_s = 0.0013 ± 0.0007 GeV⁻¹, corresponding to a cutoff energy of 760⁺¹⁰⁰⁰ GeV.

=> Primary positrons are needed

Impact of the precision of the measurement: shape

If 100% WIMP DM origin: different branching ratio scenarios can be tested

I.Colis et al arXiv:1304.1840 [astro-ph.HE]

"Dark Matter models in which the WIMP annihilates 100% into e+e- are no longer of producing positron rise in the positron fraction"