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Uﬂ Open Questions in QCD

» All processes at the LHC are QCD ones, whether signal or background is considered
» Description of hadron scattering in the high energy limit - Saturation?
» Nature of Multiple Parton Interactions?
» Hadron production - Description of the Underlying Event?
» Search for Double Parton Scattering?
» Description of the Rapidity Gap Survival Probability in Diffraction?
» MPI, Saturation and Diffraction are related by the AGK cutting rules
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Uﬂ Description of hadron scattering in QCD

» Collinear Factorization and fixed-order QCD calculation P,

» Factorization of short and long distance dynamics:

opp = fix1, 1%) @ G(x1, %2, @) ® (2, %)

Gij(x, Q?) : Matrix Element (ME) at LO,NLO,...

fi(x, u?) : parton density functions (pdfs)
» pdf evolution driven by DGLAP equations:

f(x, Q%) from f(xo > x, @ < Q?)

» pdfs do not depend on parton transverse momentum kr:

In 1/x

Y=

initial state collinear with the incoming hadrons at LO
final state pr can only be produced from ME
» Leading Twist: single parton scattering

» Validity: presence of hard scale - dilute system of partons

og~1 og <1




Uﬂ Implementation in Monte Carlo Models

» Fixed-order Matrix Elements matched with Parton Showers
Initial state shower:
» high-x parton at the starting scale radiates secondary partons
» loss of longitudinal momentum and gain of k1
» parton with k7 # 0 enters hard scattering

» Evolution according to DGLAP
» Validity: /s > pr > Agep

» Resum leading contributions in log(Q?)

» Strong ordering of the parton shower in kr
» Evolution according to BFKL (kt factorization)

» Validity: /s > p1 > Agcp

» Resum leading contributions in log(1/x)

» Strong ordering in x - random walk in kr

» Number of emitted gluons increases with available phase space in y
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U— Alternative approach

» High Energy Factorization
opp = Ai(x1, k11, 1%) @ 6j5(x1, x2, k71, kT2) @ Aj(x2, kT2, 1%)
Gij(x, kt) : off-shell Matrix Element
Aj(x, k7, 11?) : unintegrated parton density functions (updfs)
» Evolution according to CCFM
» Resum leading contributions in both log(@?) and log(1/x)

» unintegrated (k1 dependent) pdfs contain already at leading order some effects

which are only achieved at higher order in the collinear factorization scheme

3 — CAscADE E — CASCA
2103 DISE 2 103 oIS » CASCADE: predictions from CCFM and kt
< t . factorization
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Uﬂ Forward jets - jets at large An

» Forward jets — Distinguish between parton shower models
» Difference more prominent in the forward region
» DGLAP: k7 ordering: softest emissions are forward

» BFKL: no k7 ordering: forward emissions “arbitrarily” large

» Jets at large An — Open phase-space for BFKL-type radiations
» Wider separation An — larger azimuthal decorrelation A

» DGLAP: jets more balanced in py, more correlation

» BFKL: higher order emissions, flatter Ay
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Forward & low prt jets at 8 TeV

CMS-PAS-FSQ-12-031
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» NLO predictions too high especially in the forward region 2.5 < |y| < 4.7

Global agreement with the data within the experimental and theoretical uncertainties




Forward & low prt jets at 8 TeV

CMS-PAS-FSQ-12-031
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» NLO predictions using different PDF sets (ratios to CT10) describe data within uncertainties

» Use these jet cross sections to further constrain the proton pdfs ?




Forward + Central Jets at 7 TeV

JHEP 1206 (2012) 036

Events with at least one forward jet with 3.5 < |n| < 4.7 and p7 > 35 GeV
one central jet with |n| < 2.8 and pr > 35 GeV

CMS, pp - jet, +jet  +XNS=7TeV,L, =314pb*
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MN to exclusive dijet cross section ratio at 7 TeV
Eur.Phys.J. C72 (2012) 2216

Events with at least 2 jets with || < 4.7 and p7 > 35 GeV
Observable: Rapidity separation Ay between the pairs of jets
Exclusive sample: exactly 2 jets in the event

MN sample: at least 2 jets in the event, Ay between the most forward and most backward jets

CMS, pp, /s =7 TeV
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» Increasing Ay — larger phase space for extra radiation — increasing ratio
» Pythiab Z2 and Pythia8 4C describe the data

» Herwig++ and HEJ+Ariadne are too high at high Ay

| 4

No visible effects beyond collinear factorization 4+ LL parton shower
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Uﬂ Dijet azimuthal decorrelations at 7 TeV

CMS-PAS-FSQ-12-002

Events with at least two jets with |n| < 4.7 and p7 > 35 GeV

Observables:

>

>

azimuthal decorrelation Ay between the most forward and the most backward jets
Fourier coefficients C, of the Fourier expansion of the differential cross section in Ay
1do 5, Cocos(n(r — Ag))
Co = (cos (n (x — Ay)))
Measure C; = (cos (1 — Ayp)), G = (cos (2(m — Ay))) and C3 = (cos (3 (7 — Ayp)))
Ratios of coefficients: DGLAP suppressed — more sensitivity to BFKL effects
Measure ratios C;/C; and G3/ G

Measurement for increasing rapidity separation between jets: 0 < Ay < 3
— open phase-space for extra radiations 3<Ay <6

— more decorrelation expected 6 <Ay <9.4
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Azimuthal decorrelation in bins of Ay
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» CASCADE (CCFM): too much decorrelation




Ratios C2/C1 and C3/C2

Ratios Cp+1/Cn — DGLAP contributions suppressed — more sensitivity to BFKL effects
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» At low Ay,
LL DGLAP based generators

Cn+1/Cp are described by

At larger Ay, LL DGLAP fails
(PYTHIA6/8 and Herwig++)

Sherpa overestimates both ratios
CASCADE predicts too small ratios

At Ay > 4, BFKL NLL prediction
describes the ratios within uncertainties
(in particular G2/ Cy)




Multiple Parton Interactions - Motivation

» MPI introduced to describe large multiplicity tails and KNO scaling violation
» MPI has become a key ingredient to describe Underlying Event measurements
» Underlying Event: activity not attributed to the hard scattering between partons
Initial State Radiation and Final State Radiation
Beam Remnants
Multiple Parton Interactions (with its own ISR and FSR)

221

OEO0TE00T

B AOEO00CE
- / MPI A

Hadronisation

» The Underlying Event is characterized by a smaller scale than the hard scattering
» Increase of MPI activity happens at the transition between soft and hard collision

» Some MPI can be harder — Double Parton Scattering




oy

leading track

transverse transverse

60° < |Ag| < 120° 60° < |Ad| < 120°

away
1A¢] > 120°

Measurement of the Underlying Event

Divide phase space in ¢ to separate the UE from the hard scatter
3 regions in ¢ with respect to the leading object direction
Transverse region most sensitive to the UE activity

Look at particle and energy densities in the transverse region
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Underlying Event in Jets and Drell-Yan events

Eur.Phys.J. C72 (2012) 2080

particle density energy density average energy / average density
L8 T 25 T2 o Data, Leadingjet  CMS \§=7TeV
[ - Data Leadingjet ~ CMS [5=7TeV % [ eDaa Leadingjet  CMS E=7Tev | » 2F : 9
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UE activity in hadronic events as a function of the leading jet pr: two different regimes

At low pt: fast rise due to the increase of MPI activity

At higher pt: constant particle density, slow radiative increase of the energy density (ISR/FSR)
UE activity in DY events as a function of p‘;.“: one regime

At low pr: no fast rise , MPI activity saturated (hard scale 81 < M,,,, < 101 GeV)

Slow radiative increase of the UE activity with pr (ISR)
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[N, 7An & agh

particle density

Strangeness production in the UE at 7 TeV

energy density

CMS-PAS-QCD-11-010

strange/charged densities
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PYTHIA underestimates data
Deficit similar to inclusive

strange particle production

Strange to charged particle
activity ratios flat with pr
— MPI decoupled

from hadronization

Direction defined by the leading charged-particle jet, with pr > 1 GeV and || < 2

Production of primary Kg and A in transverse region

Behaviour similar to inclusive charged particles — universal impact parameter picture of MPI

At low pt: fast rise of the densities - At higher pr: saturation




dN/din|

Data/MC

Pseudorapidity distribution of particles at 8 TeV

CMS-PAS-FSQ-12-026

Inclusive NSD-enhanced
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wi 3 — vz 4 CMS-TOTEM measurement
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—a— TOTEM (p 240 MeV)
N, (p, > 40MeV) = 1in 53 <n <65 and 65 <n<-53
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~
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NSD overestimated by all models

T TR

Data / MC
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Events triggered by the TOTEM T2 telescopes (5.3 < |n| < 6.5)

Pseudorapidity distribution of charged particles in || < 2.3 with pr > 100 MeV (CMS)
in 5.3 < || < 6.4 with pr > 40 MeV (TOTEM)

Inclusive: at least one charged particle with pr > 40 MeV in either T2 telescope
NSD-enhanced: at least one charged particle with pr > 40 MeV in both T2 telescopes

No consistent description of the distributions by MC predictions
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(P, min, leading )

D

MC/Data

CMS Preliminary

Inclusive pp Vs =8 TeV

Leading track pt distribution at 8 TeV

CMS Preliminary Inclusive pp Vs =8 TeV
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Events triggered by the TOTEM T2 telescopes - Inclusive selection
Leading track pr distribution for tracks in |n| < 2.4 with pr > 0.8 GeV

Integrated leading track pr distribution above prpi, :

Sensitivity to prg - probes transition from perturbative to non-perturbative region

Pr min,teading

N1 . dn
D(PTmln) = N Jprmin dPT,Ieadmgm

[GeV]

Tamed behaviour of the cross section not well described by models - Epos LHC closest to data

Switching on/off MPI does not improve agreement




Uﬂ Double Parton Scattering - Motivation

General expression for DPS cross section leading to A and B plus anything:
o(A+ B) x /dzb dxy dx dxy dXp Dix(x1, X1, b) Dji(x2, X2, b) & 6y

Assume Dj(x1,X1,b) = fi(x1) fx(x1) G(b), DPS cross section given by:

A)o(B -t

o(A+B) = mZA 2B Oeff = U d’b G2(b)}
Oeff

(m = 1/2 for identical interactions, m = 1 otherwise)

Using conditional probability and o(A) = P(A) onp, one can write:

P(BJA) = P(B) “*2

€

oeff mostly depends on geometry - supposed to be process, scale and /s independent

Oeff ~ 10 — 15 mb from CDF and DO v + 3 jets, confirmed by ATLAS W + 2 jets

Experimental picture: measure DPS for different processes, at different scales and /s
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> DPS via W + 2 jets
CMS-PAS-FSQ-12-028
DPS Signal: W from first hard parton scattering, at least two jets from a second one
SPS Background: W + at least 2 jets from a single parton scattering
DPS signal ) SPS background Discriminating variables:
- ; » Azimuthal separation between 2 jets:

By = |t — |

Relative p1 balance between 2 jets :

rel _ lpr/t + pr/?|
P |prt| + lpr/2|

Transverse plane view

Angle AS between W/(uv) and dijet vector:

= ar pr(p, #1) - pT(i1,/2)
AS = arccos (\pT(N» l:25] \PT(J'IJQ)')

muon jet o

jet
missing missing
energy energy
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DPS via W + 2 jets

Inclusive sample: W + at least 2 jets

Leading two jets considered for calculation of DPS observables

Ay, Ai’fT’ and AS cross sections

do / d(0.105*Ag) [pb]

Data/MC

CMS Preliminary, pp + W+ jets, S =7 Tev, [Lat=5

CMS Preliminary, pp - W + ets, {5 =7 TeV, [ Lai=5 o’

CMS-PAS-FSQ-12-028

CMS Preliminary, pp - W+ ets, 1§ =7 TeV, [ Lai=5 1"

— MADGRAPH 5 + PYTHIA 6 (scaled to NLO) 8 [ — MADGRAPH 5+ PYTHIAG (scaled to NLO) 8 — MADGRAPH 5 + PYTHIA 6 (scaled to NLO)
MADGRAPH 5 + PYTHIA 6, no MPI (scaled to NLO) = | -==-MADGRAPH 5 + PYTHIA 6, no MPI (scaled to NLO) —_ MADGRAPH 5 + PYTHIA 6, no MPI (scaled to NLO)
10 PYTHIA 8 (scaled to NLO) > -~ PYTHIA 8 (scaled to NLO) @ [ - PYTHIAS (scaled to NLO)
8- Daia 2 1oL -eDaa 4 [ epaa
E 5 E b
E = E [fed
FCMS s =1
L & r 1
3 =2
r =3 r ]
9 ~
T o)
—~ °
e
3
W(- ) + jets(>=2) [ W(- pv) + jets(>=2) W(- pv) + jets(>=2)
L leading 2 jets 10 leading 2 jets 10° leading 2 jets
E . . . . . . E . . . . . . . . I .
29 Worcarany QL E Boreramy QL
8 - g
% 5
8 38 15|
05|
0.2 0.4 0.6 8 rel 0.5 1 15 2 25 3
A P AS

MadGraph with MPI on in good agreement with data
MadGraph with MPI off underestimates data by 20%
Pythia8 underestimates data by a factor ~ 2 in the DPS sensitive regions

Mostly due to missing higher order processes faking DPS




AS-FSQ-12-013

Four jets final state can arise from one or two chains

DPS via 4 jets

The two additional jets can be produced via parton shower or a second hard scattering

SPS background

DPS signal
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Selection: exactly 4 jets in || < 2.5 - 2 jets with pr > 50 GeV - 2 jets with pr > 20 GeV

Jets associated in pairs: hard-jet pair: the two leading jets above 50 GeV

Discriminate the two processes via Ap and A;eT’ for each pair

soft-jet pair: the two other jets above 20 GeV
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DPS via 4 jets - Ay and A;eT’ soft-jet pair

» Absolute normalization
POWHEG overshoots the data

PYTHIA6 and HERWIGH+

describe the data quite well

» Normalized to unit area

Herwig++ and POWHEG

describe well the data

A more suited to distinguish
MPI on versus MPI off

in the normalized distributions




Uﬂ Diffraction and exclusive processes - Motivation

» Diffraction represents a sizeable fraction of ot - of the order of 25-35 %

Important ingredient for the description of the Underlying Event

» Rapidity gap survival probability S? poorly known theoretically
Absence of description in the MPI framework

Not a simple number - dependence on the diffractive kinematic variables

» Central Exclusive Production

CEP WW: precise test of the SM - Search for aQGCs




Uﬂ Rapidity Gap cross section

CMS-PAS-FSQ-12-005
Forward rapidity gap Anf: largest empty 7 region, starting at the edge of the detector
Inclusive measurement - no separation of diffraction

Hadron level definition: gap defined by absence of particle with p7 > 200 MeV
C

S Comparison

L
- CMS, L =203 b
—e— ATLAS,L=7.1pb""

e cn)xsn.:&oaphl' ! L:

—— MinBias, PYTHIA8-MBR (¢ = 0.08)]
Diffractive q
—— Nondiffractive
Single Diffractive
Double Diffractive
Central Diffractive

do/dAy [mb]
do/dAy [mb]

MC / Data

ATLAS / CMS

Evidence for diffraction at high Anf: ND exponentially suppressed - plateau from SD and DD
Diffractive plateau ~ 1 mb / unit of gap size

Sensitivity to diffractive models: PYTHIA8-MBR with ap(0) = 1.08 gives the best description
Phojet in good agreement at high An’ but overestimates data at low An’

Agreement ATLAS-CMS within uncertainties - CMS extends ATLAS by 0.4 unit of gap size
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Soft diffractive cross sections
CMS-PAS-FSQ-12-005
SD and DD cross sections as a function of ¢

G

CMS Preliminary,V's = 7 TeV, L = 16.2 pb™ CMS Preliminary,Vs = 7 TeV, L = 16.2 pb™
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MBR model presented for 2 values of the Pomeron intercept ap(0) = 1.08 & 1.104

Both describe well the SD cross section - DD better described with smaller c.p(0) value

Schuler & Sjostrand model implemented in PYTHIA8-4C and PYTHIAG6
Can describe the DD cross section - But not the SD falling behavior

SD cross section integrated over —5.5 < log{ < —2.5:
oS0 = 4.27 £0.04 (stat.) +0.65/ — 0.58 (syst.) mb for 1.1 < log(Mx/GeV) < 2.6

vis
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Diffractive dijet production
Phys.Rev. D87 (2013) 012006

CMS, (5= 7 TeV, L=2.7 b, pp - jetyjet, "] < 4.4, p. > 20 Gev CMS, 157 TeV, L =2.7 nl", pp—jetajety, In*7| <44, ¥ > 20 Gev
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At least 2 jets with pr > 20 GeV and |n| < 4.4
Most forward particle should have 1max < 3 or Nmin > —3

LRG data described by a combination of ND (PYTHIA6 Z2) and SD (POMPYT) predictions
Relative fraction of SD obtained from a fit to the data

Excess of events at low £ wrt ND predictions (PYTHIA6 and PYTHIAS)

SD predictions overestimate data by a factor ~ 5 in the lowest £ bin

Estimate of the rapidity gap survival probability: 0.12 4+ 0.05 from LO POMPYT and POMWIG
0.08 + 0.04 from NLO POWHEG
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Exclusive W W production
JHEP 07 (2013) 116
Search for exclusive vy — WT W~ and anomalous quartic gauge couplings

In the unlike-flavor dilepton decay channel: vy — WTW~ — uFeFui
Exclusivity: No extra tracks associated to the dilepton vertex

SM signal region: pr(uTe¥) > 30 GeV aQGCs search: pr(uteT) > 100 GeV

CMS, V5 =7 TeV, L =505 fo*

% 8: T T T T o 0.002 C‘MS,VE:7Te‘V‘L:5.057b"’
8 £« om B oeivenc E L
8 g == inclusive w'w B8 Diffractive w'w 8
o 6f M« = Wrets 3 & 0.001- -
B F —emsioy - vr B melasicyy - ot < ™
& 55  —w-owwem 3 %
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aF E oF ]
5 E
2F E 0,001+ snawavose ]
T
0wt CMS -
0 =l . L -0.002 L
0 200 400 600 800 _ 1000 0.0005
m(ep) [GeV] aWIn? [GeV?]
2 events passing all selection criteria No events observed in data
expected bkg: 0.84 + 0.15 events Consistent with SM expectation of 0.14
expected signal: 2.2 + 0.4 events Limits on aQGCs with Acyiog = 500 GeV

New limits ~ 1 (2) order(s) of magnitude more stringent than Tevatron (LEP)
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Summary

» Forward and low pt jets carry information about parton radiation and pdfs at low x

Simultaneous forward and central production increases the sensitivity

Dijet production widely separated in n

Increase sensitivity even more - Probe BFKL-like effects

None of the MCs can reproduce consistently all the measured observables

Constraints limited by the uncertainty on the jet energy scale

» Understanding of UE needed for a full understanding of (semi-hard) QCD dynamics,
for precision measurements of SM processes, search for new physics

Improvement of our knowledge: UE in DY and hadronic events

Strangeness in UE ~ inclusive production

» DPS: Look for dsicriminating variables - More to come

» Diffraction & Exclusive processes: New constraints from soft & hard diffractive measurements

Exclusive measurements give precise test of SM and constraints on its extensions (e.g. aQGC)
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Hﬂ Backup




Forward + Central Jets at 7 TeV

o XNS=T Tev L =314 pb™ CMS, pp — jet, +jet  +XN5=7TeV,L, =314 pb"

CMS, pp — Jet, + jet__

» Central jet pr spectrum
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» Forward jet pr spectrum A==y ==
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» Different level of agreement between data and MC for the central jet and the forward jet

» Largest shape difference for the forward jet




Effect of Angular Ordering & MPI

CMS Preliminary,\/s = 7 TeV,[Ldt =5pb* CMS Preliminary \s = 7 TeV‘J'Ldl =5pb*
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» PYTHIA6 Z2 with and without angular ordering or MPI

» Angular ordering and MPI improve the description of the data, in particular at high Ay
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MCldata

Jets and UE properties versus particle multiplicity
CMS-PAS-FSQ-12-022
pt tracks UE p1 tracks intra jet pT jet

CMS Preliminary, pp {5 = TTeV/ <24, CMS Preliminary, pp (5= 7TeV  ™"[<1.9, 5" ">5Gevie,

3y

e CMS

Charged particles with pr > 0.25 GeV and || < 2.4
Charged-particle jets with pr > 5 GeV and |n| < 1.9

Charged particles divided into 2 classes: those belonging to jets and those belonging to the UE

UE and jet properties as a function of charged-particle multiplicity

PYTHIA predicts harder pr spectra than seen in data
Herwig++ shows the opposite behaviour

Predictions without MPI fail to describe the data
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DPS via W + exactly 2 jets

Exclusive sample: W + exactly 2 jets
Integrated cross section = 60.6 + 8.7 pb - consistent with NLO scaled MADGRAPH prediction

Distributions Ay, A;eT/ and AS normalized to unit area

CMS Preliminary, pp W+ jets, V5 =7 TeV, rlux =5t

CMS Preliminary, pp - W +jets, V5 = 7 TeV, er =5

CMS Preliminary, pp - W + jets, 5 = 7 TeV, [Lm:sm‘
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MadGraph with and without MPI

in good agreement with data except for AS

AS is the only observable able to distinguish MPI on versus MPI off for the normalized distributions
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