

Superconductors and Magnet Technology for 20 T Dipole Magnets

Arno Godeke

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

CEA Saclay, March 17, 2014

Thanks

- **LBNL:** Lucas Brouwer, Shlomo Caspi, Dan Cheng, Dan Dietderich, Steve Gourlay, Ray Hafalia, Maijkel Hartman, Nick Heys, Hugh Higley, Tom Lipton, Matthijs Mentink, Soren Prestemon, Jim Swanson
- The VHFSMC and BSCCo collaborations:
- **FSU:** Eric Hellstrom, Jianyi Jiang, Tak Kametani, David Larbalestier, Maxime Matras, Ulf Trociewitz
- FNAL: Lance Cooley, Tengming Shen, Alvin Tollestrup, John Tompkins
- **BNL:** Arup Ghosh

Industry:

- Showa: Yasuo Hikichi, Jun-ichi Nishioka, Takayo Hasegawa
- OST: Michael Gerace, Miao Hanping, Seung Hong, Yibing Huang, Maarten Meinesz, Jeff Parrell
- Nexans: Mark Rickel

This work was partly supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under contract No. DE-AC02-05CH11231

Credits

Lawrence Berkeley National Laboratory Berkeley, CA, USA

University of California Berkeley, CA, USA

University of Twente Enschede, The Netherlands

National High Magnetic Field Laboratory Tallahassee, FL, USA

Applied Superconductivity Center University of Wisconsin – Madison, USA (Now at FSU, Tallahassee, FL, USA)

Outline

Superconductivity 1.01

• Terminology: T_c , H_{c2} , pinning, J_c , critical surface

Technological superconductors

• The materials science and performance of LTS wires

Superconducting dipole magnets

• Record fields, intrinsic limitations, the need for HTS

Superconductivity: Electron pairing

Electrons couple through lattice vibration quanta (phonons)

- Net attractive e-e interaction
 - Described by electron-phonon interaction constant $\lambda_{e\text{-p}}$

Attraction over communication distance ξ (coherence length)

Electron paring: Critical temperature T_c

Ab-initio calculated and measured T_c and H_{c2}

What does H_{c2} do for us?

- Type II superconductor in field
- Field quanta $\phi_0 = h/2e$ (flux-lines) penetrate SC

Increasing magnetic field

• Normal cores start to overlap at H = $H_{c2} = \phi_0 / 2\pi\xi$

Increasing H

 $H_{c2}(T)$ provides maximum field a conductor can be used at

What determines J_c? Type II SC carrying current in field

External field causes flux-lines to penetrate SC

- Current causes gradient in flux density B_x
- Flux-lines repel \rightarrow move ($\nabla \times E = -dB/dt$) $\rightarrow E_{v} \rightarrow Loss$

Flux-lines need to be 'pinned' at 'pinning centers' by 'pinning force' F_P

• Pinning centers: Impurities, defects, grain boundaries, ...

'De-pinning' for $F_L = J \times B > F_P \rightarrow Critical current density J_c$

Godeke, Ph.D. Thesis (2005) 8

Superconducting Phase Boundary

Outline

Superconductivity 1.01

• Terminology: T_c, H_{c2}, pinning, J_c, critical surface

Technological superconductors

• The materials science and performance of LTS wires

Superconducting dipole magnetsRecord fields, intrinsic limitations, the need for HTS

Technological superconductors

Examples of technologically relevant superconductors

	H _{c2} (0) [T]	T _c (0) [K]
NbTi	14	9.5
Nb ₃ Sn	30	18
MgB ₂	3.5-35	32-40
YBa ₂ Cu ₃ O ₇	>100	93
Bi-2223	>100	108
Bi-2212	>100	95

Bi-2212

Measurement of critical currents

Modern method for the measurement of high current wires

What determines J_c?

Powder-in-Tube wire

50% non-Cu fraction \rightarrow **non-Cu J**_c

Performance comparison Nb₃Sn wires

Different processes yield very different results

Technology	Non-Cu J _c (12 T, 4.2 K)	
Bronze	720 A/mm ²	
Powder-in-Tube	2250 A/mm ²	
Internal Tin	3000 A/mm ²	
	Why such large differences in 1?	

Differences occur mainly due to Sn content

Binary phase diagram for the Nb-Sn system

Godeke, Supercond. Sci. Techn. 19 R68 (2006)

Nb₃Sn formation in wires

Nb₃Sn: Formed by a high temperature reaction in an inert atmosphere

• Example: Reaction progress at 675°C vs. time in a Powder-in-Tube wire

A solid state diffusion reaction results in compositional gradients

Sn gradients in wires after reaction

Bronze (**720** A/mm²): – **4** at.% Sn/μm

Large fraction with high Sn gives high J_c: WHY?

Abächerli, et al., IEEE Trans. Appl. Supercond. **15** 3482 (2005) Godeke, et al., Cryogenics **48** 308 (2008) Lee, et al., IEEE Trans. Appl. Supercond. **15** 3474 (2005)

Int.-Tin (**3000** A/mm²): – **0.05** at% Sn/μm

Sn deficiency suppresses H_{c2}(T)

Resistive data on bulk material...

- Of different Sn content
- Low Sn sections not SC at high field

...and on wires

• Detecting only the best, stoichiometric bits that are present in all wires

Prospects for composition optimizations

Godeke, et al., J. Appl. Phys. 97 093909 (2005) 19

Pinning optimizations?

Comparison between NbTi and Nb₃Sn J_E(H)

What determines J_c?

J_c is determined by the achievable pinning force F_P

• And thus by the average grain size...

Godeke, *Supercond. Sci. Techn.* **19**, R68 (2006)₂₁

What is an optimal grain size?

- Ideal is 1 pinning center per flux-line
- Schematic: Cubic grains and flux-lines

• Ideal: $d_{av} = a_0$

Flux-line spacing a_0 is field dependent

- E.g. at **12 T** $a_0 = (3/4)^{\frac{1}{4}} (\phi_0 / \mu_0 H)^{\frac{1}{2}} =$ **12 nm**
- Grain size in Nb₃Sn wires \rightarrow 100 200 nm

Grain size determines $F_{P,MAX}$ Grain size determines $F_P(H)$ Grain size Nb₃Sn factor 10 too large Pinning NbTi is fully optimized

Dietderich and Godeke, *Cryogenics* **48** 331 (2008) Lee, *et al., Wire J. Int.* Feb. 2003

NbTi: Nanometer scale α -Ti precipitates

What happens when Nb₃Sn grains are refined?

Pinning force *predicted* gains

- 12 T, 4.2 K J_c increases by factor 3.6 (!)
 - A factor 3.4 is *measured* in thin films that were made and tested at LBNL

Critical current

- 20 25 T field regime is opened up
 - Much more efficient approaching H_{c2}

Outline

- Superconductivity 1.01
- Terminology: T_c, H_{c2}, pinning, J_c, critical surface
- **Technological superconductors**
- The materials science and performance of LTS wires
- Superconducting dipole magnets
- Record fields, intrinsic limitations, the need for HTS

High J_c provides high magnetic fields

Permanent magnet: 1 T

Electro-magnet (SC solenoid): 20+ T

June 8, 1995: The dawn of dipoles beyond 10 T...

A new world-record dipole field...

...and the first time a Nb₃Sn magnet surpassed the 10.5 T Nb-Ti limit

0.5 x quench current of 18724 A on the 8th of june 1995 corresponding to a central field of 11.1 T

University of Twente

Pictures courtesy of A. den Ouden (U. Nijmegen) and W.A.J. Wessel (U. Twente)

Nb₃Sn dipole magnetic field records versus time **Bi-2212** HE-LHC and MAP: 20+ T dipoles (YBCO, Bi-2223) 18 T Nb₃Sn LBNL-HD 1 decade ago LBNL-RD3b LBNL-D20 Non-Cu current density 3 Twente-MSUT 10.5 T 2 decades ago NbTi dipole limit **CERN-Asner** Nb-Ti LBNL-D10 *J*_c(12 T, 4.2 K) BNL-Sampson Dipoles '85 '70 '75 '80 '90 '95 '00' '05 Year Magnet technology Nb₃Sn quality and quantity in wires What limits Nb-Ti and Nb₃Sn?

LTS intrinsic limits and dipole performance

Field – temperature limitations and achieved dipole fields

Godeke, et al., IEEE Trans. Appl. Supercond. **17** 1149 (2007) Godeke, et al., J. Appl. Phys. **97** 093909 (2005) 28

What are the dipole limits using LTS?

Godeke, et al., IEEE Trans. Appl. Supercond. 17, 1149 (2007)

What dipole fields are possible using HTS?

Bi-2212 requires densification during reaction

Jiang, FSU

FSU and BSCCo collaboration:

- Voids agglomerate into bubbles
- C and H react with O₂
- Internal pressure dedensifies 2212

Compensate with OP reaction at 25 to 100 bar

Larbalestier, *et al.*, *Nature Mat.* (2014) Kametani, *et al.*; Jiang, *et al.*; Malagoli, *et al.*; *Supercond. Sci. Techn.* (2011-2013)

20 T, 4.2 K J_E: 200 A/mm² for 1 bar 600 A/mm² for 100 bar

LBNL Bi-2212 efforts and collaborations

▶ 2000

1999

1998

Rutherford cable developments (with IGC, OST, Showa > 4.5 km SMES cable)

Beyond 16 T dipole fields

- Optimize and refine Nb₃Sn
- Develop W&R Bi-2212
 - Collaborations
 - SWCC Showa Cable Systems Co. Ltd.
 - **OST** Oxford Instruments
 - VHFSMC U.S. National Program on Bi-2212 » BNL, FNAL, FSU, LBNL, NCSU, NIST, TAMU
 - BSCCo U.S. collaboration on Bi-2212
 - » BNL, FNAL, FSU, LBNL (+OST, CERN, Nexans)
- Side path: YBCO, Bi-2223, ...

Sub-scale W&R Bi-2212 racetracks with Showa and OST

2006 – 2012: Bi-2212 subscale coils

- Purchase wire, make and insulate cable
- Coil on Inconel 600 former, react, pot, test
- 2 Ag dummies & 11 Bi-2212 coils

2013 onwards: Realistic Bi-2212 inserts

• Low strain, high J_F insert coil sets

Subscale magnets for basic coil technology

Sub-scale Coils and Structures

Sub-scale coils: Utilizing available Nb₃Sn infrastructure

• LBNL Nb₃Sn technology base: Developed using sub-scale coils

Low field Low stress

High stored energy **High Axial forces**

4-coil layout High field

High field **High stress**

Addressing technology challenges for Bi-2212

Material	NbTi	Nb ₃ Sn	Bi-2212
Dipole Limit	10-11 T	16-18 T	Stress limited
Reaction	Ductile	~675ºC ± 5ºC in Ar/Vacuum	~890°C ± 1°C in O ₂
Wire axial compression	N/A	Reversible	Irreversible?
Cable transverse stress	N/A	< 200 MPa	60 MPa?
Insulation	Polymide	S/E Glass	Ceramic
Construction	G-10, stainless	Bronze, Ti, Stainless	Super alloy Berkalloy
Quench propagation	>20m/s	~20 m/s	0.1 m/s?

Example: Precision reaction HTS-SC10 in 1 Bar O₂

Maximum temperature is 888.4 ± 0.8 °C (HTS-SC08 was 887.8 °C)

Bi-2212 subscale coil overview

Coil ID	Conductor	Insulation	Sizing	Oxidation	Confined
HTS-SC01	Ag-dummy	SiO ₂	During HT	Pre-oxidized	Full
HTS-SC02	Ag-dummy	SiO ₂	During HT	Pre-oxidized	Full
HTS-SC03	SWCC Untwisted	Al_2O_3/SiO_2	During HT	Pre-oxidized	Full
HTS-SC04	OST Untwisted	Al_2O_3/SiO_2	During HT	Pre-oxidized	Low Y
HTS-SC05	SWCC Twisted	Al_2O_3/SiO_2	600°C/1hr	Pre-oxidized	Full
HTS-SC06	OST Untwisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low Y
HTS-SC07	SWCC Twisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low X&Y
HTS-SC08	OST Untwisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low Y
HTS-SC09	SWCC Twisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low X
HTS-SC10	OST Untwisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low Y
HTS-SC11	SWCC Untwisted	Al_2O_3/SiO_2	825°C/4hr	During HT	Low Y
HTS-SC12	OST Untwisted	SiO ₂	During HT	During HT	Low X&Y
HTS-SC13	SWCC Untwisted	SiO ₂	During HT	During HT	Low X&Y

Reacted at LBNL

Technology PoP

Legend:

Key findings from subscale coil program

'Best of breed': HTS-SC08

• 1 bar reaction: Minor leakage (5 spots/side)

• Coil performance, 4.2 K, self-field (~1 T)

Since ~2012

Coil performance 🖌 = By OP reaction

- Coil achieves 85% of *round wire* witness
 - Along the load-line
- Limited by inner turns and ramp
 - HTS-SC10: 2417 A (within 10%)

W&R Bi-2212 is realistic

Godeke, et al., Supercond. Sci. Technol. 23 034022 (2010)

Pending issues **✓** = **By OP reaction**

- Increase wire J_e by factor 3 4
- Coil homogeneity (inner turns limit)
- ? Stress-strain sensitivity Bi-2212 (CCT)
- Leakage
- Further compatibility studies (Berkalloy)
- Quench protection(?)

High I at small r: large H. Caveat: High loads

Transverse pressure on Nb₃Sn and Bi-2212 Rutherford cables

Bi-2212 Rutherford cable with Ni-Cr core

Dietderich and Godeke, Cryogenics 48, 331 (2008)

Dietderich, et al., IEEE Trans. Appl. Supercond. 11 3577 (2001) 38

Axial strain sensitivity of Bi-2212

Ten Haken, *et al., IEEE Trans. Magn.* **32** 2720 (1996) Cheggour, *et al., Supercond. Sci. Techn.* **25** 015001 (2011)

Godeke, *et al.*, to be submitted to *Appl. Phys. Lett*.

Stress/strain issues: Also apparent in Nb₃Sn

• Dipole magnet records in 3 configurations: Hit wall at ~14 T when a bore is present

Solution: Limit stresses in high field magnets

Conventional cosine theta insert

• Accumulating stresses

O of magnitude at 500 A/mm² and 20 T

• F_L = J x B = 10 GN/m³

- 1.5 mm wide cable
 - σ = 0 10x10⁹ x 1.5x10⁻³ = **15 MPa/cable**
- r = 20 mm => ~17 cables
- $\sigma_{midplane}$ = O 2/3 x 17 x 15 = **170 MPa**

Stresses in CCT are one order smaller than in conventional designs at the cost of 20 - 30% in J_{winding} => Enabler for Bi-2212

Canted cosine theta (CCT) insert

- Support on cable level
- No stress accumulation => σ = 0 15 MPa Individual turns are separated by Ribs

Ribs intercept forces transferring them to the spar

Individual turn S. Caspi (LBNL) Stress collector (Spar)

High field CCT hybrid magnet (S. Caspi)

Proof-of-Principle NbTi coils and Bi-2212 inserts

CCT1: 2.6 T NbTi, 50 mm bore (Caspi)

CCT1 anodized aluminum hardwa

MAAAAAAAA

500 mm

840 mm

500 mm to be OP reacted

Quick turnaround integrated CAD/CAM

Bi-2212 insert configurations

Towards 19 T hybrid

	BIN1	BIN2	BIN3
Conductor	0.8 mm wire	2.4 mm 6r1	Rutherford
Insulation*	alumina-silica braid	alumina-silica braid	TBD
Spar material*	Inconel 600	"Berkalloy"	"Berkalloy"
OD/ID [mm]	50.04 / 35.31	40 / TBD	100/~50
Test in	SF, CCT1	SF, CCT1, HD3/FRESCA1	Nb ₃ Sn CCT/FRESCA2
SS current [A] in SF	695	~4200	TBD
in 2.6 T CCT1	545	~3600	N/A
in 15 T	350	~2400	Around 10 kA
Field added [T] in SF	0.59	~1.7	TBD
in 2.6 T CCT1	0.47	~1.5	N/A
in 15 T	0.30	~1.0	> 4
σ_{cond} [MPa] in SF (from F _L)	0.5	~3	TBD
in 2.6 T CCT1	2	~6	N/A
in 15 T	7	~16	TBD

* Compatible spar materials, spar coatings, and insulations remain under investigation

Status: BIN1 Wire wound coil set being fabricated

Inconel 600 works for square grooves (parametric CAD/CAM), but...

- Machining 22 m of 1 x 1 mm groove takes ~ 1 to 1.5 weeks
 - ~ 1 ft/hour per mm depth
 - High aspect ratio grooves (e.g. 2 x 10 mm) not realistic
- Inconel 600 is expensive
- Inconel 600 is not "standard" material
 - Hard to get at desired dimensions
- Cr-Ag-oxides are a concern
- "Powdery" oxide surface after Bi-2212 reaction

Bi-2212 in Inconel 600 can be done...

- ...but high aspect ratio grooves are desired
- To accommodate Rutherford cable
- To optimize J in windings
- Also for Nb₃Sn
 - SS316 and Ti-6Al-4V are considered...
 - ...but 3D metal printing seems only option
 - Accuracy is concern

Compatible material with great machinability

Berkalloy compatible with 900 °C in 100% O₂ (and also OK for Nb₃Sn)

Berkalloy

2 mm wide groove Mill breakage at 15 in/min: 5 cuts, 1 ft/min, 10 mm depth 120 ft/h per mm depth Stainless Steel 316

Inconel 600

Berkalloy is enabler for Rutherford cable wound Bi-2212 and Nb₃Sn CCT magnets

2 mm wide groove
Mill breakage at 1 in/min:
8 cuts, 0.75 in/min, 10 mm depth
4.7 ft/h per mm depth

1.05 mm wide groove 1.25 mm depth

~1 ft/h per mm depth

Summary

2 decades ago

• The dawn of dipole fields beyond 10 T (Twente MSUT)

1 decade ago

- Nb₃Sn dipole field halts at 16 T w/o bore (LBNL HD1), 14 T with bore (LBNL HD2/3)
 Stress/strain wall
 - Lack of high field pinning efficiency in Nb₃Sn, Sn content exhausted

Now

- Promising developments in engineered pinning for Nb₃Sn in wires
- Densification of Bi-2212 yields required 600 A/mm² wire J_E
- Bi-2212 can be cabled, wound, reacted, potted: Carries 85% of round wire witness
 - 100 bar reaction of coils needs verification but appears realistic
- Canted cosine theta structure mitigates stresses
 - Enabler for > 14 T with bore and for Bi-2212 inserts
- New materials, e.g. Berkalloy, enable high aspect ratio grooves in CCT structures
 - Rapid turnaround, ease of magnet fabrication, combined magnets possible
 - No complex end-pieces, no support structure required, no pre-load required,...

We are at the dawn of a new era in very high field accelerator magnet technology!