Large scale structure to measure Primordial non Gaussianity

- Primordial non Gaussianity (PNG)
- Bias
- scale dependent bias and PNG
 - T. Giannantonio and W. Percival, 1312.5154
 - N. Dalal et al., 0710.4560
 - J.A. Peacock astro-ph/0309240 (section 6)
 - T. Padmanabhan, structure formation in the universe,
 - T. Giannantonio, C. Porciani et al. 2011

Primordial non Gaussianity

PNG

- Gaussianity: at primordial time the potential is a Gaussian field
- then the CMB temperature is also a Gaussian field
- late time matter field is non Gaussian due to nonlinear evolution, this is not PNG

PNG probe the early universe

• Non Gaussianity may falsify models

	Canonical	Curvaton	Ekpyrotic
	inflation	scenario	universe
Geometry	Flat	Flat	Flat
	√WMAP	√WMAP	√WMAP
Spectrum of perturbations	Nearly scale-	Nearly scale-	Nearly scale-
	invariant	invariant	invariant
	√WMAP	√WMAP	√WMAP
Statistics of perturbations	Nearly Gaussian	Non-Gaussian	Non-Gaussian

- Planck results on PNG ?
- what about B modes ?

Cristiano Porciani

PNG and n-point statistics

• Wick-Esserlis theorem : if $(x_1, ..., x_{2n})$ is a zero mean multivariate normal random vector, then

 $E[x_1x_2\cdots x_{2n-1}] = 0$ $E[x_1x_2\cdots x_{2n}] = \prod E[x_ix_j]$

• for a Gaussian field :

(2n-1)point ξ are zero

2n-point $\boldsymbol{\xi}$ can be written in terms of the 2-point $\boldsymbol{\xi}$

- spectrum corresponds to 2 pt ξ bi-spectrum corresponds to 3 pt ξ
- non-zero bi-spectrum => PNG

A simple PNG model

• Most of the local models can be reduced to

$$\Phi(x) = \phi(x) + f_{NL} \left[\phi^2(x) - \langle \phi^2 \rangle \right]$$

where φ is a Gaussian field and f_{NL} a real number and this is at some primordial times

```
Note: \varphi ~ 10^{-5} so PNG correction ~ 10^{-5} f_{\rm NL}
```

shape of PNG

• bi-spectrum $P(k_1, k_2, k_3)$

Squeezed (local) multi-field inflation, curvaton, ekpyrotic Equilateral non-canonical kinetic terms, DBI, ghost inflation Folded modification of vacuum state

observational constraints

- WMAP 7yr bispectrum : -10 < f_{NL} < 74 (Komatsu et al., 2010)
- PlancK bispectrum: f_{NL} at 68% CL:
 local 2.7 +- 5.8
 equilateral 42 +- 75
 orthogonal 25 +- 39
 (Ade et al., 2013, 1303.5084)

what is bias

• We measure tracers of matter

 $P_{X}(k) = b^{2}(k) P(k)$

- on large scale b expected to be independent of k
- bias exists : blue and red galaxies have different biases and the ratio depends on k
- bias is local if $\delta_X(x_0)$ depends only on $\delta(x_0)$
- non-local ⇔ scale dependent

$\boldsymbol{\xi}$ for high density regions

- field m : δ averaged over box of a given volume
- corr fct of m: $\xi(r)$
- volumes such that m > v $\sigma_{\rm m}$ -> corr. fct $\xi_{\rm v}$
- if $v \gg 1$ and $\xi(r) \ll \xi(0)$ (r large) $\xi_{\nu}(r) \approx \exp\left[\frac{\nu^2}{\sigma_m^2}\xi(r)\right] - 1$

• if [] << 1:
$$\xi_{\nu}(r) \approx \frac{\nu^2}{\sigma_m^2} \xi(r) = b^2 \xi(r)$$
 bias ~ ν

else: even more bias (but not linear) high density regions more correlated than the background T. Padmanabhan section 5.7

Lagrangian and Eulerian biases

- there are models of Lagrangian bias only
- at first order: b = 1+b_L

Lagrangian bias

- Collapse to a virialized object is deemed to have occurred where m=< δ > for a box containing mass M reaches $\delta_c = 1.686$ (spherical collapse in EdS, $\Omega_m = 1$)
- if we add a constant shift ε over a large region then needs only to reach $\delta_c - \varepsilon$ the number density f -> f -(df/d δ_c) ε
- Lagrangian bias such that $df / f = b_L \epsilon$

$$\Rightarrow \quad b_L = -\frac{d\ln f}{d\delta_c}$$

overall Eulerian bias

• in addition the large scale disturbances will move haloes closer together where ϵ is large -> density contrast 1+ ϵ the overall Eulerian bias ($\delta_{halo} = b \epsilon$)

$$b = 1 + b_L = 1 - \frac{d\ln f}{d\delta_c}$$

- separate between small scales and large scale – which are identified with $\boldsymbol{\epsilon}$

ð

х

Press-Schechter mass function

- Collapse to a virialized object is deemed to have occurred where m=< δ > for a box containing mass M reaches δ_c = 1.686
- f(M): number density of haloes $\int Mf(M)dM = \rho_0$
- fraction of the mass in unit range in In (M) :

$$M^2 f(M) / \rho_0 = \sqrt{\frac{2}{\pi}} \nu \exp\left(-\frac{\nu^2}{2}\right)$$

- $v = \delta_c / \sigma_m$
- max at $v = 1 = M^*$ haloes

$$b(v) = 1 - \frac{d\ln f}{d\delta_c} = 1 + \frac{v^2 - 1}{\delta_c}$$

high-peak bias

- $b > 1 \Rightarrow v = \delta_c / \sigma_m > 1 \Rightarrow \sigma_m < 1$ => massive haloes (M > M*) apply for clusters, not for galaxies
- galaxies with $\delta \gg \delta_c$ (and then v > 1) are formed first at high z galaxies are biased
- Then (if $\Omega_{\rm m}$ = 1) galaxies form for all δ > $\delta_{\rm c}$ and the bias vanishes
- However, at lower z $\Omega_{\rm m}$ < 1 and galaxy stop forming and the bias remains
- if galaxy formed at z_f bias relative to matter reduces : $b(v) = 1 + \frac{D(z_f)}{D(z)} \times \frac{v^2 - 1}{\delta}$