Large scale structure to measure Primordial non Gaussianity

• Part I

Primordial non Gaussianity (PNG) Bias

• Part II

scale dependent bias and PNG

- T. Giannantonio and W. Percival, 1312.5154
- N. Dalal et al., 0710.4560
- J.A. Peacock astro-ph/0309240 (section 6)
- T. Padmanabhan, structure formation in the universe,
- T. Giannantonio, C. Porciani et al. 2011

Jean-Marc Le Goff

cosmo-club, may 2014

part I summary

Primordial Non Gaussianity

• Is the pdf Gaussian for potential or density fluctuation at early time ?

- Studying PNG in the CMB or in LSS (large scale structures) -> test of early universe
- local non Gaussianity

$$\Phi(x) = \phi(x) + f_{NL} \left[\phi^2(x) - \langle \phi^2 \rangle \right]$$

• Planck f_{NL} = 2.7+- 5.8

effect of non zero f_{NL}

PNG and n-point statistics

- for a Gaussian field : (2n-1)point ξ are zero
- spectrum corresponds to 2 pt ξ bi-spectrum corresponds to 3 pt ξ
- non-zero bi-spectrum => PNG

what is bias ?

- We measure tracers (X) of matter in Fourier space bias b(k): $\delta_X(k) = b(k) \delta(k)$ $P_X(k) = b^2(k) P(k)$
- on large scale b is a priori expected to be independent of k
- bias is local if $\delta_X(x_0)$ depends only on $\delta(x_0)$ non-local \Leftrightarrow scale dependent
- high density regions more correlated than the average

cluster and galaxy bias

- Press-Schechter: DM halo of mass M : $b(v) = 1 + \frac{1}{2}$ $\delta_c = 1.686$ and v(M) increases with M
 - $M^* = 3 \ 10^{12} \ h^{-1} \ M_{\odot}$ such that $v(M^*) = 1$
- Haloes more massive than M* have b > 1
 -> b > 1 for clusters
- Galaxies first produced in massive haloes, then $\Omega_m < 1$ and they are not produced in lower mass haloes -> galaxy can also have b > 1

Scale dependent bias and PNG

N. Dalal et al., 0710.4560

effect of local PNG on bias

$$\Phi(x) = \phi(x) + f_{NL} \left[\phi^2(x) - \langle \phi^2 \rangle \right]$$
$$\nabla^2 \Phi_{NG} = \nabla^2 \phi + 2 f_{NL} \left[\phi \nabla^2 \phi + |\nabla \phi|^2 \right]$$

- assuming near a peak and using Poisson equation $\delta_{NG} = \delta \left[1 + 2 f_{NI} \phi \right]$
- => additional bias : $\Delta b(k) \sim (b-1) f_{NI} / k^2$
- confirmed by simulations

degeneracies ?

non linear effects -> k-dependent bias at high k

constraints on $f_{\rm NL}$

- -> Δ f_{_{\rm NL}} ~ 10
- cross-correlation between CMB T and LSS due to ISW combined ISW analyses (2008) should give Δ $f_{\rm NL}$ ~ 60

Dalal et al. 2008

shape of PNG -> Galaxy bias

- Local: Δb ≈ 1/k² as k-> 0
- Orthogonal $(B_{ort}=-2B_{fol}+B_{eq}): \Delta b \approx 1/k$
- Equilateral: Δb ≈ constant

Desjacques, Jeong & Schmidt 2011a,b

Scoccimarro et al. 2011

Schmidt & Kamionkowski 2010

```
Wagner et al. 2010
```

Euclid forecast

• This is only 2-pt statistics! (no bispectrum)

Probe	∆f _{nL} local		∆f _{NL} orthogonal		∆f _{NL} equilateral	
	EUCLID +	Planck	EUCLID +	Planck	EUCLID +	Planck
Weak lensing	73	27	9.6	3.5	34	13
2D clustering	5.8	5.5	38	9.6	140	37
3D clustering	4.1	4.0	54	11	220	35
Lensing + clustering	4.7	4.5	4.0	2.2	16	7.5

- clustering is efficient mainly for local case
- weak lensing?
- also $\Delta n_{fnl} = 0.12$

Giannantonio, Porciani et al. 2011

using correlation between CMB lensing and LSS

T. Giannantonio and W. Percival, 1312.5154

using correlation between CMB lensing and LSS

- scale dependent galaxy bias <> PNG
- observational systematics for P(k) on large scale
- using cross-correlation reduces systematics correlate galaxy with CMB T (ISW)

Giannantonio and Percival :

correlate galaxy with matter power from CMB lensing

effect of PNG on C_1

For NVSS survey (1.4 GHz) + Planck

uncertainty:
 cosmic variance
 + shot noise
 + intrinsic lensing noise

PNG:

- no effect on TT and $\varphi\varphi$
- more effect on GG

constraining power on \boldsymbol{f}_{NL}

S/N of the difference between Gaussian and NG model

- per multipole
- cumulative S/N ____
- cumulative S/N
 starting I = 10 ----
- with all modes ϕG nearly as good as TG
- Not too much affected by removing low I modes

results

• Planck + WMAP

		Data: Planck TT, WP, and	Priors	$f_{ m NL}$ (68%)
•	Planck lensing map I < 10 removed	GG TG φG Mock all- $l \varphi G$	$egin{aligned} b_0^i, \kappa_i\ b_0^i, \kappa_i\ b_0^i, \kappa_i\ b_0^i, \kappa_i\ b_0^i, \kappa_i \end{aligned}$	$12 \pm 23 \\ 46 \pm 68 \\ 12 \pm 71 \\ \pm 53$
•	I < 10 seen on mocks	$GG \ GG + TG \ GG + arphi G \ GG + arphi G$	none none none	$egin{array}{c} 15 \pm 29 \ 14 \pm 25 \ 11 \pm 23 \end{array}$
		$GG + \varphi G + TG$,	none	12 ± 21
		Mock all- $l, GG + \varphi G + TG$	none	± 19
		as above, no intrinsic noise	none	± 14

Conclusions

- PNG probe the early Universe
- PNG result in a scale dependent bias of LSS
 1/k² for local PNG -> large scale
- using only 2-pt statistics of LSS provides good constraints on PNG
- cross correlation with CMB T add information and less sensitive to systematics
- cross correlation with CMB lensing can also be used