

Lundi 26/01/2015, 11h00

CEA-Saclay Bat 774, amphi Claude Bloch, Orme des Merisiers

A complete demonstrator of a muon cooled Higgs factory

Carlo Rubbia

GSSI, L'Aquila, Italy - Institute for Advanced Sustainability Studies Potsdam, Germany

In analogy with the discovery of the W and Z with hadrons and the subsequent study of the Z resonance in the pure s-state with LEP, the recent discovery of the Higgs particle of 125 GeV has revised the interest in the so-called second generation Higgs factory. However the direct production of the H^0 scalar resonance in the s-state has a remarkably small narrow width, since $\Delta E/E \leq 4 \text{ MeV}/125 \text{ GeV} = 3.2 \times 10^{-5}$. We describe here a $\mu^+\mu^-$ collider at a modest energy of 62.5 GeV and the adequate cooled muon intensity of about 6×10^{12} muons of each sign, a repetition rate of 15 - 50 p/s and $L \approx 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, corresponding to about 10 000 H^0 for each detector \times year. Its partial widths can be studied with remarkable accuracies. With the help of the decay frequency of the polarized $\mu \to e\nu\nu$ decay electrons, H^0 mass itself can also be measured to about $\pm 100 \text{ keV}$, i.e. $\Delta m/m \approx 10^{-6}$.

The next modest step, prior to but adequate for the subsequent H^0 physics programme, could be the practical realization of an appropriate *muon cooling demonstrator*. Starting from a conventional pion beam, the required longitudinal and transverse emittances are achieved with a cascade of two unconventional but very small muon rings of few meters radius. Low momentum muons of about 250MeV/c, initially with $\Delta p/p \approx 0.1$ are cooled in first ring, extracted and ionization cooled to about 70 MeV/c and cooled ultimately in a second small ring up to a longitudinal momentum spread of 0.7 MeV/c r.m.s. The operation of the demonstrators may be initially explored and fully demonstrated with the help of a modest muon beam already available in a number of different accelerators.

The additional but relatively conventional components necessary to realize the facility with the appropriate muon current and luminosity should then be constructed only after this *initial cooling experiment* has been successfully demonstrated. The ultimate $\mu^+\mu^-$ -collider for a Higgs Factory may be situated within the CERN site or elsewhere.

Le café sera servi 10 minutes avant.