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Baryon Acoustic Oscillations=BAO

Acoustic oscillations in pre-recombination
universe imprinted on

CMB anisotropies

& Large-Scale Structure
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BAO Peak in galaxy correlation function
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Acoustic waves < ~perfect fluids

“perfect fluid": mean-free-path of particles much less than spatial
extent of perturbation.

Early universe:

WIMPS: A > ¢/H(z) =no waves
photon-electron-proton plasma: A,g < ¢/H(z)
electron-photon (Compton) scattering + electron-proton

(Coulomb) scattering.

= plasma supports acoustic waves until recombination.

. ( dP) c?
CS fry _ ~N —
dp adiabatic 3

(since p is dominated by photons with P = p/3.)
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A Universe with one perturbation
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Wave stops at recombination
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Today: Enhanced correlation

- Oat r = 147.5Mpc
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Temperature correlation function
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Large correlations for 6 < 2ry/D(zec)
Small (primordial) correlations for 6 > 2r,/D(zec)
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Planck CMB anistropy spectrum
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CMB anistropy spectrum =-flat-ACDM parameters
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First peak (¢; ~ 200 ~ D(z = 1060)/ry:

z dz
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(~ 10% of integral in Hy dominated region)
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Guesstimate of the sound horizon, ry

cs ~c/V/3  (relativistic plasma: ¢2 = p/p ~ 1/3)
Age of universe at recombination ~ 380000yr

= ry ~ 3.8 x 10°ly//3 (at recombination, z ~ 1060)
~ 100kpc (at recombination, z ~ 1060))

~ 100Mpc (today)
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Calculation of the sound horizon

Same as “particle horizon” except ¢s < ¢
cs = (c/V3)f(ps/p,) (baryon inertia slows sound)

cS dz / /
ry =
T 8w G WM+m+m

We normalized to the present photon density

/ cs(pB/py)dz
87TGP7 (1+2)2/pm/py + 1+ pu/py

COBE gives us p,(0) and the CMB spectrum shape (Planck) gives us
the density ratios pm/py, PB/ Py Pu /P
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ry from COBE-Planck

Imposing three neutrino families (p, = 0.23N,p.) gives
rg = (147.5 £ 0.6)Mpc
Fitting the CMB spectrum for N, gives N, = 3.36 0.7 and

re = (143.4 £ 3.1)Mpc
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ACDM Cosmological Parameters

Hy: present expansion rate

Major components: Qp, Oy, Qe =1—Qu — Q0 ~0
Minor Components: Qp (= Qu — Qepm), 2,0, 2,

(Q's are present densities in units of p. = 3H3/87G)
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ACDM Cosmological Parameters

Hy: present expansion rate

Major components: Qp, Oy, Qe =1—Qu — Q0 ~0
Minor Components: Qp (= Qy — Qepm), €2, €2,

(Q's are present densities in units of p. = 3H3/87G)

CMB temperature (COBE) determines Q. HZ:
py(z = 0) ~ (kT)*/(hc) = Q,H;(3/87G)
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ACDM Cosmological Parameters

Hy: present expansion rate

Major components: Qp, Oy, Qe =1—Qu — Q0 ~0
Minor Components: Qp (= Qy — Qepm), €2, €2,

(Q's are present densities in units of p. = 3H3/87G)

CMB temperature (COBE) determines Q. HZ:
py(z =0) ~ (kT)*/(hc) = Q,H;(3/87G)

CMB anisotropy spectrum shape determines pni/py, pB/py
= COBE + Planck determines Qi HZ, QpHZ , ra(QuHZ, QpH3)
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ACDM Cosmological Parameters

Hy: present expansion rate

Major components: Qp, Oy, Qe =1—Qu — Q0 ~0
Minor Components: Qp (= Qy — Qepm), €2, €2,

(Q's are present densities in units of p. = 3H3/87G)

CMB temperature (COBE) determines Q. HZ:
py(z =0) ~ (kT)*/(hc) = Q,H;(3/87G)

CMB anisotropy spectrum shape determines pni/py. pB/p-
= COBE + Planck determines Qi HZ, QpHZ , ra(QuHZ, QpH3)

For flat ACDM (Q =1 — Qy), only Hj is still undetermined.
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CMB anistropy spectrum
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(~ 10% of integral in Hy dominated region)
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Flat ACDM: CMB is enough

Planck 2015 (arXiv:1502.01589) (TT + LowP
@ Hy=67.31+0.96
e (O =0.315+£0.013
@ Opn=1—-Qy =0.685+0.013
e Qph? = 0.02222 4 0.00023

plus

e A, =(21.95+0.79) x 101©
Amplitude of primordial scalar perturbations

e ny = 0.9655 + 0.0062
spectral index for scalar perturbations

e 7=0.078 £0.019
optical depth to last-scattering surface (reionization)
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Non-flat ACDM: CMB not enough
D(HZ, QmHg) — Da(HZ,uHZ, QuHZ) or Da(Ho, i, Q)
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Three models that give the same Da(z = 1060)/ry

(Quh?, Qph?)
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Three models that give the same Da(z = 1060)/ry

80 (0.52,0.05) (Quh?, Qph?)
ol \ — (0.142,0.022)
= (h, Q) =(0.67,0.0) ) — 14736 Mpc
< B —
G (h, Q) = (0.67,0.0)
= or - (h, Q%) = (0.52,—-0.05)
0 1 |
-2 -1 0 1 ) 3

Jim Rich (IRFU) Cosmological Parameters from CMB February 2015 18 / 47



Three models that give the same Da(z = 1060)/ry
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BAO at z = 0.57 picks flatness
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Extensions of flat ACDM that modify
distance-redshift relation

Examples of extensions:
e curvature (Qp + Qy # 0)
@ neutrino mass (relativistic—non-relativistic after recombination.)
e w # —1 (w = dark energy presure/density)
@ (wp, w,) (evolving w(a) = wo + (1 — a)w,)
Constraints requires CMB + something else
e.g. BAO, local Hy meansurement, SNla hubble diagram
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Planck + BAO + SNla: constraints on (wp, w;)
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Structure formation

To understand the shape of the CMB spectrum we need to know a
little bit about structure formation.

Here's how it's done:
e Expand p(7, t) in modes with comoving wavelengths

@ Choose randomly conditions at Hubble entry for each mode
amplitude
@ Develop amplitude for each mode in time following ordinary
differential equation (until non-linearities set in).
This is basically enough for CMB spectrum. To make structures like
those observed (galaxies, clusters...), N-body techniques are generally
used.
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The modes for density and peculiar velocity fields

For each component i (CDM, baryons, photons, neutrinos....)

pilrt) = pi(t) |1+ )6 p(t)e’” U(r) = | 3V (0T
Ps -

k

d; z(t) coupled to v.(r,'t) via continuity equation: § o V - v

Jim Rich (IRFU) Cosmological Parameters from CMB February 2015 24 / 47



The modes for density and peculiar velocity fields

For each component i (CDM, baryons, photons, neutrinos....)
pirt) = pi(t) |1+ Za,k i G(rt) = | Y va(t)e*”
8, 2(t) coupled to ¥(r,t) via continuity equation: § o V - v

A useful quantity is the “gravitational potential” related to the
density perturbations §; (t) by the relativistic Poisson equation:

>r¢
=t

Vz(ﬁ,}* X G(SE

Z%
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Co-moving modes are most useful

Unlike the usual relation, Ay = 27/k, in cosmology is is most useful
to have modes with wavelengths that expand with the universe:

Ae(t) = 27”%)
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Co-moving modes are most useful

Unlike the usual relation, Ay = 27/k, in cosmology is is most useful
to have modes with wavelengths that expand with the universe:
27 a(t)
M(t) = ———
k( ) k do

Since the Hubble radius, ¢/H, increases like a° in the radiation epoch
and like a*? during the matter epoch, each mode starts with a
wavelength “outside” the Hubble radius and then “enters” the
Hubble radius.
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Modes leave and then enter the Hubble radius

log(length)

J

k;‘a(t)
Aexit ‘ Aexit 4 Aenter | eq Aenter a5
(kb) (ka) inﬂa(tiion (ka) (kb)
en

Jim Rich (IRFU) Cosmological Parameters from CMB February 2015

26 / 47



Nearly scale-invariant Gaussian initial conditions

In the standard model, the potential fluctuations ¢ (tenser) are
Gaussian random varibles centered on zero. For scale-invariant
spectra the width of the distribution is k-independent. The observed

fluctuations have
(02 (tenter))™ /> ~ 1072
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Nearly scale-invariant Gaussian initial conditions

In the standard model, the potential fluctuations ¢ (tenser) are
Gaussian random varibles centered on zero. For scale-invariant
spectra the width of the distribution is k-independent. The observed
fluctuations have

<¢%(tenter)>l/2 ~ 1075

Each mode “remembers” its amplitude when it left the Hubble radius
during inflation. The k-independence is therefore due to the
t-independence of H during inflation.
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Nearly scale-invariant Gaussian initial conditions

In the standard model, the potential fluctuations ¢ (tenser) are
Gaussian random varibles centered on zero. For scale-invariant
spectra the width of the distribution is k-independent. The observed
fluctuations have

<¢%(tenter)>l/2 ~ 1075

Each mode “remembers” its amplitude when it left the Hubble radius
during inflation. The k-independence is therefore due to the
t-independence of H during inflation.

The factor 10~° is present in a multitude of characteristics of our
universe, most notably CMB temperature fluctuations,

AT/T ~ 107° and the velocity dispersion of the largest galaxy
clusters, (v?)/c? ~ 107°. In inflationary models, these
cosmology-size features were thus determined by the amplitude of the
quantum fluctuations of the inflation field.
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Adiabatic initial conditions

All species have the same initial fluctuations:

5CDM,E(te”ter) = 5baryons,;(te"fe’) - 57,E(te”ter) = 5V,E(teﬂf6f)

Predicted by the simplest inflationary models.
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Time development of mode amplitudes
Matter epoch:

o density fluctuations grow: d; o< a(t)

e potential fluctations constant: ¢z ~ GAM/X ~ GozpA3 /A
This is why galaxy clusters “remember” the primordial
potential fluctuations
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Time development of mode amplitudes

Matter epoch:
o density fluctuations grow: d; o< a(t)
e potential fluctations constant: ¢z ~ GAM/X ~ GozpA3 /A
This is why galaxy clusters “remember” the primordial
potential fluctuations
Radiation epoch:
@ density fluctuations growth is inhibited
baryon-photon plasma oscillates
neutrinos free-stream
growth of CDM fluctuations inhibited because gravity
dominated by non-growing components (photons,neutrinos)
@ potential fluctuations decay
[ronically, this drives the baryon-photon oscillations,
increasing temperature fluctuations.
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d(t) for long and short wavelenths
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Resulting power spectrum
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CMB spectrum has all modes

10F E
radiation
- driving ]
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Three angular scales: (oq, {4, ¢p [Hu et al, (2001) ApJ 549,669]
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Large ¢ = modes that oscillated

modes that oscillated
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Baryon oscillations in CDM wells (t < tec)

plasma excess

P
w plasma falls into well
then
W pressure stops fall
then
A\ A

O O rebounds
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Modes at extrema at recombination

modes at max compression
at recombination

radiation
driving

[ transfer function
| X baryon = modulation
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Modes at extrema at recombination

modes at min compression
at recomblnatllon
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[ transfer function
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Doppler effect suppresed by baryon mass

modes at max velocity
at recombination

radiation
driving

[ transfer function
| X baryon = modulation
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Low-¢ modes = primordial spectrum

outside Hubble
< \ radius at rec.

radiation
driving

[ transfer function
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High-/ modes damped by photon diffusion

Silk damped H

radiation
driving

[ transfer function
| X baryon = modulation

0.1
F lg, 1
L q A
T 2PN 2N
10 100 1000
[

February 2015 39 / 47



Large ¢ = Potential decay = radiation driving

‘ modes that oscillated

radiation
driving

o
RE E
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~ [ transfer function

[ X baryon = modulation
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= amplitude of first peak increases with {4/l
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Ua/leq depends on €,/

DA(Zrec) EA ~ DA(Zrec) -~ DA(Zrec)

(14 zeq)c/H(zeq) rq (1+ zec)c/H(Zec)

leg ~

(1 + zeq)c/H(zeq) is the wavelength that just fits inside the Hubble
radius at the epoch of matter-radiation equality (z.,). Wavelengths
longer than this never oscillated.

Qum

H?(z) ~ H3[Qum(1+2)* + 1668, (1 + 2)*] = 1t zeg=——r
1.6692,
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Ua/leq depends on €,/

DA(Zrec) EA ~ DA(Zrec) -~ DA(Zrec)

(14 zeq)c/H(zeq) rq (1+ zec)c/H(Zec)

leg ~

(1 + zeq)c/H(zeq) is the wavelength that just fits inside the Hubble
radius at the epoch of matter-radiation equality (z.,). Wavelengths
longer than this never oscillated.

Q
H2(z) ~ H2[Q(1+ 2)° +1.669Q, (1 + 2)*] =14 zeg= —
1.66%2,
1.668.,\ /2
EA/éeq X 1 + Zrec —
v 20y
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Ua/leq depends on €,/

DA(Zrec) EA ~ DA(Zrec) -~ DA(Zrec)

(1 + Zeg)c/H(Zeq) rd (1 + Zrec)c/H(zrec)

(1 + zeq)c/H(zeq) is the wavelength that just fits inside the Hubble
radius at the epoch of matter-radiation equality (z.,). Wavelengths
longer than this never oscillated.

leg ~

Q
H(2) ~ H3Iu(1+2)° + 1662, (142)"] = 142 = 1oor
: Y
166\ ¥/
EA/éeq X V1 + Zec —7
200

Increasing €2, /€2y increases radiation driving

which increases peak heights
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CMB spectrum shape determines Qyh° and Qph?

Peak heights determine £4/leq ~ 1/, /. Knowing Q. h? from
COBE temperature measurement, we can then determine Qyh? to
1.4% precision:

Qumh? = 0.1426 £ 0.0020  Planck arXiv1502.01589

The photon-baryon ratio (2,h?/Q2gh?) determines the relative
amplitudes of odd (compression) peaks and even (rarefaction) peaks,
as well as the high-¢ damping. This give 1% precision on Qgh?:

Qph® = 0.02222 £ 0.00023  Planck arXiv1502.01589
Note: primordial spectral index also affects relative peak heights:

ny = 0.9655 + 0.0062 (AT)? oc 7t
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