The MIMOTERA: a monolithic pixel detector for real-time beam imaging and profilometry [U.S. patent no. 7,582,875]

INTERREG

Featuring:

- Designers:
 - ►G. Deptuch [FERMIIab]
 - ►W. Dulinski [IRES-Strasbourg]
- DAQ:
 - A. Czermak [INP-KraKow]
 - I. Defilippis [SUPSI-Lugano]
- SLIMmers:
 - ➤ L. Badano & O. Ferrando [now @ELETTRA]
 - M. Pezzetta [now @CNAO]

Massimo Caccia, P.I.

Universita' dell'Insubria [UINS] Como (Italy)

&

INFN- Sezione di Milano

CEA, Saclay, July 03, 2015

Exploitation team:

- >A. Bulgheroni [UINS/JRC Ispra]
- ➤ C. Cappellini [UINS]
- ► L. Negrini [UINS]
- ► M. Maspero[UINS]
- ➤ F. Toglia [UINS]
- ► F. Risigo [UINS]
- ➤ M. Jastrzab[AGH-Krakow]
- ► R. Santoro [UINS]

Staff at HIT & CERN-AD

➤ M. Holzscheiter

[MPI-Heidelberg & UNM Albuquerque, US] → R. Boll [Heidelberg University]

Staff at LARN-Namur:

A. C. Heuskin [LARN]
A.C. Wera [LARN]
S. Lucas [LARN]

reset A integr A/read B reset B integr_B/read_A

four sub-arrays of 28×112 pixels read

array 112×112 square pixels,

chip size: 17350×19607µm²

- - out in parallel t_{read/integr}<100µs

no dead time

(i.e. 10 000 frames/second)

AMS CUA 0.6 µm CMOS 15 µm epi,

Backthinned to the epi-layer (~ 15 µm), back illuminated through an ~80 nm entrance window

the MIMOTERA: a monolithic pixel detector for real-time beam imaging and profilometry

Essentials on the MIMOTERA [continued]:

- pixel $153 \times 153 \,\mu\text{m}^2$ square pixels,
- two 9 × 9 interdigited arrays (A and B) of nwell/p-epi collecting diodes $(5 \times 5 \mu m^2)$ + two independent electronics – avoiding dead area,
- In-pixel storage capacitors choice ~0.5 pF or \sim 5 pF to cope with signal range (poly1 over tox capacitors), common vdd

for

- ▶ Charge To Voltage Factor = \sim 250nV/e⁻ @ 500fF \Rightarrow well capacity of \sim 36 MeV ▶ Noise ~1000 e⁻ Å 280 e⁻ kTC (ENC) @ 500fF
- 4 -ayout of one pixe 44H# 153 μm

ABLOTT

9

Original push for the MIMOTERA development: minimally invasive real-time profilometry of hadrontherapy beams by secondary electron imaging [IEEE Trans.Nucl.Sci. 51, 133 (2004) and 52, 830 (2005))]

The SLIM installed on an extraction line at the Ispra JRC-Cyclotron (p, 2H, 4H at energies 8-38 MeV, 100 nA- 100uA) Secondary electrons emitted by a proton beam through a multi-pin hole collimator (\emptyset = 1mm, pitch = 1.5-6.5 mm)

Complemented by results on beam imaging by DIRECT IMPACT on the sensor

A closer look at the FOCUSING SYSTEM:

Demagnifying factor ~ 5

Secondary emission electrons drifted and focalized through a 20 kV field

detector

source points

The integrated system at CERN

A detail of the focalization system

Preliminary tests of the Focalization System using thermo-ionic emission by a hot tungsten wire:

The SLIM installed on an extraction line at the Ispra JRC-Cyclotron (p, 2H, 4H at energies 8-38 MeV, 100 nA- 100uA)

First images of a beam, imaging the focalized Secondary Electrons by a Multichannel-plate+Phosphor screen+CCD camera system

1. Assisting the AD-4 [ACE] collaboration

[ACE, http://www.phys.au.dk/~hknudsen/introduction.html]

"Cancer therapy is about collateral damage" ⇒ compared to a proton beam, an antiproton beam causes four times less cell death in the healthy tissue for the same amount of cell deactivation in the cancer.

[courtesy of ACE]

Michael Holzscheiter, ACE spokesperson (left), retrieves an experimental sample after irradiation with antiprotons, while Niels Bassler (centre) and Helge Knudsen from the University of Aarhus look on [courtesy of ACE] Shot-by-shot beam recording at the CERN anti-proton decelerator tests

beam characteristics:

- -120 MeV energy
- 3x10⁷ particles/spill
- 1 spill every 90"
- FWHM \sim 8 mm
- ✤ acquisition modality:
 - triggered
- imaging modality:
 - differential
- radiation damage:
- irrelevant so far [max no. of spills on a detector: 1436]

data taking runs:

- September 2009
- June 2010
- October 2010
- June 2011, fall 2012, Dec. 2014

Single shot picture

A nice image from the December 2014 vintage

Profiling the beam

[PRELIMINARY RESULTS:

- FWHM calculation checked,
- errors on the GAF still being evaluated]

With the MIMO, overlaying the 120 events in run #37 events to mimic the Gaf

With a GafChromic Film, integrating the spills over a full run ...and PROJECTING

*The PTW UNIDOS is a high performance secondary standard and reference class dosemeter / electrometer

2. HIT [Heidelberg Ion-Beam Therapy Center]: Quality control of pencil Carbon Ions & proton beams http://www.klinikum.uni-heidelberg.de/index.php?id=113005&L=en

(フ
Ω	
	3
_	\leq
	5
Ō	5
1,	
Ť	\geq
	_
	5
7	ř
ц,	\leq
(1
	2

Properties	Protons	Carbon Ions
X _{min}		
X _{max}		
E _{min} [MeV/u]	48.12	88.83
E _{max} [MeV/u]	221.06	430.1
Energy steps	255 steps, 1mm in depth each	
FWHM _{min} [mm]	8.1-12.6*	3.4-9.8*
FWHM _{max} : [mm]	32.4-32.7*	9.8 – 13.4*
Focus steps	4 steps	
I _{min} [s ⁻¹]	2.0x10 ⁸	5.0x10 ⁶
I _{max} [s ⁻¹]	3.2x10 ⁹	8.0x10 ⁷
Intensity steps	8 steps	

Interested in high granularity (in time & space) and linearity against the deposited energy

The beam parameters

* small values for high energies

Data taking conditions & qualitative information

beam time characteristics:

- duty cycle 50%
- spill duration 5 s
- FWHM ~f(particle, intensity, energy)
- acquisition modality:
 - free run
- imaging modality:

$å[Signal - Pedestal], i \hat{I} ROI$

\ast radiation damage:

- relevant but not dramatic [Total exposure time so far ~ 3h; about 1'-2' per run at a specified nrj, intensity]

data taking runs:

- May 2010
- October 2010

Time development of the beam $I = 7x10^7$ particles/s, C ions

3. Imaging the LARN Tandem beams at Namur (B)

*Laboratoire d'Analyses par Réactions Nucléaires

Main interests:

- The MIMO as a real-time, high granularity "digital" alumina screen, to optimize the set-up

- QC of the beam in terms of homogeneity

- quick measurement of the absolute intensity (particle counting!)

Data taking conditions & qualitative information

matrixB

100

beam time characteristics:

- continuous beams!
- any ion (!) with an energy in MeV/amu range
- intensities : [10³;10⁸] p/cm²/s range

acquisition modality:

- free run; MIMOin vacuum

radiation damage:

- may really be dramatic! [Total exposure time so far ~ 60h; p, He, C ion beams]

imaging modality:

- standard: signal pede
- differential: $\Delta(i,j,n) = \text{signal } (i,j,n) \text{signal} (i,j,n-1)$
- based on $< \Delta^2(i,j,N) >$
- digital with a pixel dependent threshold

data taking runs:

- July 2008, April 2009 + series of short runs since April 2010 performed by the people at LARN

- June 2011 [new DAQ commissioning] + February 2012 [full system qualification]

350

Four runs:

- July 2008: proof of principle
- April 2009: improved set-up + extensive data set
 June 2011: commissioning new Data Acquisition System/extensive tests on different imaging modalities
 - February 2012: full system commissioning and qualification
- The MIMOTERA run in vacuum *
- * Real-time data handling (e.g. sum of a user specified number of frames) implemented
- Robust algorithms against radiation related effects tested *
- * exhaustive data set recorded:
 - Scan over 3 orders of magnitude in intensity (p, I = $[10^4 \div 10^7]$ p/cm²/s, 1.2 V MeV & 3 MeV energy)
 - Energy scan with protons (3.5 to 1 MeV) V
 - Tested with C ions (Z = +3, 10⁶ particles/cm²/s, 7 MeV) V
 - Tested with different readout frequencies (2.5 to 20 MHz) V

Real-time profiling (2009 run)

Bottom: image of a tilted beam, obtained overlapping a user defined number of frames

Costruction of a flat beam image overlapping different number of

frames

Real-time profiling (2011 run)

Two images of a proton beam showing the footprint of a fiber (right) and the fiber + the LARN reference detector in the beam area (bottom)

Exemplary Linearity plots, up to 8.8 x 10⁶ particles/cm²/s [limited by the reference instrument in use at Namur]

- protons, 1.2 MeV energy;
- MIMO clocked at 2.5 MHz
- differential mode

Y axis: MIMO response; X axis: LARN reference instrument. The observable corresponds to the mean number of pixels NOT fired in a user specified region of interest in the beam core
 clocking at 25 MHz, we can use the MIMO in counting mode till ~ 10⁸ particles/cm²/s

4. The MIMITO: a thin MIMOTERA for the AEGIS experiment (2015)

... and the real thing

The design...

- cabled, tested on a table, across the same "patching" way
- mounted in the SUN, in the control room, tested
- SUN mounted in AEGIS, tested
- D NEXT:
 - have the MIMO on the net, address & readout remotely
 - include the MIMO in the AEGIS DAQ (F. Prelz, INFN-Mi, code ready and tested)
 - wait for the early July beam and commission it!