Superconducting Magnet Activities at MIT Francis Bitter Magnet Laboratory: Current — Next — Future

Yukikazu Iwasa

Francis Bitter Magnet Laboratory, Plasma Science & Fusion Center MIT, Cambridge, MA 02139-4208

CEA. Saclay

June 23, 2015

Contributors

Juan Bascñàn; Seungyong Hahn (*now* FSU/NHMFL); John Voccio; Jiayin Ling; Youngjae Kim (*now* NHMFL); Jungbin Song (*back to* Korea U); Thibault Lècrevisse (*back to* CEA); Daisuke Miyage (*back to* Tohoku University); Minchul Ahn (*from* Kunsan U); Mingzhi Guan (*from* CAS, Lanzhou); Timing Qu (*from* Tsingua U)

Y lwasa (MIT) lwasa@jokaku.mit.edu

Outline

Current

- 1.3 GHz LTS (500)/HTS(800) NMR magnet
- MgB2 magnet operated in temperatures up to 20 K
- 7-T MW (multi-width)-NI (no-insulation) GdBCO magnet

Next (July 2015)

• LHe-free persistent-mode GdBCO coils

Pending (After April 2016)

• A tabletop LHe-free persistent-mode MgB2 magnet for osteoporosis MRI

Epic Winter of 2015—Boston & Suburbs, Weston

Over 2-m snow (> twice one year's) in ~4 weeks

Y lwasa (MIT) lwasa@jokaku.mit.edu

A Brief History of MIT 1.3G (1.3-GHz LTS/HTS NMR Magnet)

- **1999** A 3-phase program to NIH for a 1G LTS/HTS NMR magnet Phase 1 Review score: 3.0 percentile
- 2000 Phase 1: 300MHz LTS/50MHz HTS magnet
- **2002** Phase 1 completed
 - To NIH for Phase 2: 600-MHz LTS/100-MHz HTS magnet
 - Review score: 20 percentile; Funded because at that time NIH had money & NIH program manager very much liked the project
- **2007** Phase 2 completed
 - 1G upgraded to 1.3G; Phase 3 split into 3A and 3B (NIH manager)
 - Phase 3A: 500MHz LTS (L500)/600-MHz HTS (H600) magnet
 - Phase 3B: 700MHz LTS (L700)/H600 magnet; L700~\$5M-6M
 - 3A review: 11 percentile > 16 percentile pay line
- **2008** 3A begins on 6/1/08 with End Date of 5/31/12

A Brief History of MIT 1.3G

- **2011** H600, ~complete, stolen during Christmas—New Year vacation
- 2012 NIH extends Phase 3A End Date to 5/31/15
 Project receives ~\$0.9M from MIT & ~\$0.4M from NIH, not enough
 - Entire 2012 to come up with an L500/800-MHz HTS (H800) magnet L500: available at FBML; L700 not required, saving NIH ~\$5M-6M H800, all-GdBCO No-Insulation DP coils: a high-risk, big-pay insert; NIH likes it because H800 → >1.3G NMR magnets
- **2014** Applied for Phase 3B, before 3A End Date (5/31/15)
 - Review score: 45 percentile; *zero* funding chance *1st setback* One reviewer very angry: Coil 2 of H800 won't be finished by 5/15
 Recommended to split Phase 3B to Phase 3B1 and Phase 3B2, and complete H800 in Phase 3B1
 3 other principal reviewers happy with our Phase 3B application,

except one also not too happy with our slow progress

A Brief History of MIT 1.3G

- 2015 Submitted (March) Phase 3B1 application to complete H800
 - Completely new review panel assigned, a very unusual practice
 - Last week received review result: 31 percentile,

2nd, could be a fatal, setback to the 1.3 program

- PSFC Director not ready to give up
- 1.3G users (MIT & Harvard Medical School) not ready to give up
- NIH program manager not ready to terminate the project
- Next move: after a 10-page review report by NIH in mid July

Noteworthy Features of 1.3G

- H800 field contribution: >61%
- NI winding technique for 3 H800 coils
- Inside-notch double-pancake coils **7** field homogeneity of a "short" magnet
- Persistent-mode HTS shims: Z1, Z2, X, (Y)
- SCF shaking magnet
- LHe re-condensation

H800

$$[T_{op} = 4.2 \text{ K}; I_{op} = 251 \text{ A}]$$

- 3-nested-coil formation
- Each coil an assembly of NI DP coils, wound with SuperPower GdBCO tape, 6-mm wide, 75-µm thick (10-µm thick copper) overall

Coil 1: 26 DP (6 inside-notch); 369 MHz (8.66 T); 90-mm bore

Coil 2: 32 DP (8 inside-notch); 242 MHz (5.68 T) _

Coil 3: 36 DP (8 inside-notch); 189 MHz (4.44 T); 216 mm o.d. (including 3-mm build overband) -L500 cold bore: 237 mm

- Total hoop strains [%]: 0.47; 0.39; 0.35
- H800 contribution: 61.5% of 30.5 T

Coil 1 successfully generated 8.66 T

Protection of H800

- H800 itself, self-protecting
- With L500 quenching, H800 overheating depends on L500 decay time

Design Options for Efficient (High-Performance) Magnet

Why fusion magnets "cryostable," i.e., $A_{cl} \neq 0$?

Huge mechanical reinforcement within the winding, $A_S >> A_{cl}$: A_{cl} little impact on λJ , i.e., a negligible sacrifice on magnet efficiency Let's guarantee *stability* by making the winding *cryostable*, i.e., $A_{cl} \neq 0$

For "small" magnets like NMR, MRI, HEP, $A_{cl} = 0$ enhances λJ enough to permit "reduced" stability

2. Adiabatic-NI (No-Insulation) — Applied to DP Coils of HTS Tape

$$\frac{I_{op}}{A_{wd}} = \frac{I_{op}}{A_{cd} + A_S + \cancel{M}_{in} + \cancel{M}_{il}}$$

Y lwasa (MIT) lwasa@jokaku.mit.edu

Design Options for Efficient (High-Performance) Magnet

3. Adiabatic-NI-MW (Multi-Width)*

MW Winding Formation

- Akin to conductor-grading used in LTS nested coils: *lesser I_c (B)-performance* conductors for *radially* farther layer-wound coils
 To ameliorate anisotropic *I_c (B)-performance* of HTS tape, wider
- performance of HTS tape, wider tapes in axially farther DP coils

Seungyong Hahn, Youngjae Kim, Dong Keun Park, Kwanglok Kim, John Voccio, Juan Bascuñán, and Yukikazu Iwasa, "No-Insulation Multi-Width winding technique for high temperature superconducting magnet", Appl. Phys. Lett., **103**, 173511 (3pp) (2013).

Y Iwasa (MIT) lwasa@jokaku.mit.edu

A 7-T/68-mm Cold Bore MW-NI GdBCO Magnet*

- Composed of 13 MW-NI GdBCO DP coils
- Overall height: 150 mm, shorter than all 8-mm wide 13 NI coils of overall height ~208 mm (= 13 × 2 × 8 mm)

 * Seungyong Hahn, Jungbin Song, Youngjae Kim, Thibault Lècrevisse, Young Chu, John Voccio, Juan Bascuñàn, and Yukikazu Iwasa, "Construction and test of 7-T/68-mm cold bore multi-width, no-insulation GdBCO magnet," *IEEE Trans*. Appl. Supercond. 25, 4600406 (5pp) (2015)

Y lwasa (MIT) lwasa@jokaku.mit.edu

A 7-T (300-MHz)/68-mm Cold Bore GdBCO Magnet ($I_{op} = 250 \text{ A}$; $T_{op} = 4.2 \text{ K}$; $2a_1 = 78 \text{ mm}$; $2a_2 = 101 \text{ mm}$; L = 0.592 H)

Selected Averaged Parameter Values

DP #	W	I_c (tape)	I_c (coil)	R_C	$ au_d$	
	[mm]	[A]	[A]	[μΩ]	[s]	
1	8.1	300	76.5	197	46	
2	7.1	270	70.4	251	37	
3	6.1	236	64.1	177	55	
4	5.1	271	57.3	288	35	
5	4.1	171	51.7	102	103	
6	4.1	171	49.4 95		110	
7	4.1	171	48.6 549		19	
813	813 Bottom half (13—8) similar to top half (1—6)					
R_m			3.84 r	nΩ		

Selected Results @4.2 K

Y lwasa (MIT) lwasa@jokaku.mit.edu

Development of MgB₂ MRI Magnets at MIT

Background

MRI critical for quality health care for:

- Early detection and efficient treatment of disease/injury.
- ~30,000 MRI units now in service worldwide benefit only
 ~10% of the total humanity, chiefly in the developed nations

NIH (National Institutes of Health) Goal:

- Develop low-cost, easy-to-operate* MRI units to the rest (~90%) of the humanity
- * Preferably LHe-free; Operatable under unreliable power source

MIT 's choice: Persistent-mode, actively-protected MgB₂ magnet operating in the range 10 K (nominal) →15 K

MRI World-Wide Distribution

MRI units per million population*

(Total Units)

* Multiple data sources

Y lwasa (MIT) lwasa@jokaku.mit.edu

MgB₂ Magnet Project: Original Goals (September 2009 – 2015) MgB₂ 0.5-T/80-cm Whole-Body MRI Magnet Phase 1 (9/01/2009-8/31/2013): Mail Coils (4 inner coils) Phase 2 (9/01/2013-8/31/2016): Correction Coils (4 inner coils)

Modified (June 1, 2012)

Complete 0.5-T/24-cm RT bore MRI Magnet, by 8/31/2015

- Because Hyper Tech's inability to deliver 3-3.5 km long MgB₂ wire by July 2012, decided to build a ~1/3 (24-cm RT) complete MRI magnet
 - This magnet will consist of 8 coils (4 Main; 4 Correction), each with PCS and terminated with its superconducting joint
 - Each coil wound with ~300-m long, monofilament MgB₂ (HyperTech can deliver mono MgB₂ wire up to 300 m)

Y lwasa (MIT) lwasa@jokaku.mit.edu

A 0.5-T/24-cm RT Bore MgB2 MRI Magnet

- 8-Module coils, each with a PCS and joint
- Wound with MgB2 monofilament wire
- Wind-and-react
- Persistent operation in the range 10-15 K

Parameters		Coil 1	Coil 2	Coil 3	Coil 4
Winding i.d. $2a_1$	[mm]	276	276	276	276
Winding o.d. $2a_2$	[mm]	290	290	290	290
<i>b</i> ₁ (see Fig. 8)	[mm]	15	89	142	193
b ₂ (see Fig. 8)	[mm]	52	128	179	230
Turns/layer; Layers		36; 8	38; 8	36; 8	36; 8
Total turns		288	304	288	288
Operating current, Iop	, [A]	102			
Overall current densit	ty @I _{op}	[_{op} [A/mm ²] 113			
Total conductor/coil	[m]	276	276	276	276
Raw field error in 12-	V	[ppm]	<2	200	

A 0.5-T/24-cm RT Bore MgB2 MRI Magnet

- With each PCS open, energize magnet, all 8 coils series connected
- Close each PCS at $I_{op} = 102 \text{ A}$

- Superconducting joint
- × Superconducting joint

Y lwasa (MIT) lwasa@jokaku.mit.edu

Wind-and-React

- Not difficult making superconducting joints
- No limit to bending diameter
- Coil-module approach:
 - Relatively easier manufacturing
 - Manageable risk
 - Flexible design

MgB2 Monofilament Unreacted Joint

Nb

Cu

Monel

- Acute angle-cut both wires
 - Align fragile filament in the power-pressing direction
 - Enlarge surface area to Mg + B mixture
 - Argon environment (35 kPa), no moisture; some contaminants allowable

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Y lwasa (MIT) lwasa@jokaku.mit.edu

Coil Design

- Perforated sheet for securing PCS and joint
- Copper connectors
- Stycast after heat treatment
- Styrofoam to insulate PCS
- Staggered PCS position to avoid interference

Y lwasa (MIT) lwasa@jokaku.mit.edu

Small-Loop Test at 75 A

- Initial decay likely transient effect
- No observable decay 8-15 K for 4.5 hours
- Loop inductance $\approx 3 \times 10^{-5}$ H
- Loop resistance < $3 \times 10^{-12} \Omega$

Small-Loop Test at 75 A

• Opens in 3 min. with 1 W

- Closes in 3 min. in gas helium
- Less than 1 W to maintain 40 K in gas helium at 5 K

Y Iwasa (MIT) lwasa@jokaku.mit.edu

PCS Dump Test

- Dump initiated in 1 s with 0.4-A current; faster with a capacitor
- Dump time constant ~ 3 s
- Highest temperature in PCS < 70 K

Y lwasa (MIT) lwasa@jokaku.mit.edu

Charge/Discharge 3-Coil Assembly in Persistent Mode

3-Coil Assembly Dumping

Y lwasa (MIT) lwasa@jokaku.mit.edu

Timeline

- 8/31/2014 NIH program ended
- 9/01/2014 Continues as PhD thesis project (Jiayin Ling)
- 12/31/2014 3-coil in persistent mode at 100 A to 10 K and 98 A to 12 K
- 2/28/2015 Coil #8 operate at 100 A in persistent mode, 6—16 K
 - All 8 coils ready for assembly

Ling Thesis

By 8/31/15

- Complete the magnet; operate it in persistent-mode in SN2 at 10-15 K
- Measure the field homogeneity

By 1/15/16

Complete writing thesis & defend

Yeonjoo Park, Myungwhon Lee, Hessung Ann, Yoon Hyuck Choi, and Haigun Lee, "A superconducting joint for GdBa₂Cu₃O_{7-δ} coated conductors," NPG Asia Materials 6, e98(5pp) (2014)

Y lwasa (MIT) lwasa@jokaku.mit.edu

Superconducting Results at 77 K

Y lwasa (MIT) lwasa@jokaku.mit.edu

[[]Haigun Lee, Korea University (2013)]

Two Persistent-Mode GdBCO Magnets

- 2-NI DP coils (i.d.: 83 mm)
- 1-NI DP coil (i.d.: 500 mm)
- Nominal $T_{op} = 10 \text{ K}$

Table 1: Key Design Parameters

Devemetere		M00	MEOO			
Parameters		10183	UUCIVI			
REBCO Conductor						
Width; thickness [mm]		4.0; 0.1 (0.04 for Cu)				
I_c (77-K, self-field) [A		> 100 A				
Winding Parameters						
i.d.; o.d.	[mm]	83; 120.6	500.0; 510.2			
height	[mm]	16.5	8.2			
Turn per pancake		188	51			
Total DP		2	1			
Conductor per DP	[m]	120.3	161.9			
Characteristic Resist.	$[m\Omega]$	4.1	0.11			
Operation						
I _{op} at 10 K	[A]	253.5	394.1			
B_c at I_{op}	[T]	2.35	0.1			
Current density at I_{op} [A	/mm ²]	615.3	956.7			
Peak B_{\perp} at 250 A of I_{op}	[T]	0.86	0.89			
Inductance	[mH]	71.2	14.9			
Charging time constant	[sec]	17.4	135			
Stored energy	[kJ]	2.29	1.16			
Peak hoop stress	[MPa]	49	22.3			
Persistent-Current-Switch (PCS)						
i.d.; o.d.	[mm]	30; 34.8	30;31			
height	[mm]	5.0	5.0			
Turns		24	5			
Conductor	[m]	2.44	8			
R_{pcs} at 10 K	$[m\Omega]$	2.4	0.48			
t_c at 10 K	[sec]	47	166			

Y lwasa (MIT) lwasa@jokaku.mit.edu

Two Persistent-Mode GdBCO Magnets

Y lwasa (MIT) lwasa@jokaku.mit.edu

Future (April 2016) A Tabletop, LHe-Free, Persistent-Mode 1.5-T/9-mm MgB2 Magnet for Osteoporosis MRI*

- First steps in the development of novel bone densitometry technology for low-cost, universal metabolic bone disease screening
- Bone density screening a critically important and effective tool for detecting individuals at risk for osteoporotic fracture
 - Yet less than half of those at risk (over 55 million Americans) screened
- DXA (dual-energy X-ray absorptiometry): gold standard for osteoporosis screening
- If the capital and operating costs of MRI further reduced, MRI can fully characterize bone in a screening test
- * For MGH (Mass General Hospital), Dr. Jerome Ackerman Co-Investigator

- Same our 8-coil MgB2 magnet design concepts
 - 2-Module coils, each module with a PCS and 2 joints
 - MgB2 monofilament; wind-and-react; 10K→15 K
- Iron yoke for field shielding:
 - Fringe field <5 gauss in magnet vicinity</p>
 - Protects center field from extraneous fields

Y lwasa (MIT) lwasa@jokaku.mit.edu

- Spatial field homogeneity: \leq 5 ppm within 20-mm DSV
- ϕ 50-mm RT bore; 50-mm distance to magnet center for a finger
- With SN2, persistent-mode 1.5 T for \sim 7 hr with cryocooler off:
 - Quiescent, vibration-free MRI measurement environment

Parameters		Coil 1	Coil 2	Coil 3	Coil 4
Winding i.d. $2a_1$	[mm]	276	276	276	276
Winding o.d. $2a_2$	[mm]	290	290	290	290
<i>b</i> ₁	[mm]	15	89	142	193
b_2	[mm]	52	128	179	230
Turns/layer; Layers		36; 8	38; 8	36; 8	36; 8
Total turns		288	304	288	288
Operating current, I _{op} [A] 102					
Overall current densit	ty @I _{op}	op [A/mm ²] 113			
Total conductor/coil	[m]	276	276	276	276
Raw field error in 12-	V [ppm] < 200			200	

- Cryocooler off, 0.3 W into cold chamber (manufacturer specs)
- Total input to cold chamber ~0.55 W
- ~10-liter SN2: ~15 kJ (10 K→15 K) (35-kg iron yoke: < 1 kJ)

Y lwasa (MIT) lwasa@jokaku.mit.edu

• As-wound-and-assembled magnet: 200 ppm in 20-mm DSV

- From 200 ppm to 5 ppm to be achieved with ferroshimming
- Of 90-mm RT bore, the outermost 10-mm annular space for ferro-tiles

Y lwasa (MIT) lwasa@jokaku.mit.edu

CONCLUSIONS

- We hope to find a way to salvage the 1.3G project. Since 2000:
 - We have been working on this project
 - NIH has been supporting this project
 - Our users (MIT, Harvard, others) have been supporting this project
- MgB2 magnet technology approaching viable option
 - Particularly for LHe-free, low-field (<3 T) magnets
 - Further improvement in J_c (B > 3 T. $T \ge 10$ K) desirable/needed

Thank you!