COMPUTATION OF REALISTIC VECTOR POTENTIAL FOR LONG-TERM TRACKING

DE LA RECHERCHE À L'INDUSTRIE

High
Luminosity LHC

CEA - Saclay

ABELE SIMONA

Outline

- introduction;
- theoretical aspect of the problem;
- implementation of the code;
- test;
- application to realistic quadrupole;
- general view of the interface with SixTrack ${ }^{1}$;

INTRODUCTION

Tests

Applications to realistic quadrupole

SixTrack implementation

References

Tests

Applications to realistic quadrupole

SixTrack implementation

To extend the discovery potential of LHC it's planned to increase its luminosity (rate of collision) by a factor of 10 beyond the original design value (from 300 to $3000 \mathrm{fb}^{-1}$).

To extend the discovery potential of LHC it's planned to increase its luminosity (rate of collision) by a factor of 10 beyond the original design value (from 300 to $3000 \mathrm{fb}^{-1}$).

Increase luminosity $=$ Reduce size of the beam at the IP \Rightarrow Increase size of the beam in the last triplet, increase crossing angle
\Rightarrow Bigger magnets mechanical aperture \Rightarrow More non-linear effects

Magnetic Field Nonlinearities

The magnetic field \vec{B} in a quadrupole can be written as a Fourier series:

$$
\begin{equation*}
\vec{B}(\rho, \varphi, z)=\sum_{m} \vec{B}_{m}(\rho, z) \sin (m \varphi)+\vec{A}_{m}(\rho, z) \cos (m \varphi) \tag{1}
\end{equation*}
$$

the coefficients of sinus and cosine are called respectively normal and skew harmonics.

The magnetic field \vec{B} in a quadrupole can be written as a Fourier series:

$$
\begin{equation*}
\vec{B}(\rho, \varphi, z)=\sum_{m} \vec{B}_{m}(\rho, z) \sin (m \varphi)+\vec{A}_{m}(\rho, z) \cos (m \varphi) \tag{1}
\end{equation*}
$$

the coefficients of sinus and cosine are called respectively normal and skew harmonics.
So far the effect of a quadrupole over positions and momenta of the particles was modelized using averaged quantities over the longitudinal axis z.

The magnetic field \vec{B} in a quadrupole can be written as a Fourier series:

$$
\begin{equation*}
\vec{B}(\rho, \varphi, z)=\sum_{m} \vec{B}_{m}(\rho, z) \sin (m \varphi)+\vec{A}_{m}(\rho, z) \cos (m \varphi) \tag{1}
\end{equation*}
$$

the coefficients of sinus and cosine are called respectively normal and skew harmonics.
So far the effect of a quadrupole over positions and momenta of the particles was modelized using averaged quantities over the longitudinal axis z.
With nonlinearities we refers to the effects caused by the harmonics of order bigger then 2 and to the ones caused by the non-uniformity of the harmonics along z.

The field at the sides of the quadrupole is called Fringe Field which adds significant non-linear contributions, as shown in the article of [AV Bogomyagkov et al.].

During the fourth HiLumi meeting M. Giovannozzi has shown that the error done in the final triplet ("Inner-Triplet", IT, a sequence of four quadupoles) before the interaction point has the biggest influence over the DA.

in
IT_errortable_v66_4, D1_errortable_v1_spec, D2_errortable_v5_spec (b2=0), Q4_errortable_v1_spec, Q5_errortable_v0_spec

During the fourth HiLumi meeting M. Giovannozzi has shown that the error done in the final triplet ("Inner-Triplet", IT, a sequence of four quadupoles) before the interaction point has the biggest influence over the DA.

OBJECTIVES

Introduction

Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack
implementation
References

Certain codes, like the one of [T. Pugnat], utilize the Hamiltonian of the system, built from the magnetic vector potential, in order to take into account the z dependence and the effect of the Fringe Field.

Objectives

Tests

Applications to realistic quadrupole

Certain codes, like the one of [T. Pugnat], utilize the Hamiltonian of the system, built from the magnetic vector potential, in order to take into account the z dependence and the effect of the Fringe Field. On the other hand the designers of magnets or measurements can provide the values of the magnetic field or of the harmonics sampled on different types of grid.

Objectives

Tests

Applications to realistic quadrupole

Certain codes, like the one of [T. Pugnat], utilize the Hamiltonian of the system, built from the magnetic vector potential, in order to take into account the z dependence and the effect of the Fringe Field. On the other hand the designers of magnets or measurements can provide the values of the magnetic field or of the harmonics sampled on different types of grid.
Therefore these are the objectives:

- Provide an accurate description of the magnetic vector potential starting from the harmonics of from the magnetic field;

Certain codes, like the one of [T. Pugnat], utilize the Hamiltonian of the system, built from the magnetic vector potential, in order to take into account the z dependence and the effect of the Fringe Field. On the other hand the designers of magnets or measurements can provide the values of the magnetic field or of the harmonics sampled on different types of grid.
Therefore these are the objectives:

- Provide an accurate description of the magnetic vector potential starting from the harmonics of from the magnetic field;
- Provide it in a form that allows a fast tracking procedure, in particular in a polynomial form:

$$
\vec{A}(x, y, z)=\sum_{i, j} \vec{a}_{i, j}(z) x^{i} y^{j}
$$

THEORETICAL PROBLEM

Framework

Theoretical problem

Tests

Applications to realistic quadrupole

SixTrack
implementation

References

Electromagnetic stationary field, no currents, no charges, vacuum.

Electromagnetic stationary field, no currents, no charges, vacuum.

$$
\text { Maxwell equations } \Rightarrow \begin{cases}\vec{\nabla} \cdot \vec{E}=0 & \vec{\nabla} \times \vec{E}=0 \\ \vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \times \vec{B}=0\end{cases}
$$

Framework

Theoretical problem

Tests

Applications to realistic quadrupole

SixTrack implementation

References

Electromagnetic stationary field, no currents, no charges, vacuum.

$$
\text { Maxwell equations } \Rightarrow \begin{cases}\vec{\nabla} \cdot \vec{E}=0 & \vec{\nabla} \times \vec{E}=0 \\ \vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \times \vec{B}=0\end{cases}
$$

\vec{B} can be expressed using a scalar potential $\vec{B}=\vec{\nabla} \psi$ or a vector potential $\vec{B}=\vec{\nabla} \times \vec{A}$

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{B}=0 \Rightarrow \Delta \psi=0 \\
& \vec{\nabla} \psi=\vec{B} \Rightarrow \vec{\nabla} \psi=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

Procedure

Magnetic Field

Procedure

Introduction
Objectives
Theoretical problem Implementation

Tests
Applications to realistic quadrupole

SixTrack
implementation
References

Magnetic Field \rightarrow Harmonics

Procedure

Tests

Magnetic Field \rightarrow Harmonics \rightarrow Gradients

The generalized gradients are functions which depend only on the longitudinal coordinate $z: C_{m}^{[n]}(z) n, m \in \mathbb{N}$.

Procedure

Tests

Magnetic Field \rightarrow Harmonics \rightarrow Gradients \rightarrow Vector Potential

The generalized gradients are functions which depend only on the longitudinal coordinate $z: C_{m}^{[n]}(z) n, m \in \mathbb{N}$.

Tests

Applications to realistic quadrupole

SixTrack implementation

References

To compute the harmonics it's necessary to compute a Fourier Integral over a circumference.

Depending on the grid an interpolation could be needed to provide the values of the field on the circle.

Generalized Gradients

Theoretical problem

Tests

Applications to realistic quadrupole

SixTrack
implementation

References

If we:

- consider the magnetic scalar potential ψ expressed in cylindrical coordinates (as the structure of the quadrupole suggests);

Generalized Gradients

If we:

- consider the magnetic scalar potential ψ expressed in cylindrical coordinates (as the structure of the quadrupole suggests);
- expand ψ in Fourier series on ϕ and in Fourier Transform on z we can obtain a general solution for $\Delta \psi=0$ which involves I_{m};

Generalized Gradients

If we:

- consider the magnetic scalar potential ψ expressed in cylindrical coordinates (as the structure of the quadrupole suggests);
- expand ψ in Fourier series on ϕ and in Fourier Transform on z we can obtain a general solution for $\Delta \psi=0$ which involves $I_{m} ;$
From this general solution and the harmonics at a specific radius it's possible to compute the generalized gradients using the following formula:

$$
C_{m}^{[n]}(z)=\frac{i^{n}}{2^{m} m!} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{k^{m+n-1}}{I_{m}^{\prime}\left(R_{a n} k\right)} \widetilde{B}_{m}\left(R_{a n}, k\right) e^{i k z} d k
$$

Vector potential

Using the generalized gradients, the relation $\vec{\nabla} \times \vec{A}=\vec{\nabla} \psi$ and changing the coordinates from cylindrical to Cartesian the magnetic vector potential can finally be computed in the desired form:

$$
A_{x}=\sum_{m=0}^{+\infty} \sum_{\ell=0}^{+\infty} \sum_{p=0: 2: m} \sum_{q=0}^{\ell} \frac{1}{m} \frac{(-1)^{\ell} m!}{2^{2 \ell \ell}(\ell+m)!} C_{m}^{[2 \ell+1]}(z)\binom{m}{p}\binom{\ell}{q} i^{p} x^{m-p+2 \ell-2 q+1} \quad y^{p+2 q}
$$

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack implementation

Using the generalized gradients, the relation $\vec{\nabla} \times \vec{A}=\vec{\nabla} \psi$ and changing the coordinates from cylindrical to Cartesian the magnetic vector potential can finally be computed in the desired form:

$$
\begin{aligned}
& A_{x}=\sum_{m=0}^{+\infty} \sum_{\ell=0}^{+\infty} \sum_{p=0: 2: m} \sum_{q=0}^{\ell} \frac{1}{m} \frac{(-1)^{\ell} m!}{2^{2 \ell!}!(\ell+m)!} C_{m}^{[2 \ell+1]}(z)\binom{m}{p}\binom{\ell}{q} i^{p} x^{m-p+2 \ell-2 q+1} y^{p+2 q} \\
& \vec{A}=\begin{array}{llll}
\sum_{i, j} & \vec{a}_{i, j}(z) & x^{i} & y^{j}
\end{array}
\end{aligned}
$$

IMPLEMENTATION

Evolution of the code

Evolution of the code

Introduction

Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack implementation

References

C CODE

- Only Cartesian grid
- Hermite spline for interpolation
- Trapeze method for Fourier Integrals

Evolution of the code

Introduction

Objectives
Theoretical problem
Implementation
Tests
Applications to
realistic quadrupole
SixTrack implementation

References

C CODE
 OCTAVE SCRIPT

- Only Cartesian grid
- Hermite spline for interpolation
- Trapeze method for Fourier Integrals
- Filon Spline formula for Fourier Integrals

Introduction
Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack implementation

References

C CODE

- Only Cartesian grid
- Hermite spline for interpolation
- Trapeze method for Fourier Integrals

C++ CODE

- Configurable without recompilation
- Computational time reduced
- Optimized output file
- Modular structure

Magnetic grid type

- Cartesian
- Cylindrical

OCTAVE SCRIPT

- Filon Spline formula for Fourier Integrals

Fourier Integrals methods

- Filon Spline
- Newton-Cotes
- ...

Interpolation methods

- Hermite splines
- ...

Introduction

Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack
implementation

References

A modular structure allows to easily implement new methods and types of grid and to compare them at runtime.

TESTS

Introduction

Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

Cartesian grid

Subdivisions of the circle[-]

Cylindrical grid

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack

 implementation
References

Cartesian grid

Subdivisions of the circle[-]

Cartesian grid

Cylindrical grid

Cylindrical grid

Introduction
Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack implementation

References

Cartesian grid

Cylindrical grid

Introduction
Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack

 implementation
References

Cartesian grid

Cartesian grid

Subdivisions of the circle[-]

$$
\left\lvert\, \begin{array}{|l|l|}
-B_{2}^{T r}-B_{6}^{T r}-B_{10}^{T r}-B_{14}^{T r} \\
\cdots \cdots B_{2}^{S i} \cdots \cdots \cdots B_{6}^{S i} \cdots \cdots \cdots B_{10}^{S i} \cdots \cdots B_{14}^{S i} \\
--B_{2}^{F S}--B_{6}^{F S}--B_{10}^{F S}-\cdots B_{14}^{F S}
\end{array}\right.
$$

Cylindrical grid

Cylindrical grid

Subdivisions of the circle[-]

$-B_{2}^{T r}$	$-B_{6}^{T r}-B_{10}^{T r}-B_{14}^{T r}$	
$\cdots \cdots B_{2}^{S i}$	$\cdots \cdots \cdots B_{6}^{S i}$	$\cdots \cdots \cdots B_{10}^{S i}$
$\cdots \cdots$	$B_{14}^{S i}$	
$--B_{2}^{F S} \cdots-B_{6}^{F S} \cdots-B_{10}^{F S} \cdots-B_{14}^{F S}$		

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack implementation

References

$$
C_{m}^{[n]}(z)=\frac{i^{n}}{2^{m} m!} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{k^{m+n-1}}{I_{m}^{\prime}\left(R_{a n} k\right)} \widetilde{B}_{m}\left(R_{a n}, k\right) e^{i k z} d k
$$

Absolute Error

Relative Error

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack implementation

References

$$
C_{m}^{[n]}(z)=\frac{i^{n}}{2^{m} m!} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \frac{k^{m+n-1}}{I_{m}^{\prime}\left(R_{a n} k\right)} \widetilde{B}_{m}\left(R_{a n}, k\right) e^{i k z} d k
$$

Angular frequency samples[-]

Relative Error

Angular frequency samples[-]

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack implementation

$$
B_{m}=\sum_{\ell=0}^{N D}(-1)^{\ell}(m+2 \ell) \frac{m!}{4^{\ell} \ell!(m+\ell)!} \rho^{m+2 \ell-1} C_{m}^{[2 \ell]}(z)
$$

The analytical harmonics are built with 20 derivatives

Absolute Error

Relative Error

Application to a realistic quadrupole (1)

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack
implementation
References

Prototype for IT of HL-LHC

The magnetic field is provided on a Cartesian grid with a step of 0.003 m (x, y, z). Both the harmonics and the gradients are computed.

Introduction
Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack implementation

Prototype for IT of HL-LHC

The magnetic field is provided on a Cartesian grid with a step of 0.003 m (x, y, z). Both the harmonics and the gradients are computed.

Harmonic	$E_{m}^{L^{2}, A}$	$E_{m}^{L^{2}, R}$	$E_{m}^{L^{\infty}, A}$	$E_{m}^{L^{\infty}, R}$
B_{2}	$2.65479 \cdot 10^{-6}$	$3.75942 \cdot 10^{-7}$	$2.7754 \cdot 10^{-5}$	$3.93021 \cdot 10^{-6}$
B_{6}	$2.93802 \cdot 10^{-7}$	$2.53589 \cdot 10^{-6}$	$3.20346 \cdot 10^{-6}$	$2.76499 \cdot 10^{-5}$
B_{10}	$1.11986 \cdot 10^{-7}$	$6.95825 \cdot 10^{-6}$	$1.272 \cdot 10^{-6}$	$7.90355 \cdot 10^{-5}$
B_{14}	$9.64632 \cdot 10^{-8}$	$4.33002 \cdot 10^{-5}$	$1.085 \cdot 10^{-6}$	$4.8703 \cdot 10^{-4}$

The maximum absolute value is comparable with the one obtained by $[B$.
Dalena et al.].

* Courtesy of to S. Izquierdo Bermudez and E. Todesco.

Application to a realistic quadrupole (2)

The normal and skew harmonics of a more detailed design, are provided with a z step of 0.02 m . The presence of connectors on one side generates an asymmetry and skew harmonics.

The normal and skew harmonics of a more detailed design, are provided with a z step of 0.02 m . The presence of connectors on one side generates an asymmetry and skew harmonics.

Harmonic	$E_{m}^{L^{2}, A}$	$E_{m}^{L^{2}, R}$	$E_{m}^{L^{\infty}, A}$	$E_{m}^{L^{\infty}, R}$
B_{2}	$2.73535 \cdot 10^{-7}$	$4.12566 \cdot 10^{-8}$	$1.3563 \cdot 10^{-6}$	$2.04567 \cdot 10^{-7}$
B_{6}	$7.65192 \cdot 10^{-9}$	$7.93646 \cdot 10^{-8}$	$3.61656 \cdot 10^{-8}$	$3.75105 \cdot 10^{-7}$
B_{10}	$8.69318 \cdot 10^{-11}$	$6.34951 \cdot 10^{-9}$	$4.31059 \cdot 10^{-10}$	$3.14846 \cdot 10^{-8}$
B_{14}	$5.47241 \cdot 10^{-12}$	$2.88597 \cdot 10^{-9}$	$2.37895 \cdot 10^{-11}$	$1.25458 \cdot 10^{-8}$
A_{2}	$1.60238 \cdot 10^{-9}$	$4.62285 \cdot 10^{-8}$	$1.09001 \cdot 10^{-8}$	$3.14467 \cdot 10^{-7}$
A_{6}	$7.92291 \cdot 10^{-11}$	$1.6105 \cdot 10^{-8}$	$4.52242 \cdot 10^{-10}$	$9.1928 \cdot 10^{-8}$

[^0]
SixTrack IMPLEMENTATION

Procedure

Introduction

Objectives
Theoretical problem
Implementation
Tests
Applications to realistic quadrupole

SixTrack

 implementation
References

Introduction

Objectives
Theoretical problem
Implementation

Tests

Applications to realistic quadrupole

SixTrack
implementation

References

- theoretical derivation of the method to compute the vector potential;
- translation in C++ and improving of C code and octave scripts;
- systematic testing of the methods;
- in collaboration with Thomas Pugnat, implementation in SixTrack of the tracking code;
- Harmonics: understand influence of the interpolating methods on various grids;
- Gradients: implement new stable methods of order higher than Trapeze that can also be used in the reconstruction of the harmonics;
- study error dependence on data noise;
- develop a symplectic integrator using an Hamiltonian without the paraxial approximation;
- study alternative symplectic integrators with respect to the one optimized by [T. Pugnat];
- derive a transfer map in the case of a dipole;

THANK YOU FOR YOUR ATTENTION

AV Bogomyagkov et al. "Analysis of the Non-Linear Fringe Effects of Large Aperture Triplets for the HL-LHC Project, IPAC 2013 (WEPEA049)". In: (2013).
B Dalena, O Gabouev, M Giovannozzi, R De Maria, RB Appleby, A Chancé, J Payet, and DR Brett. "Fringe fields modeling for the high luminosity LHC large aperture quadrupoles". In: (2014).

Thomas Pugnat. "Calcul d'une "carte de transport" réaliste pour particules chargées". In: (2015).

[^0]: * Courtesy of S. Izquierdo Bermudez and E. Todesco.

