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HL-LHC: High Luminosity LHC

In particle physics the most fa-
mous experimental structure is the
Large Hadron Collider (LHC). It’s
the world’s biggest and most pow-
erful particle accelerator.

To extend the discovery potential of LHC it’s planned to increase its
luminosity (rate of collision) by a factor of 10 beyond the original design
value (from 300 to 3000 fb−1).

Increase luminosity = Reduce size of the beam at the IP
⇒ Increase size of the beam in the last triplet, increase crossing angle
⇒ Bigger magnets mechanical aperture ⇒ More non-linear effects
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Magnetic Field Nonlinearities

The magnetic field ~B in a quadrupole can be written as a
Fourier series:

~B(ρ, ϕ, z) =
∑
m

~Bm(ρ, z)sin(mϕ) + ~Am(ρ, z)cos(mϕ) (1)

the coefficients of sinus and cosine are called respectively
normal and skew harmonics.

So far the effect of a quadrupole over positions and
momenta of the particles was modelized using averaged
quantities over the longitudinal axis z .
With nonlinearities we refers to the effects caused by the
harmonics of order bigger then 2 and to the ones caused by
the non-uniformity of the harmonics along z .
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Fringe Field

The field at the sides of the quadrupole is called Fringe Field
which adds significant non-linear contributions, as shown in
the article of [AV Bogomyagkov et al.].
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Inner Triplet errors

During the fourth HiLumi meeting M. Giovannozzi has
shown that the error done in the final triplet ("Inner-Triplet",
IT, a sequence of four quadupoles) before the interaction
point has the biggest influence over the DA.
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Objectives

Certain codes, like the one of [T. Pugnat], utilize the Hamiltonian of
the system, built from the magnetic vector potential, in order to take
into account the z dependence and the effect of the Fringe Field.

On the other hand the designers of magnets or measurements can
provide the values of the magnetic field or of the harmonics sampled on
different types of grid.
Therefore these are the objectives:

Provide an accurate description of the magnetic vector potential
starting from the harmonics of from the magnetic field;
Provide it in a form that allows a fast tracking procedure, in
particular in a polynomial form:

~A(x , y , z) =
∑
i, j

~ai, j(z)x i y j
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Framework

Electromagnetic stationary field, no currents, no charges,
vacuum.

Maxwell equations⇒
{
~∇ · ~E = 0 ~∇× ~E = 0
~∇ · ~B = 0 ~∇× ~B = 0

~B can be expressed using a scalar potential ~B = ~∇ψ or a
vector potential ~B = ~∇× ~A

~∇ · ~B = 0⇒ ∆ψ = 0
~∇ψ = ~B ⇒ ~∇ψ = ~∇× ~A
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Procedure

Magnetic Field
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Procedure

Magnetic Field → Harmonics
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Procedure

Magnetic Field → Harmonics → Gradients

The generalized gradients are functions which depend only on
the longitudinal coordinate z : C [n]

m (z) n,m ∈ N.
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Procedure

Magnetic Field → Harmonics → Gradients → Vector Potential

The generalized gradients are functions which depend only on
the longitudinal coordinate z : C [n]

m (z) n,m ∈ N.
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Harmonics

To compute the harmon-
ics it’s necessary to com-
pute a Fourier Integral
over a circumference.

x

yx-step

y-step

Cartesian grid

r-step

θ-s
tep

Cylindrical grid

dϕ = 2π
CircSub

Ran

∫

∂BRan

B(ρ, ϕ, z) sin(mϕ)dϕ

Depending on the grid an interpolation could be needed to
provide the values of the field on the circle.
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Generalized Gradients

If we:
consider the magnetic scalar potential ψ expressed in
cylindrical coordinates (as the structure of the
quadrupole suggests);

expand ψ in Fourier series on φ and in Fourier
Transform on z we can obtain a general solution for
∆ψ = 0 which involves Im;

From this general solution and the harmonics at a specific
radius it’s possible to compute the generalized gradients
using the following formula:

C [n]
m (z) =

in

2mm!

1√
2π

∫ +∞

−∞

km+n−1

I ′m(Rank)
B̃m(Ran, k)eikzdk



Introduction

Objectives

Theoretical problem

Implementation

Tests

Applications to
realistic quadrupole

SixTrack
implementation

References

Generalized Gradients

If we:
consider the magnetic scalar potential ψ expressed in
cylindrical coordinates (as the structure of the
quadrupole suggests);
expand ψ in Fourier series on φ and in Fourier
Transform on z we can obtain a general solution for
∆ψ = 0 which involves Im;

From this general solution and the harmonics at a specific
radius it’s possible to compute the generalized gradients
using the following formula:

C [n]
m (z) =

in

2mm!

1√
2π

∫ +∞

−∞

km+n−1

I ′m(Rank)
B̃m(Ran, k)eikzdk



Introduction

Objectives

Theoretical problem

Implementation

Tests

Applications to
realistic quadrupole

SixTrack
implementation

References

Generalized Gradients

If we:
consider the magnetic scalar potential ψ expressed in
cylindrical coordinates (as the structure of the
quadrupole suggests);
expand ψ in Fourier series on φ and in Fourier
Transform on z we can obtain a general solution for
∆ψ = 0 which involves Im;

From this general solution and the harmonics at a specific
radius it’s possible to compute the generalized gradients
using the following formula:

C [n]
m (z) =

in

2mm!

1√
2π

∫ +∞

−∞

km+n−1

I ′m(Rank)
B̃m(Ran, k)eikzdk



Introduction

Objectives

Theoretical problem

Implementation

Tests

Applications to
realistic quadrupole

SixTrack
implementation

References

Vector potential

Using the generalized gradients, the relation ~∇× ~A = ~∇ψ
and changing the coordinates from cylindrical to Cartesian
the magnetic vector potential can finally be computed in the
desired form:

Ax =
∑+∞

m=0
∑+∞

`=0
∑

p=0:2:m
∑`

q=0
1
m

(−1)`m!
22``!(`+m)!

C [2`+1]
m (z)

(m
p
)(`

q
)
ip xm−p+2`−2q+1 yp+2q

∑
i , j ~ai , j(z) x i y j~A =
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Evolution of the code

B Field CoefficientsHarmonics Gradients

C CODE
- Only Cartesian grid
- Hermite spline for interpolation
- Trapeze method for Fourier Inte-
grals

OCTAVE SCRIPT
- Filon Spline formula for Fourier Integrals

C++ CODE
- Configurable without recompilation
- Computational time reduced
- Optimized output file
- Modular structure

Fourier Integrals methods
- Filon Spline
- Newton-Cotes
- ...

Magnetic grid type
- Cartesian
- Cylindrical
- ...

Interpolation methods
- Hermite splines
- ...
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Structure of the new code

A modular structure allows to easily implement new methods
and types of grid and to compare them at runtime.

FIELD

ptr grid

[Harmonics]

[Gradients]

ptr cptHarmo

ptr cptGradients

[import/export]

[plot]

[test]

GRID

ptr interp

value

value

CYLINDRICAL GRID

value

CARTESIAN GRID

compute

INTERPOLATOR HERMITE SPLINE

compute

apply

COMPUTE GRADIENTS

ptr fint

apply

COMPUTE HARMONICS

ptr fint

compute

FOURIER INTEGRALS

FILON SPLINE

compute

NEWTON COTES

compute

LEGEND
Abstract class

Concrete class

Parent Child

Member

Group

Abstract method

Concrete method [..]
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Reconstruction of the harmonics
Subdivisions of the circle and radius of analysis
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Reconstruction of the harmonics
Methods for Fourier Integrals
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Reconstruction of the gradients
Methods for Fourier Integrals and z-step

C [n]
m (z) =

in
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Reconstruction of the gradients
Angular frequency samples
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Reconstruction of the gradients
Number of derivatives

Bm =
ND∑
`=0

(−1)`(m + 2`) m!

4``!(m + `)!
ρm+2`−1C [2`]
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The analytical harmonics are built with 20 derivatives
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Application to a realistic quadrupole (1)

Prototype for IT of HL-LHC

* −1 −0.5 0 0.5 1

−6

−4

−2

0

z[m]

B
m
[T

]

B2

10B6

102B10

103B14

The magnetic field is provided on a Cartesian grid with a step of 0.003m (x ,
y , z). Both the harmonics and the gradients are computed.

Harmonic EL2, A
m EL2, R

m EL∞, A
m EL∞, R

m

B2 2.65479 · 10−6 3.75942 · 10−7 2.7754 · 10−5 3.93021 · 10−6

B6 2.93802 · 10−7 2.53589 · 10−6 3.20346 · 10−6 2.76499 · 10−5

B10 1.11986 · 10−7 6.95825 · 10−6 1.272 · 10−6 7.90355 · 10−5

B14 9.64632 · 10−8 4.33002 · 10−5 1.085 · 10−6 4.8703 · 10−4

The maximum absolute value is comparable with the one obtained by [B.
Dalena et al.].
* Courtesy of to S. Izquierdo Bermudez and E. Todesco.
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Application to a realistic quadrupole (1)

Prototype for IT of HL-LHC

* −1 −0.5 0 0.5 1

−6

−4

−2

0

z[m]

B
m
[T

]

B2

10B6

102B10

103B14

The magnetic field is provided on a Cartesian grid with a step of 0.003m (x ,
y , z). Both the harmonics and the gradients are computed.

Harmonic EL2, A
m EL2, R

m EL∞, A
m EL∞, R

m

B2 2.65479 · 10−6 3.75942 · 10−7 2.7754 · 10−5 3.93021 · 10−6

B6 2.93802 · 10−7 2.53589 · 10−6 3.20346 · 10−6 2.76499 · 10−5

B10 1.11986 · 10−7 6.95825 · 10−6 1.272 · 10−6 7.90355 · 10−5

B14 9.64632 · 10−8 4.33002 · 10−5 1.085 · 10−6 4.8703 · 10−4

The maximum absolute value is comparable with the one obtained by [B.
Dalena et al.].
* Courtesy of to S. Izquierdo Bermudez and E. Todesco.



Introduction

Objectives

Theoretical problem

Implementation

Tests

Applications to
realistic quadrupole

SixTrack
implementation

References

Application to a realistic quadrupole (2)

*
−1 −0.5 0 0.5

−4

−2

0

2

4

6

z[m]
B

m
[T
] B2

50B6

50B10

500B14

−1 −0.5 0 0.5

−3

−2

−1

0

·10−2

z[m]

B
m
[T

]

A2

A6

The normal and skew harmonics of a more detailed design, are provided with a
z step of 0.02m. The presence of connectors on one side generates an
asymmetry and skew harmonics.

Harmonic EL2, A
m EL2, R

m EL∞, A
m EL∞, R

m

B2 2.73535 · 10−7 4.12566 · 10−8 1.3563 · 10−6 2.04567 · 10−7

B6 7.65192 · 10−9 7.93646 · 10−8 3.61656 · 10−8 3.75105 · 10−7

B10 8.69318 · 10−11 6.34951 · 10−9 4.31059 · 10−10 3.14846 · 10−8

B14 5.47241 · 10−12 2.88597 · 10−9 2.37895 · 10−11 1.25458 · 10−8

A2 1.60238 · 10−9 4.62285 · 10−8 1.09001 · 10−8 3.14467 · 10−7

A6 7.92291 · 10−11 1.6105 · 10−8 4.52242 · 10−10 9.1928 · 10−8

* Courtesy of S. Izquierdo Bermudez and E. Todesco.
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Application to a realistic quadrupole (2)

*
−1 −0.5 0 0.5
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z[m]
B

m
[T
] B2

50B6

50B10

500B14
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z[m]

B
m
[T

]

A2

A6

The normal and skew harmonics of a more detailed design, are provided with a
z step of 0.02m. The presence of connectors on one side generates an
asymmetry and skew harmonics.

Harmonic EL2, A
m EL2, R

m EL∞, A
m EL∞, R

m

B2 2.73535 · 10−7 4.12566 · 10−8 1.3563 · 10−6 2.04567 · 10−7

B6 7.65192 · 10−9 7.93646 · 10−8 3.61656 · 10−8 3.75105 · 10−7

B10 8.69318 · 10−11 6.34951 · 10−9 4.31059 · 10−10 3.14846 · 10−8

B14 5.47241 · 10−12 2.88597 · 10−9 2.37895 · 10−11 1.25458 · 10−8

A2 1.60238 · 10−9 4.62285 · 10−8 1.09001 · 10−8 3.14467 · 10−7

A6 7.92291 · 10−11 1.6105 · 10−8 4.52242 · 10−10 9.1928 · 10−8

* Courtesy of S. Izquierdo Bermudez and E. Todesco.
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Procedure

configFringeField.txt

0

2

4

6

z0 z1 0 z2 z3

Length of the file
Pure Linear

Length of the file

B2

10B6

10B10

102B14

HARD EDGE mqxfa.a1r5..1

SixTrack start point SixTrack end point

Drift

Lie tracking

Anti-quad

SixTrack linear part

QUADRUPOLE DATA ----------------------------------------------------

name fn IN fn ex

mqxfa.a1r5..1 1 2

... ... ...

NEXT

FileName K LQ Corrector L x Corrector L y Corrector K Length of the File

coeff in C2-6-10-14 bnr ND16 Ran50mm.out 0.0056790 0.56181 -0.55493867849 -0.55511555733 1.760758674e-06 0.840

coeff out C2-6-10-14 bnr ND16 Ran50mm.out 0.0056789 0.63982 -0.64925902421 -0.65012388009 2.279395703e-06 1.080

... ... ... ... ... ... ...

K
+

C
o
r
r

K

LQ

Corr x/y

2
Corr x/y

2

LQ - Corr x/y
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Different orientations
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Conclusion

theoretical derivation of the method to compute the
vector potential;
translation in C++ and improving of C code and octave
scripts;
systematic testing of the methods;
in collaboration with Thomas Pugnat, implementation
in SixTrack of the tracking code;
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Perspective

Harmonics: understand influence of the interpolating
methods on various grids;
Gradients: implement new stable methods of order
higher than Trapeze that can also be used in the
reconstruction of the harmonics;
study error dependence on data noise;
develop a symplectic integrator using an Hamiltonian
without the paraxial approximation;
study alternative symplectic integrators with respect to
the one optimized by [T. Pugnat];
derive a transfer map in the case of a dipole;
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