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1) Gravitational Waves

2) Ground Based Detectors and The Rumour!
3) LISA Pathfinder

4] eLISA

0] Sources of GVWs for eLISA

B) How do we detect GWs"?
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< LGRAVITATIONAL WAVES
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& Last untested prediction of General Relativity

& Oscillations in the curvature of spacetime

& GWs are generated by large masses and large accelerations
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COMPARISON WITH EM WAVES

EM GW
inverse square law inverse square law
Vprop = C Vprop = C
2 polarisations 2 polarisations
rotation of 90° rotation of 45

scattered & diffracted due to | virtually no interaction with
interaction with matter matter

oscillation of the

. oscillation of spacetime
electromagnetic field




A passing GW will induce a strain /1 according to
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7. GW SPECTRUM

The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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Hulse-Taylor Binary Pulsar
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rouna-nased GVV detectors



& ITHE DETECTION OF GWS

& Detection is based on the use of laser interferometers
(& Atom interferometers are a future possibility

& While a number of detectors can form a network akin to long
baseline interferometry, they are not true telescopes!

& GW detectors are complimentary to EM telescopes

& EM telescopes do well on sky location and distance, but bad on
masses, Inclination etc.

GV detectors do well on masses, inclination etc., but bad on
sky location and distance.
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N7 THE DETECTION OF GWS

& So, how large do detectors need to be?

v AL :_0—18

) Ground based: L ~ -~ 1o ™ 103m
;0—12

@ Space based : L ~ =i ~ 109m




< DETECTOR NETWORK
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i( 2-CEN DETECTORS

& Both LIGOs and Virgo have undergone significant improvement

& In September 2015, Advanced LIGO began its first observation
run (O1])

& Advanced Virgo is due to come online in 2016

& First joint detector run scheduled for second half of 2016 (02}



] ADVANCED LIGOD
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& 4x sensitivity to initial LIGO

& Design sensitivity expected in 2019

& Current detection horizon is 2.5 Gpc
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THE RUMOUR!

& 01 began in September 2015, and finished Jan. 12 20186.
& Big data problem

& Noise transients [“glitches”) can mimic GV signals

& Any “event” must be visible in both Adv. LIGO detectors

& Also a number of blind injections

& There are a number of interesting events, but the analysis
s still in progress!






=P LISA PATHFINDER
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& Technology demonstration mission for a future GVW detector
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& Shrinks the million km arms of eLISA to 40cm
& Objective is to measure deviations from geodesic motion

& Will test drag-free control of the spacecraft, precision
iInteferometry on a desired scale and longevity of components




\i( LISA PATHFINDER
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s CURRENT STATUS

& 12 Jan - commissioning started

& 13 Jan - subsystems incl. laser initiated. Laser stabilisation
ongoing

¢ Separation of propulsion module

& 3 Feb - “fingers” on test mass corners will be retracted

15/16 Feb - Test masses will be released from caging mechanism
& 16 Feb to 1 March - electrostatic actuation of test masses

1 March - free-fall achieved






v. eLISA

& Mission concept currently proposed within the ESA Cosmic Vision
L3 program under the theme “The Gravitational VWave Universe”

( Estimated launch date is 2034

& Mission configuration expected to be fixed by 2020
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LISA to eLISA




Space-craft travel on ballistic orbits

¥ Induces a Doppler motion which is important for sky position
resolution
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Compact galactic binaries









Cosmological



(Galactic Binaries



V. (Galactic Binaries

Estimated 60 million compact binaries in our galaxy and local
globular clusters

& Mostly white dwarf binaries, but also systems composed of
neutron stars and stellar mass black holes

& eLISA should allow us to resolve ~4000 binaries in the first two
years, +1000 binaries per each successive year
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& Unlike ground-based detectors, we have guaranteed
sources, i.e. the verification binaries

A non detection of the VBs would suggest a serious
problem with our understanding of GW propagation

&Projects such as GAIA, PanSTARRS,LSST, SKA, etc.
should increase this number before eLISA launches

. Verification Binaries
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. (Galactic Binaries

eLISA should measure :

) Distance to between 1-10% for a large number of sources
& df/dt < 10%

& sky position to < 10 deg?

& Inclination to < 10 deg



. (Galactic Binaries
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. (Galactic Binaries

Astrophysical implications:

& Our detections will be dominated by double WDBs

& Will be able to differentiate between UCXBs and WDBs in globular
clusters

 Investigate tidal interactions in CBs

(& Should be able to constrain the formation rate, and the numbers of
NS and stellar mass BH binaries in the galaxy






V. EMRIs

& Inspiral of a stellar mass compact object into a (super)massive
black hole in galactic centres

)

< 1-1000 EMRIs / yr
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‘ EMIRIS

With proper templates, we should be able to measure the system

parameters with unprecedented accuracy
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V- EMRIs

Astrophysical implications:

& Test strong field gravity and alternatives to GR

& Provide information on stellar dynamics in galactic nuclei
& Investigate the galaxy-MBH relation at the low mass end

& 10 EMRIs are needed to measure the BH mass function to a level of 0.3 (current
estimate)

& Measurements of the spin of the SMBH will provide information on the growth
and evolution process
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oVIBHBs

& Primary sources for eLISA

& A typical SMBHB merger releases 1026 Lsojar in GWVs - a
typical SN releases 10'% Lsolar in photons
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4 oVIBHBs
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Handful of SMBHB candidates
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) All at low redshift, i.e.z < 0.3
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e.g. Radio Galaxy 0402+379




oVIBHBs

Detection (inspiral only)
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V- oVIBHBs
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r. oVIBHBs
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V- oVIBHBs
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DIFFICULT PROBLEM

& GWs are analogous to 1D sound waves
& Each source type has a different waveform type
Laser noise Is usually orders of magnitude stronger

& Astrophysical priors are not very helpful



v DIFFICULT PROBLEM
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\i( VISUAL INSPECTION
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Frequency

TIME-FREQUENCY PLOT

Time



MATCHED FILTERING

& Work in Fourier domain

& Search for the optimal linear filter

& Each signal type has a different spectral signature
& Optimal methods for complex signals buried in noise
& Demonstrated to work very well for GW analysis

Requires accurate waveform models
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7. Conclusion

& GWs are a new window on the Universe
& A ground-based network will be operational by end of 2016
& LISA Pathfinder should begin science operations on March st

Q eLISA is now the L3 cosmic vision mission with a launch date
of 2034, and has immense scientific potential

N .
& Still a lot of work to be done on all fronts, so....
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