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ML in HEP

Use of Machlne Learnlng (a k.a Multi Varlate AnaIyS|s as we used to caII |t)
already at LEP somewhat (Neural Net), more at Tevatron (Trees)

At LHC, Machine Learning used almost since first data taking (2010) for
reconstruction and analysis

In most cases, Boosted Decision Tree with Root-TMVA
Meanwhile, in the outside world :

- 00:01:00

“Artificial Intelligence” not a dirty word anymore!
We've realised we're been left behind! Trying to catch up now...
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Multltudelof HEP-ML events

, L AT L = // fﬁ,‘;ﬁ ~— & e Jg]- ggsMLAzilenge

nggsML Challenge summer 2014 -

=>HEP ML NIPS satellite workshop, December 2014
Connecting The Dots, Berkeley, January 2015

Flavour of Physics Challenge, summaer 2015
=>HEP ML NIPS satellite workshop, December 2015

DS@LHC workshop, 9-13 November 2015
= future DS@HEP workshop

LHC Interexperiment Machine Learning group
Started informally September 2015, gaining speed g

Moscou/Dubna ML workshop 7-9t Dec 2015
Heavy Flavour Data Mining workshop, 18-21 Feb 2016 |
Connecting The Dots, Vienna, 22-24 February 2016 |
(internal) ATLAS Machine Learning workshop 29-31 Marc h 0
Hep Software Foundation workshop 2-4 May 2016 at Orsay,.
TrackML Challenge, fall 2016

Bty Al Dov oo - AfostAL bbb Goyon- Gk Thosten Wosgr- As TR oo St - Aoy CERN.
CideGeman - UOU  GenCommn-AsRAL o Msmbuunoio Al oo ke Ay N Mo Scowscus - U
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ML Basics




BDT in a nutshell
sz.fzﬁ%rm SRS

Single tree (CART) <1980

AdaBoost 1997 : rerun increasing the weight
of misclassified entries =»boosted trees
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Neural Net ~1950!

But many many new tricks for learning, in particular if
many layers (also ReLU instead of sigmoid activation)

Computing power (DNN training can take days even on
GPU)
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Any cla
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Classification : learn label O or 1
Regression : learn continuous variable

—_

o
(¢

. —————
T 0 T T T T7 LI T T T LI T T 1T T i ,’ e ".’
[T Signal T T %lNear
7~ ] Background 1 &R O C .~
1.6 4 2 leurve ;S
] < 0.7 ’ K
] <
1.4 1 Bhos
1.2 = @

0.8

. 0.3
0.6 : 0.2
0.4 ] 0.1/}
0.2 1 0 23
0 01 02 03 04 05 06 07 08 09 1
0

08 06 -04 02 -0 02 04 06 08 yidhousocau, orr ocnmmar  Background eff. 3



Overtrammg

ROC curve
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o score
Evaluated on training dataset (wrong)

Evaluated on independent dataset (correct)
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No mlracle

ML does not do m|racles

If underlying
distributions are known,
nothing beats leellhood
ratio! (often called
“bayesian limit")

ML starts to be
interesting when there is °
no proper formalism of

the pdf
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ML Tools




ML Tool TMVA

Root TMVA de facto standard for ML in HEP

Has been instrumental into “democratising” ML at LHC
(at least)

Well coupled with Root (which everyone uses)

But:

Has sterilized somewhat the creativity
Mostly frozen the last few years, left behind

However:
Rejuvenating effort since summer 2015
Revise structure for more flexibility
Improve algorithms
Interface to the outside world

See talk Lorenzo Moneta at Hep Software Fondation

workshop at LAL last week
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TMVA Intel‘faces ROOT v>= 6.05.02

L ORC

N R I

Python Numpy i C50 RSNNS el1071 xgboost
(C AP (C AP)) Scikit Learn g

Advances of ML in HEP, David Rousseau, SPP Seminar 13



X oost, .

~ ﬁ:\\“ —

Bo stlng
https: //qlthub com/dmlc/xgboost, arXiv:1603.02754

Written originally for HiggsML challenge

Used by many participants, including number 2

Meanwhile, used by many other participants in
many other challenges

Open source, well documented, and supported

Best BDT on the market, performance and
speed

Classification and regression
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ML Tool SCIKI'I: Iearn

SCIKIt Léarn Machme Learnlng in phon

Modern Jupyter interface (notebook a la Mathematica)
Open source (several core developers in Paris-Saclay)
Built on NumPy, SciPy, and matplotlib

(very fast, despite being python)

Install on any laptop with Anaconda

All the major ML algorithms (except deep learning)

Superb documentation
Quite different look and fill from Root-TMVA

Short demo (Navigator should be started)
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ML platforms
Trammg t|me can become prohlbltlve (days),
especially Deep Learning, especially with large
datasets

With hyper-parameter optimisation, cross-
validation, number of trainings for a particular
application large ~100

Emergence of ML platforms :
Dedicated cluster (with GPUs)
Relevant software preinstalled (VM)
Possibility to load large datasets (GB to TB)
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ML Techniques




Cross Valldatlon

Cross Valldatlon (CV) are technlques to measure MVA performance mdependently of
the training

Goal is to build an optimisation curve (e.g. significance, ROC,..) with the smallest
variance (despite lack of data), for a better optimisation of hyper parameters or

choice of techniques Dataset

DefaUIt TMVA CV (One fOId CV) Fold1 Fold2 Fold3 Fold4 Fold5  Foldk
split sample in two halves A and B. ! i et b1 sttt romarng
train on A, test on B > Repeat k times.

Two-fold CV (e.g. ATLAS Htautau analysis) o1 2’“: o
Split sample in two halves A and B ke

Train on A, test on B; train on B test A
=>test statistics = total statistics=»double test statistics wrt one fold CV (double training
time of course)
n-fold CV (very standard technique in ML)
Split sample in n e.g. 5 equal pieces A,B,C,D and E
Train on ABCD, test on E;train on ABCE, test on D; etc...
=»same test statistics wrt two-fold CV, but larger training statistics 4/5 over V2 (larger
training time as well)
bonus: variance of the samples an estimate of the statistical uncertainty
Nested CV : if hyper-parameters tuned using CV, need an independent measurement
of the final performance

Technique being i'Att?\gal'@ct@chﬂ\/lTLWAEP, David Rousseau, SPP Seminar 18



Gllles Louppe, git h b Q"f -

— Training error
— CV error

04 I‘ undertraining

03} _
some over training

optimal

\W

0.2}

score

Performance of the classifier

01}
clear over training

Some overtraining is good!

Sb 1(50 15‘0
maxeal.nodes Complexity of the classifier |9



(remmder) 0vertrammg

ROC curve

'—
-
——__ o

o score
Evaluated on training dataset (wrong)

Evaluated on independent dataset (correct)
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Anomaly pomt level

o A~ S A =z
Y

Also caIIed outller detectlon
Two approaches:

Give the full data, ask the
algorithm to cluster and find the
lone entries : 01, 02, O3

We have a training “normal” data set with N1 and N2. Algorithm should
then spot 01,02, O3 as “"abnormal” i.e. “unlike N1 and N2"” (no a priori
model for outliers)

Application : detector malfunction, grid site malfunction, or

even new physics dlscoverx
Advances of ML in HEP, David Rousseau, SPP Seminar 21



Anomaly populatlon Ievel

Also caIIed coIIectlve anomalles
Suppose you have two independent samples A and B, supposedly
statistically identical. E.g. A and B could be:

MC prod 1, MC prod 2

MC generator 1, MC generator 2

Derivation V12, Derivation V13

G4 Release 20.X.Y, release 20.X.Z

Production at CERN, production at BNL

Data of yesterday, Data of today
How to verify that A and B are indeed identical ?

Standard approach : overlay histograms of many carefully chosen
variables, check for differences (e.g. KS test)

ML approach : ask-an-attificial-scientist, train your favorite classifier
to distinguish A from B, histogram the score, check the difference
(e.g. AUC or KS test)

=>only one distribution to check
Advances of ML in HEP, David Rousseau, SPP Seminar 22



Small nonlocal dlfference N ROC curve

SCOTC SB

Local big difference (e.g. non overlapping distribution, hole)

€A
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HSF MLRJ-\MP on anom,aly

| RAMP_-co'IIaborlve opetltlon around a datasetand”a' 'ﬂgure of
merit. Organised by CDS Paris Saclay with HEP people. See agenda.

Dataset built from the Higgs Machine Learning challenge dataset
(on CERN Open Data Portal)

Lepton, and tau hadron 3 momentum, MET : PRImary variables
DERived variables (computed from the above) from Htautau analysis
Jet variables dropped

=>reference dataset

“Skewed"” dataset built from the above, introducing small and big
distortions:

Small scaling of Ptau

Holes in eta phi efficiency map of lepton and tau hadron

Outliers introduced, each with 5% probability

Eta tau set to large non possible values

P lepton scaled by factor 10

Missing ET + 50 GeV

Phi tau and phi lepton swapped =» DERived variables inconsistent with PRImary one

=>»skewed dataset

Advances of ML in HEP, David Rousseau, SPP Seminar 24
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HSF RAMP (2)

A

Breakthrough : add new variable:
AmT:\/(zplT*MET*( 1-cos(¢;~byer)))-my
Non zero for some outliers

=>classifiers were unable to guess it

=»what functional form
classifiers can learn ?

Classifier optimisation

S, | 117 < PR
]I .‘Mﬂﬁﬁ/ "!_f .‘; l

team submission accuracy

mcherti adab2_mt1_calibrated 0.611

dhrou adab2 mt1 0.611

kazeevn GradientBoosting 0.596

glouppe bags2 0.594

glouppe boosting-duo 0.595

mcherti adaboost2 0.594

glouppe bags 0.593

mcherti adaboost1 0.593

djabbz beta tester 0.591

soobash ExtraTreesClassifier 0.576

mcherti extratrees1 0.562

dhrou DRvO 0.553

calaf starting_kit_paolo 0.526
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What does a classmerdo‘?

SCOIC

The classifier “projects” the two multidimensional
“blobs” maximising the difference, without (ideally)

any loss of information
Advances of ML in HEP, David Rousseau, SPP Seminar 27



I

w(score)

p(cible)/
p(source)

L in HEP, David Rousseau, SPP Seminar

Multidimension rewelghtmg
See demo on Andrelulzo,é;z_hn-l_lz(;;ltﬂunl') =€ 7 ;- e

Target

SCOZ8



Multl dlmensmnal rewelghtmg (2)

Rewelghtmg usually done onhe 1D projection, at best 2D because of qwck
lack of statistics
Reweighting the Source distribution on the score allows multidimensional
reweighting without statistics problem
Usual caveat still hold : Target support should be included in Source
support, distributions should not be too different otherwise unmanageable
very large or very small weights
(Note : “reweighting” in HEP language <==> “importance sampling” in ML
language)

Advances of ML in HEP, David Rousseau, SPP Seminar 20



ML in analysis




e, 117 < TR A | (g it i Samae) )

A dxas

o ir

1 1601.07913 Baldi, Cranmer, Faucett, Sadowksi, Whlteson

Parameterlsed earnmg

?!ﬂ)’ - ‘i_{:’

| [===rd | Typical case: looking for
=n-w | a particle of unknown

1 10 mass
| L'E.g. here tt decay

0.002}

Fraction of events/50 GeV

0.001f

0.000
0 500 1000 1500 2000 2500 3000
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<—x Parameterized NN (mass is a feature)|

0.6}

,/ x---x Network trained on all masses

( % = Network trained at mass=1000 only
05 | | |

500 750 1000 1250 1500
T Mass of signal T -
. test here

train here

Parameterised Iearnmg (2). |

Train on 28
features plus mass

Parameterised NN
as good as single
mass training

=>»clean
interpolation

(mass just an
example)
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Systematlcsl

Our experlmental papers typlcaIIy ends W|th
measurement = m *+ o(stat) £ o(syst)

o(syst) systematic uncertainty : known unknowns, unknown
unknowns...

Name of the game is to minimize quadratic sum of :
o(stat) o(syst)

ML techniques used so far to minimise o(stat)

Impact of ML on o(syst) or even better global optimisation
of o(stat) + o(syst) iS an open problem

Worrying about o(syst) untypical of ML in industry

Advances of ML in HEP, David Rousseau, SPP Seminar 33



Systematlcs (2)
However a hot toplc in ML in mdustry transfer /earn/ng

E.g. : train image labelling on a image dataset, apply on new images
(different luminosity, focus, angle etc...)

For HEP : we train with Signal and Background which are not the real
one (MC, control regions, etc...)=»source of systematics

One possible approach:

Adversarial neural networks

Adapted from : 1505.07818 Ganin, Ustinova, Ajakan, Germain,
Larochelle, Laviolette, Marchand, Lempitsky

. Signal or

| Background ?

inputs me), —

3g / eusis

JOJRUIWILIISIP

&\
A\
N\ N
N

D

\‘
Gradien&

Reversal
Layer

19p0dud
/ Jake| seauljuoN

s> Data or MC?

HIOMIDN
J0JRUIWLISI]
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Deep learning for analysis
ﬂI 1402.47735 Baldi, Sadowski, Whiteson 1// i —

CC) [ | I I |
5 ! .
' %a% ) v ’ & 09 -
g (@6666@ " WS E " % 0.7 —
b ED 0.6 —— NN lo+hi-level (AUC=0.81) —
0.4l- —— NNhilevel (AUC=0.78) |
0.3 _|
o2l — NN lo-level (AUC=0.73) |

0 0.|2 O.|4 0.}6 0.|8 1I
MSSM at LHC : HO=»>WWbb vs tt=>WWbb Signal efficiency
Low level variables: S |

4-momenta >
. ) C 08 _|
High level variables: o T
S | |
Pair-wise invariant masses §, “r oo (U005

Deep NN outperforms NN, and does not ~ § ¢ BT
need high level variables I i
DNN learns the thSiCS ? oL DN hi-level (AUC=0.80) : l

0 0.|2 0.|4 0.|6 0.|8 1I
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' 14103469 Baldi Sadowski Whiteson WAL

Deep learning for naly5|s (2)

Discovery significance (o)

W

H tautau analysis at LHC: H>tautau vs Z>tautau
Low level variables (4-momenta)

High level variables (transverse mass, delta R, centrality, jet
variables, etc...)

Here, the DNN improved
on NN but still needed
high level features

Both analyses with
Delphes fast simulation

~10M events used for
training (>10 full G4
simulation in ATLAS)

L Shallow networks Deep networks -

I AV ULIVDY VT VI 1T 1 Tkl y UV \UUUU\JM\J, SPP Seminar 36



ML in reconstruction




Clear upcoming challenges
as we approach HL-LHC

Generally, making
everything robust to
increased pileup, and
resource usage will be vital
New techniques needed

(e.g. TrackML challenge, end
of this talk)
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jets from QCD

Particle level
simulation

Average images:

Advances of ML in HEP, David Rousseau, SPP Seminar

Jet Images

~arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman
Distinguish boosted W

240 < p1jGeV <260 GeV, 65 <mass/GeV <95
Pythia 8, W'— WZ, {5 =13 TeV

33

Pixel p_[GeV]

T

[Translated] Azimuthal Angle (¢)

-0.5

107

-1 -0.5 0 05
[Translated) Pseudorapidity (n)

240 < pT/GeV <260 GeV, 65 <mass/GeV <95
Pythia 8, QCD dijets, {5 =13 TeV

[Translated] Azimuthal Angle (¢)

0.5

10°

-1 -0.5 0 05 1
[Translated] Pseudorapidity (n)

240<pTIGeV<2600eV,65<masIGeV<9S
Pythia 8, W'— WZ, & =13 TeV

] 3

o
Pixel p_[GeV)]

T

[Translated) Azimuthal Angle (¢)

[Translated] Pseudorapidity (n)

240<pTIGeV<260(kV,66<MGeV<9S
Pythia 8, QCD dijets, 5 =13 TeV

[Translated] Azimuthal Angle (¢)
§943883333383 3883
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Boosted jS stanrd V|able

240<p,}(.e\ <260 GeV, 019 < 1.,<D.21 79 < mass/'GeV <81

s = 13 TeV, Pythia 8

Normal %?d 10 Unity
(=]
&

om

0005

-W--qg'
QCO dijts

Jot Mass [GeV)

30

20

1/(Background Efficiency)

240<p,;‘(;¢\ <260 GeV,0.19 < 1, <021,79 <maw/GeV <81
s =13 TeV,Pythia 8

240 < p /GeV <260 GeV, 019 < ©,, <0.21,79 < mass/GeV <81
Vs = 13 TeV, Pythia 8

= =
& [ r
3 -W-aq 2 -W-2oq
2 QCD dyens 8 - OCD djets
?4062— § r
a L]
g gc 04—
2 =
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002
N Sreu J L
00 02 04 06 o8 1 00

N-subjettiness

250 < pT/GeV <300 GeV, 65 < mass/GeV <95
Pythia 8, (s= 13 TeV

—No pixelation
Only pixelation

- -Pix+Transiate (naive)
Pix+Translate
Pix+Translate+Flip

— Pix+Translate+x/2 Rotation

- — Pix+Translate+p® norm

0.8
Signal Efficiency

PP Seminar
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1

[Transformed] Azimuthal Angle (4)

Jet Images : Convolution NN

e

Convolved
Feature Layers

Convolutions

W'- WZ event

Max-Pooling

Repeat

Variables build from CNN
outperform the more usual ones

Correlation of Deep Network output with pixel activations.

Lo i €(250,300) matched to QCD, myy 65,95 GeV

0.5F
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Deep NN’s

— mass
Uy
AR
Fisher
—— Maxout
—— Convnet
- Random

0.8
Signal Efficiency

What the CNN sees (the “cat” neurone™)
Now need proper detector and pileup

simulation
= 3D!
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ML m Slmulatlon

We invest a lot of resources (CPU ~100k cores/experlment *year human)
on very fine tuned simulations:

so far very manual optimisation by super experts
optimisation in many dimensions parameter space, with costly evaluation

Now turning to more modern techniques e.qg.:
Bayesian Optimization and Gaussian Processes

Gilles Louppe, DIANA meeting Build probabilistic model Sample new point Repeat until convergence
for objective function

vvvvvvvvvvvvvvvv

This gives a posterior distribution over functions that could have

Xt+1 = arg max, UCB(x
generated the observed data. 1 & x ()

Another avenue : multivariable regression to parameterise detector
response

Advances of ML in HEP, David Rousseau, SPP Seminar 42




Data Challenges




Challenges (competltlon)
ChaIIenges are essentlally a way to create a
buzz around an open dataset dressed with a
benchmark

HiggsML (ATLAS) 2014

FlavourML (LHCb) 2015

future TrackML (ATLAS+CMS) 20167

Buzz in non-HEP world to get the attention of
ML specialists

Advances of ML in HEP, David Rousseau, SPP Seminar 44



nggsML in a nutshell
Why not put some ATLAS 5|muIated data on the web and ask data
scientists to find the best machine learning algorithm to find the
Higgs ?

Instead of HEP people browsing machine learning papers, coding or
downloading possibly interesting algorithm, trying and seeing whether
it can work for our problems

Challenge for us : make a full ATLAS Higgs analysis simple for non
physicists, but not too simple so that it remains useful

Also try to foster long term collaborations between HEP and ML

Do not underestimate the time to learn common languages (e.g.
hand waving explanation of S/sqrt(B) not enough)
Do not underestimate the percolation time :

1) New ML ideas = 2) Demo on toy data set = 3) Demo in real

ATLAS analysis=»4) published ATLAS analysis ==> we're still
between 1 and 2 for most new ideas

Advances of ML in HEP, David Rousseau, SPP Seminar 45



Why challenge

,&EL_
;

MOTIVATION OF ORGANIZING CONTESTS
EXTREME VAI.UE Courtesy : Lakhani 2014

Experts are highly skilled, trained - >
more focused, performed solution,

low variety
Probability Traditional
Experts
Nontraditional
Participants

Ol is suitable for a variety of Value of an ldea High
nonconvential surprising ideas that
are « far» from traditional . .
et - > Falh vo ety Not just ML, but a general trend:
S Open Innovation

David Rousseau HiggsML challenge, GDR Terascale 2015, Saclay 46



From domam to challenge‘and back

Challenge Challen
* . . ge
Domain e.g. HEP organisation

ﬂgmm  Problem |
Domain .
experts Cr(l)Wd
oxper solves
the domain + months e
o challenge

problem

| >n months/y¢ars ?

Advances of ML in HEP, David Rousseau, SPP Seminar 47



nggsML Commlttees

e ,_‘,'77‘

| Ordanlzatlon commlttee

b~ David Rousseau : Atlas-LAL
5 Claire Adam-Bourdarios : Atlas-LAL (outreach, legal matter)
Glen Cowan : Atlas-RHUL (statistics)
2 2o Balazs Kegl : Appstat-LAL
g g Cécile Germain : TAO-LRI
-

Isabelle Guyon : Chalearn (now chaire Paris Saclay)
(challenges organisation)

Advisory committee:
Andreas Hoecker : Atlas-CERN (PC,TMVA)
Joerg Stelzer : Atlas-CERN (TMVA)
Thorsten Wengler : Atlas-CERN (ATLAS management)

MarC I§aV| o@s!geaaldlell:hgg :H\LlchaAnge GDR Terascale 2015, Saclay 48



See talk DR CTD2015 Berke .
. . S HiggsI ' the HiggsML challenge
An ATLAS Higgs signal vs background classification it 9 e 2%14

problem, optimising statistical significance When High Energy Physics meets Machine Learning
Ran in summer 2014
2000 participants (largest on Kaggle at that time)

Outcome
Best significance 20% than with Root-TMVA

BDT algorithm of choice in this case where number
variables and number of training events limited (NN very
slightly better but much more difficult to tune)

XGBoost best BDT on the market (quite wide spread
nowadays)

Wealth of ideas, documented in JMLR proceedings v42
Still working on what works in real life what does not
Raised awareness about ML in HEP

Also:
Winner Gabor Melis hired by DeepMind

Tong He, co-developper of XGBoost, winner of special

“HEP meets ML" price got a PhD grant and US visa
Advances of ML in HEP, David Rousseau, SPP Seminar 49
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Best private scores

Tuned and improved tmva BDT

Simple tmva BDT

3 3,04 3,08 3,12 3,16 3,2 3,24 3,28 3,32 3,36 3,4 3,44 3,48 3,52 3,56 3,6 3,64 3,68 3,72 3,76 3,8 3,84 3,88 3,92 3,96 4

SCOTIC
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LHCb : flavour of phys|cs

LHCb organlsed in sumvmer 2015 another challenge
“flavour of physics”: search for LFV decay tsuuun

similar to HiggsML, with a big novelty:
some variables known to be poorly described by MC
algorithm had to behave similarly on data and MC in a control
region DO=>Knn

= Nice idea, however, never underestimates the

machine learners: They devised an algorithm which

was able to distinguish control region from signal region

was behaving well (data=MC) in the control region
but was recklessly abusing the data/MC difference in the signal region

=>rules had to be changed in the middle of the
challenge to disallow this

Anyway, this does show that systematics is tricky to
handle
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Beyond cha Ilenges RAMP

Run by CDS Paris Saclay °°
Main difference wrt to HiggsML: con]
participants post their software, which is run by the RAMP -:E;
platform f,n
one day hackathon 'jj::;
participants are encouraged to re-use other people’s software oon ¥
Can adapt to all domains: I e

Economics focus
Agents of change

C i dels failed to foresee the financial crisis. Could
agent-based modelling do better?

0 100 200 300 400 500
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Towards a Future Tracking
Machine Learning challenge

A collaboration between ATLAS and CMS physicists,
and Machine Learners

B
A




TrackM
e e

See details DR talk at CTD2016

Tracking (in particular pattern recognition)
dominates reconstruction CPU time at LHC

HL-LHC (phase 2) perspective : increased
pileup :

Run 1 (2012): <>~20

Run 2 (2015): <>~30

Phase 2 (2025): <>~150

CPU time quadratic/exponential
extrapolation (difficult to quote any
number)

A_,_'—P—)_A
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Motlvatlon 1
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TrackML Motlvatlon 2

LHC experlments future computlng budget ﬂat (at best)
Installed CPU power per $==€==CHF expected increase factor ~10
in 10 years

Experiments plan on increase of data taking rate ~10 as well
(~1kHz to 10kHz)

=>HL reconstruction at mu=150 need to be as fast as Runl
reconstruction at mu=20

=>requires very significant software improvement, factor 10-100

Large effort within HEP to optimise software and tackle micro and
macro parallelism. Sufficient gains for Run 2 but still a long way for
HL-LHC.

>20 years of LHC tracking development. Everything has been tried?

Maybe yes, but maybe algorithm slower at low lumi but with a better
scaling have been dismissed ?

Maybe no, brand new ideas from ML (i.e. Convolutional NN)
Need to engage a wide community to tackle this problem
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TrackML engagmg Machme Learners

Suppose we want to |mprove the tracking of our experlment
We read the literature, go to workshops, hear/read about an interesting
technique (e.g. ConvNets, MCTS...). Then:

Try to figure by ourself what can work, and start coding=>traditional way

Find an expert of the new technique, have regular coffee/beer, get confirmation
that the new technique might work, and get implementation tips=»better

...repeat with each technique...
Much much better:

Release a data set, with a benchmark, and have the expert do the coding him/
herself

=» he has the software and the know-how so he’ll be (much) faster even if he
does not know anything about our domain at the beginning

=»engage multiple techniques and experts simultaneously (e.g. 2000 people
participated to the Higgs Machine Learning challenge) in a comparable way

=»even better if people can collaborate

=>a challenge is a dataset with a benchmark and a buzz

Looking for long lasting collaborations beyond the challenge
Focus on the pattern recognition : release list of 3D points, challenge is to
associate them into tracks fast. Use public release of ATLAS tracking
(ACTS) as a simuations enging iand sfartingKitau, spp seminar
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HEP tracking...




~fascinates ML experts




Patter n recognition
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Pattern recognltlon is a very old, very hot topic in Artificial Intelllgence
Note that these are real-time appllcatlons W|th CPU constralnts

IPS 2014 paper y

track 3 (Cessna)

TP iy
. X track 2 (777)

clutter (birds)
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TrackM L_ -early attempt

Stimpfl-Abele and Garrido (1990) (ALEPH)

All posssible neighbor connections are built, the correct ones selected
by the NN (not used in production)

Also PhD Vicens Gaitan 1993, winner of Flavour of Physics challenge
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Wrapping-up




ML Collaboratlons

Many of the new ML technlques are complex-)d|ff|cult for HEP phyS|C|sts
alone
ML scientists (often) eager to collaborate with HEP physicists

prestige

new and interesting problems (which they can publish in ML proceedings)
Takes time to learn common language

Access to experiment internal data an issue, but there are ways out (see
later)

Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona
fide institute of LHCB

Very useful/essential to build HEP - ML collaborations (study on shared
dataset, thesis (Computer Science or HEP)

Successful collaborations often within one campus

Center for Data Science Paris-Saclay ‘role is precisely to favour these
collaborations

Most likely within CEA too...
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Open | Data

Public dataset are essential to collaborate (beyond talking over beer/coffee) on new
ML techniques with ML experts (or even physicists in other experiments)

can share without experiments NDA
Some collaborations built on just generator data (e.g. Pythia) or with simple detector
simulation e.g. Delphes

Good for a start, but inaccurate

Effort to have better open simulation engine (e.g. Delphes 4-vector detector
simulation, ACTS for tracking)

UCI dataset repository

Role of CERN Open Data portal:

We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on
releasing data)

But after all ML collaboration is a kind of scientific outreach

=>ATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge
(essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)

ATLAS consider releasing more datasets dedicated to ML studies
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Collectlon _ links

In add|t|on to workshops mentloned in the flrst transparenaes and
references mentioned in the talks

Interexperiment Machine Learning group (IML) is gathering speed
(documentation, tutorials, etc...). Topical monthly meeting.

An internal ATLAS ML group will start by June. Probably also in CMS ?
https://www.kaggle.com/c/higgs-boson
https://higgsml.lal.in2p3.fr

http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014:
permanent home of the challenge dataset

NIPS 2014 workshop agenda and proceedings
http://imlr.org/proceedings/papers/v42/

http://cern.ch/higgsml-visit mini workshop at CERN

Mailing list opened to any one with an interest in both Data Science and
High Energy Physics : HEP-data-science@googlegroups.com
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Conclusmn

Machlne Learnlng technlques W|der used in HEP

Recent explosion of novel (for HEP) ML techniques, novel
applications for Analysis, Reconstruction, Simulation, Trigger, and
Computing
Some of these are ~easy, most are complex: collaboration between
HEP and ML scientists are needed
More and more open datasets/simulators to favour the
collaborations
More and more HEP and ML workshops, forums, group, challenges
etc...
Never underestimate the time for :

(1) Great idea=>

(2) demonstrated on toy dataset=>

(3) demonstrated on real experiment dataset =

(4) experiment publication using the great idea
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