nano-Résumé de la conférence ICHEP

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

amira Hassani Octobre <u>2016</u>

• More than 1400 scientists, students, educators and members of industry from around the world

- 600 parallel presentations, 500 posters and 36 plenary talks
- Great conference, nice talks, many new results...
- I will summarize only ATLAS (65 new results) and CMS (more than 70 new results)

- More than 1400 scientists, students, educators and members of industry from around the world
- 600 parallel presentations, 500 posters and 36 plenary talks
- Great conference, nice talks, many new results...
- I will summarize only ATLAS (65 new results) and CMS (more than 70 new results)

- 1. Measuring the Standard Model
- 2. Rediscovering the Higgs
- 3. Exploring the unknown

Data Samples

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

- Spectacular performance of the LHC during 2016
- Data quality in 2016 : >90% of data collected usable for analysis
- Large pile-up : Average number of vertices > 20
 →Many Challenges
 - Detectors (occupancies, ...)
 - Trigger (thresholds, rates)
 - Readout (bandwidth)
 - Offline (Tier-0, Grid)

Pileup often above LHC design in 2016

Samira Hassani

Trigger and Performance

Samira Hassani

Fermilab HEPCloud

Standard Model Measurements

- Many measurements from Run-1 and Run-2
- With very prompt and excellent Luminosity measurement of 2.7% (CMS) and 2.9%(ATLAS)
- Important steps forward in physics modelling in the last years:
 - NLO event generators now standard
 - (N)NNLO calculations increasingly available
- These help face the challenge of the precision of the LHC data

Status at N3LO

Real-Virtual Squared

Known [Anastasiou, Duhr, Dulat, FH, Mistlberger; Kilgore]

+UV and IR counter terms

Known[Pak, Rogal, Steinhauser; Anastasiou, Buehler, Duhr, FH; Höschele, Hoff, Pak, Steinhauser, Ueda; Buehler, Lazopoulos]

Double Virtual- Real

2 terms in soft expansion [Anastasiou, Duhr, Dulat, Mistlberger; Zhu]

37 terms [Anastasiou, Duhr, Dulat, FH, Mistlberger]

Known [Dulat, Mistlberger; Duhr, Gehrmann]

Triple Virtual Known from OCD Form Factor

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]

Double Real - Virtual

Triple Real

qq`channel known [Chihaya Anzai, Alexander Hasselhuhn, Maik Höschele, Jens Hoff, William Kilgore, Matthias Steinhauser, Takahiro Ueda]

2 terms in soft expansion [Anastasiou, Duhr, Dulat, FH, Mistlberger, Furlan; Li, Mantueffel, Schabinger, Zhu] 37 terms [Anastasiou, Duhr, Dulat, FH, Mistlberger] Known [to be published]

August 4th 2016

ICHEP Chicago

Why was it only possible last year?

- Have used all the tricks in the box and invented new ones:
 - Reverse Unitarity
 - Differential equations
 - Mellin Barnes Representations
 - Hopf Algebra of Generalized Polylogs
 - Number Theory
 - Black Magic of Soft Expansion by Region
 - Optimised Algorithm for IBP reduction and hugely powerful computing resources

Integral Statistics

	NNLO	N3LO
#diagrams	~1.000	~100.000
#integrals	~50.000	517.531.178
#masters	27	1.028
#soft masters	5	78

ICHEP Chicago

Run1: precision, differential, rare processes

Ille Plymonachain Tan and EW massurements ICHED August 0th 2016

sin²Φ_W @ hadron colliders

.....Extracted from A_{FB} measurement

Tevatron: 1.5 permille precission, LHC at 5 permille precission \rightarrow approaching e⁺e⁻ precision, dominant unc.: LHC: PDF, Tevatron: statistical, PDF Indirect constraint on W mass \rightarrow consistency of SM

Ulla Blumenschein, Top and EW measurements, ICHEP, August 9th 2016 29

Top pair cross section overview

CMS ttbar cross section measured at 4 different energies

LHC and Tevatron results consistent and in agreement with NNLO+NNLL over a large range of centre-of-mass energies

Top properties, recent results

Very active field in the past years:

- Top polarisation
- charge asymmetry
- W helicity
- Spin correlations
- Width
- coupling to gauge bosons ...

CMS, 12.9 fb⁻¹, 13TeV, ttZ, ttW _____ CMA-TOP-16-017

ATLAS , 3.2fb⁻¹, 13TeV, tttt search \leq 21 x σ_{SM} , ATLAS-CONF-2016-020

CMS , 2.6fb⁻¹, 13TeV, tttt search \leq 10 x σ_{SM} , CMS PAS TOP-16-016

D0, 9.7fb⁻¹, Top polarisation l+jets, arXiv:1607.07627

Ulla Blumenschein, Top and EW measurements, ICHEP, August 9th 2016 Samira Hassani

Direct top mass measurements

LHC and Tevatron results with nearly comparable precision of 3-4 permille (0.5 GeV) LHC top mass systematically limited: MC modelling, (b)JES Template/Matrix element methods → Monte Carlo top mass parameter

Ulla Blumenschein, Top and EW measurements, ICHEP, August 9th 2016

Rediscovering the Higgs

- Legacy run-1 results
- Run-2: 13 TeV , many results with > 13 fb-1
 - SM h(125) clearly rediscovered
 - several searches already surpassed run-1 sensitivity

Higgs Boson Production at 125 GeV

Higgs Profile in Run 1

Higgs → γγ

- Signature: 2 isolated photons
 - All production modes targeted ggF, VBF, VH (only ATLAS), ttH events
- Signal extracted through fit of $m_{\gamma\gamma}$ in different event categories Main backgrounds: $\gamma\gamma$ and γ -jet production ٠

Dominant systematic uncertainty: photon energy scale and resolution and background ٠ choice bias (smaller than statistical uncertainties)

Measurements of fiducial cross section

13 TeV	Fiducial σ (fb)	SM prediction (fb)	
ATLAS (13.3 fb ⁻¹)	43.2±14.9(stat)±4.9(syst)	62.8 ^{+3.4} -4.4 (N ³ LO+XH)	
CMS (12.9 fb ⁻¹)	69+ ¹⁶ . ₂₂ (stat) ⁺⁸ . ₆ (syst)	73.8±3.8	

Fiducial o: Event yields corrected for detector inefficiency and resolution for minimal theoretical modeling

Important to improve MC generators and calculations → reduce systematic uncertainties

Differential cross section measurements

Production cross section and signal strength

 Events are split into orthogonal categories that exploit topological differences between production mechanisms

Extract strength of production processes in a 2-parameter fit

- Achieved similar precision to Run 1
 Measurements compatible with SM
 Results still dominated by statistical
- uncertainty

$H \rightarrow ZZ^* \rightarrow 4$ leptons

- Narrow peak over a flat background
- Signature: two pairs of same flavor, opposite sign, isolated leptons
 - All production modes targeted ggF, VBF, VH, ttH events
- Extraction of signal through fit of m_{4l}
 - Also uses kinematic discriminant (e.g. M_{Z1}, M_{Z2}, 5 angles from decay chain, matrix element) used to enhance the signal purity of different production modes
- Dominant systematic uncertainty: luminosity and lepton SF (smaller than statistical uncertainty)

$H \rightarrow ZZ^* \rightarrow 4$ leptons

Measurements of fiducial cross section

13 TeV	Fiducial σ (fb)	SM prediction (fb)
ATLAS (14.8 fb ⁻¹)	4.54 ^{+1.02} -0.90	3.07 ^{+0.21} -0.25
CMS (12.9 fb ⁻¹)	$2.29 + 0.74_{-0.64} (stat) + 0.30_{-0.23} (syst)$	2.53±0.13

Differential cross section measurements

Samira Hassani

Combination $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4$ leptons

- Combine $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \rightarrow 4l$ inclusive samples, with no categorization
- Higgs production is observed with 10σ significance (8.6σ expected) with 13 TeV data in agreement with SM expectations

Towards Discovery - ttH

- Probing the Yukawa coupling between top and Higgs at LHC:
 - via gluon fusion cross section, assumes no BSM particles running in the loop
 - directly at tree level, via associated production:

t, b

Towards Discovery - ttH

- · Direct probe of top Yukawa coupling
- Cross section at 13 TeV is 4 times that at 8 TeV
- Results presented with 2015+2016 data for
 - ttH, H→bb
 - ttH, multilepton final states
 - ttH, H→γγ
- ttH Combination
 - Combine all three 13 TeV analyses
 - Signal strength given relative to SM expectation
 - Observed significance 2.8σ (expect 1.8σ)
 - Upper limit on μ: μ_{ttH} < 3.0 at 95% CL (expected μ_{ttH} < 2.1 for SM case)

ATLAS-CONF-2016-068

VH→bb

- Analysis strategy: utilize leptonic decays of Z/W events
 - Multivariate techniques necessary to achieve good S/B
 - Dominant backgrounds, depend on channel: Z+b, tt
 - Most discrimination from m_{bb} and $\Delta R(b_1, b_2)$
- Systematic and statistical uncertainties of the same size

$H \rightarrow \mu\mu$ rare decays

- A very rare decay in the SM
 - Probe Yukawa-coupling to 2ndgeneration fermions and mass dependence
 - Test of the Higgs coupling to leptons
- Signature: Very clean signature from dimuon final state but Z/_X*→µµ overwhelming irreducible background
- Analysis strategy:

Search for peak in $m_{\mu\mu}$ spectrum over smoothly falling background

 Categorize events according to VBF and ggF signature enriched

Exploring the unknown

The outstanding goal for the ICHEP conference was to be ready and not miss any potential discovery with this dataset.

Samira Hassani

Exploring the unknown

- No significant excess was found, nor previous modest excesses confirmed.
- A few ATLAS non significant but noticeable excesses to follow up:
 - Stops 1L: In (4J, 1b, high MET) 3.3 σ (No excess in CMS)
 - V(W)H(Full hadronic boosted) 3.5 σ (2.5 σ global) at 3TeV (No CMS result)
 - Paired dijet local 2.6 σ (2.1 σ global) at 870GeV (No CMS result)
 - Four leptons high mass 2.9σ (1.9σ global) at 705GeV (No excess in CMS)
 - ttH ML in SS-0 τ and SS-1 τ not significant but excesses at Run1 in ATLAS and CMS
- From CMS: γ jet high mass 3.7 σ (2.8 σ global) at ~2 TeV (not seen in ATLAS with similar luminosity)
- However not all results on previous excesses have been released !

Search for di-photon resonances

Heavy Higgs \rightarrow ZZ \rightarrow 4

- Search for an additional heavy scalar
 - Assumed to be produced via the ggF and VBF processes
- Extension of the $H \rightarrow ZZ$ measurement and fits the m_{4l} distribution
- No signal seen we set limits for different decay width Γ_{χ} assumptions

Samira Hassani

Heavy Higgs \rightarrow ZZ \rightarrow 4

- Search for an additional heavy scalar
 - Assumed to be produced via the ggF and VBF processes
- Extension of the $H \rightarrow ZZ$ measurement and fits the m_{4l} distribution
- No signal seen we set limits for different decay width Γ_{χ} assumptions

Highest mass di-jet event: 7.7 TeV

CMS Experiment at the LHC, CERN Data recorded: 2016-May-11 21:40:47.974592 GMT Run / Event / LS: 273158 / 238962455 / 150

Di-jets Resonance Searches

Background modeled by parametrized function for search

Sallia

Z'

>1.5TeV

Search for di-lepton resonances

VV/Vh/hh Resonance

Karsten Koeneke's talk

Benedikt Vormwald's talk

 Search for VV/Vh/hh resonance in leptonic/hadronic decay channels using large-R jets with jet substructure techniques

Revisit diboson excesses in Run1

Resonance Search Summary

- Up to 25% mass limit increase by extending 2015 to 2016
- ~50% of the analyses updated to Run2

Collider Dark Matter Signature - Mono-X

ET^{miss}+X a.k.a. Mono-X • X from ISR jet, b, t, γ, W, Z

X from mixing with mediator

• X from paired tt, bb

Dark Matter exclusion limit

- No significant excess observed so far
- DM mass exclusion up to ~550 GeV
- Vector Mediator mass exclusion up to 1.95 TeV

Analyses characterized by large number of Search Regions.

EWK searches: 118 different search regions (dependent on N_jets, N_btag, N_Leptons, flavour, charge...

Strong searches: 32 search regions (nature of jets, E_T miss, ΣE_T , di-leptons consistent/not consistent with Z decay. 25

SUSY Multileptons: some results

None of the search regions has shown significant deviations from the expected SM background : largest deviation 2.5 σ for same sign di-leptons, N_{iet}=1,M_T<100GeV, E_t^{miss}>150 GeV and pt(II) ≥50 GeV CMS Periminant 12.9 fb⁻¹(13 T

Electroweak production: In flavor democratic scenario we exclude Chargino masses up to 1 TeV (previous Run1 limit was 750 GeV)

CMS PAS SUS-16-022 CMS PAS SUS-16-024 Strong production: we exclude gluino masses up to 1250 GeV and LSP masses up to 750 GeV for simplified model of T1tttt 26

Stop Search: $\tilde{t} \rightarrow bW\chi_1^0$, $\tilde{t} \rightarrow t\chi_1^0$

Event topology: WbWb+ E_{τ}^{miss} (+jets)

• Divide according to W decays: 0ℓ, 1ℓ, 2ℓ, τ

In total, 35 signal regions

- Aiming to cover $m(\tilde{\chi}_1^{o})$ vs $m(\tilde{t})$ plane
- Largest excess 3.3σ

excluded except in rather small regions

Summary

13 fb⁻¹@13TeV not so lucky for ATLAS and CMS!

Samira Hassani

Backup

Samira Hassani

Diboson cross section summary

Final precise 8TeV diboson cross sections, differential cross sections. New 13TeV cross section, starting to go differential. Measurements consistent with NNLO

Ulla Blumenschein, Top and EW measurements, ICHEP, August 9th 2016

Higgs Boson Decays at 125 GeV

$ttH(\rightarrow bb)$

- Largest branching ratio and large background, also offers sensitivity to the Higgs-Bottom Yukawa coupling
- Analysis strategy: categorize events according to amount of leptons, jets, b-jets
 - Main background tt+heavy flavour production: very challenging theoretical description
- Dominant systematic uncertainty: signal and background modeling and normalization (larger than statistical uncertainty)

ATLAS uses BDT to reconstruct Higgs and separate signal and background for each category

$ttH(\rightarrow bb)$

- Largest branching ratio and large background, also offers sensitivity to the Higgs-Bottom Yukawa coupling
- Analysis strategy: categorize events according to amount of leptons, jets, b-jets
 - Main background tt+heavy flavour production: very challenging theoretical description
- Dominant systematic uncertainty: signal and background modeling and normalization (larger than statistical uncertainty)

ttH(multileptons)

- Targets Higgs decays and focus on final states with clean signatures and low backgrounds
- Signature: 2-4 leptons, 2 or more jets, and at least 1 btagged jet. Allows at least one τ_{had}
- Dominant systematic uncertainty: fake-rate measurements and non-prompt background estimates

W+

Η

And also $H \rightarrow ZZ$, $H \rightarrow \tau \tau$

g 7000000

g 7000000

ttH(multileptons)

g 700000

g 000000

Η

- Targets Higgs decays and focus on final states with clean signatures and low backgrounds
- Signature: 2-4 leptons, 2 or more jets, and at least 1 btagged jet. Allows at least one τ_{had}
- Dominant systematic uncertainty: fake-rate measurements and non-prompt background estimates

VBF H→bb

- VBF H→bb more difficult to exploit VBF than VH signature for H→bb but larger production crosssection
 - Forward jets are used to trigger and discriminate against multi-jet background
 - Signal extracted via a fit to the m_{bb} spectrum

CMS	Upper limit x SM (expected)	Signal strength µ
Run 1	5.5 (2.5)	2.8+1.6
Run 2	3.4 (2.3)	1.3 ^{+1.2} -1.1

ATLAS result with 12.6 fb⁻¹ requiring a high p_T photon to provide a clean signature for efficient triggering

ATLAS	H(→ bb) + γj	Z(→ bb) + γj	ted on SM
Upper limit	4 x SM	2 x SM	
at 95% CL	(expected 6 x SM)	(expected 1.8 x SM)	

