The effect of a 0.1eV neutrino on the Ly α forest

Jim Rich

SPP-IRFU CEA-Saclay 91191 Gif-sur-Yvette james.rich@cea.fr

May, 2017

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Outline

- Effect of $m_{
 u} \sim 0.1 {
 m eV}$ on linear power spectrum, $P_L(k)$
- Effect on 3D Lyα flux transmission power spectrum
 P. McDonald (2003), "Toward a measurement of the cosmological geometry at z ~ 2: predicting Lyα forest correlation in three dimensions and the potential for future data sets."
- Effect on 1D Lyα flux transmission power spectrum
 P. McDonald et al. (2005) "The linear theory power spectrum from the Lyα forest in SDSS"
- Combination with CMB $\Rightarrow m_{\nu}$ Seljac et al (2005,2006) Palanque-Delabrouille et al. (2015)

Effect of $m_{\nu} = 0.1 \mathrm{eV}$ on CMB

Recombination:

- $z \sim 1000 \Rightarrow kT_{\gamma} \sim 0.2 {
 m eV}$
- $kT_{\nu} \sim 0.15 \mathrm{eV} \Rightarrow \langle p_{\nu} \rangle \sim 3T_{\nu} >> m_{\nu}$

 $\Rightarrow m_{
u} \sim 0.1 {
m eV}$ has little effect on shape of CMB spectrum.

H(z < 100) is modified \Rightarrow modified distance to LSS.

 \Rightarrow peak positions slightly modified.

(For fixed $\Omega_{\rm CDM} h^2$: determined by CMB peak heights.)

Effect of $m_{\nu} = 0.1$ eV on late-time $P_L(k, z)$

First, what is $P_L(k, z)$?

$$\rho(\vec{r},z) = \bar{\rho}(z) \left[1 + \delta_{\vec{k}}(z) \exp(i\vec{k}\cdot\vec{r}) \right] \qquad P(k) \propto \left\langle \delta_{\vec{k}}^2 \right\rangle$$

Power spectrum, P(k), is Fourier trans. of correlation function, $\xi(r)$.

At early times, $|\delta(k, z)| \ll 1$ and obeys linear ordinary differential equations (modes independent).

 $P_L(k, z)$ is late time extrapolation of early-time P(k, z) using linear ordinary differential equations (modes independent.)

Effect of $m_{\nu} = 0.1 \text{eV}$ on late-time $P_L(k)$

Free streaming while $T_{\nu} > m_{\nu}$ suppresses power on small scales:

$$k_{fs} \sim 0.0017 \left[rac{\Omega_{
m CDM} \sum m_{
u}}{0.3 imes 0.1 eV}
ight]^{1/2} (h^{-1}{
m Mpc})^{-1}$$

$$\lambda_{fs} \sim 3600 \left[rac{\Omega_{
m CDM} \sum m_{
u}}{0.3 imes 0.1 eV}
ight]^{-1/2} (h^{-1} {
m Mpc})$$

Suppression factor (fixed $\Omega_{\rm CDM} h^2$):

$$rac{\Delta P_L}{P_L}(k>k_{fs})\sim 8rac{\Omega_{
u 0}}{\Omega_{
m CDM}}\sim 0.06rac{\sum m_
u}{0.1eV}$$

 λ_{fs} bigger than current surveys \Rightarrow step not observable. $\Delta P_L/P_L$ observable if P_L can be deduced from observed P_{NL} and then compared with prediction of CMB (function of m_{ν}).

$m_{ u}$ from CMB and Ly α (simplified)

$$P_L(k > k_{fs}) \sim P_L(k, A_s, n_s, \Omega_{ ext{CDM}} h^2, \Sigma m_
u \sim 0) \left[1 - 0.06 rac{\Sigma m_
u}{0.1 eV}
ight]$$

- Simulate IGM to establish relation between $P_L(k)$ and $P_{NL}(k)$.
- Deduce l.h.s. from Ly α forest measurement of $P_{NL}(k)$
- Deduce $(A_s, n_s, \Omega_{\rm CDM} h^2)$ from CMB anisotropy $\Rightarrow P_L(k, m_{\nu} \sim 0)$
- Use $(h, \Omega_{CDM}h^2)$ to put CMB anisotropies and Ly α inhomogeneities on the same distance scale (same k scale).
- Deduce $\sum m_{\nu}$ Precision of 0.12 on $\Delta P_L/P_L \Rightarrow m_{\nu} < 0.2 \text{eV}$
- mass limit depends on assumed form of primordial spectrum. Generally assume non-running n_s

Jim Rich (IRFU)

The Ly α forest

Transmitted flux fraction in forest $F(\lambda) = e^{-\tau(\lambda)}$.

Correlation function of $F(\lambda)$: Within individual forests $\Rightarrow \xi_{F1d}(\Delta \lambda) \Rightarrow P_{F1d}(k_{\parallel})$

Between different forests $\Rightarrow \xi_{F3d}(\Delta\lambda, \Delta\theta) \Rightarrow P_{F3d}(\vec{k})$

 P_{F3d} is a biased and z-distorted version of $P_{NL}(k)$ (big $\rho_m \Rightarrow$ small F and vice versa)

 P_{F1d} is an integral over P_{F3d}

Optical depth, τ , at redshift z

$$au(z) \propto \Omega_{
m B}^2 rac{(1+z)^6 \, ar{\mathcal{T}}(z)^{-0.7}}{H(z) J_\gamma(z)} \, rac{(1+\delta(z))^eta}{(1+\eta(z))^1} \qquad \eta \equiv rac{v_p'(z)}{H(z)}$$

where $\beta = 2 - 0.7(\gamma(z) - 1) \sim 1.6$.

Formula assumes well defined $v_p(z)$ (no thermal broadening or trajectory crossings!).

Fluctuations of density, $\delta,$ and velocity gradient, $\eta, \Rightarrow \tau$ fluctuations

Power spectrum of $F = e^{-\tau}$ depends on

- $\Omega_{
 m B}^2 \bar{T}/J_\gamma \to \bar{F}$
- $P_L(k) \Rightarrow$ statistics of δ and η
- $(\overline{T}, \gamma) \Rightarrow$ thermal broadening
- Non-linear astrophysics: Supernovae, shock-heating.....

McDonald strategy to measure $P_L(k)$

Simulate the hydrodyamics of the IGM to predict $P_{F1d}(k_{\parallel})$ as a function of.

•
$$\Omega_{\rm B}^2 \bar{T} / J_{\gamma} \to \bar{F}$$

• (\bar{T}, γ)

• $P_L(k)$ parameterized by

$$\begin{split} \Delta_L^2(k_p,z_p) &\equiv k^3 P_L(k_p,z_p)/2\pi^2, \qquad n_{eff}(k_p,z_p) = \frac{dlog P_L}{dlog k}(k_p,z_p) \\ k_p &= 0.009(km/sec)^{-1} \sim 1(h^{-1}\mathrm{Mpc})^{-1} \qquad z_p = 3 \\ \mathrm{n} \ \mathrm{\Lambda CDM}, \ \Delta_L^2(k_p,z_p), n_{eff}(k_p,z_p) \ \mathrm{determined} \ \mathrm{by} \ (A_s,n_s,\Omega_{\mathrm{CDM}},\Omega_k,h) \\ \mathrm{Hopefully, \ the \ poorly \ known \ astrophysics} \ (\bar{F},T,\gamma,SN,shocks...) \ \mathrm{will} \\ \mathrm{not \ spoil \ the} \ P_{F1d} - P_L \ \mathrm{connection}. \end{split}$$

Predicted $P_{F3d}(\vec{k})/P_L(k)$ (McDonald,2003)

In radial direction, peculiar velocity fluctuations: enhance power (Kaiser factor) at small k; suppress power at

large *k*. (like FOG for galaxies)

Suppression of small scale radial power

• velocity spread at one point in real-space (thermal or trajectory crossing) \Rightarrow high density regions contribute to many redshifts

 $\operatorname{and}/\operatorname{or}$

 More than one real-space point at same velocity ⇒ more than one density contributes to one redshift.

Effect of increasing $P_L(k_0)$ or n_{eff} on P_{F3d}

Solid lines: radial direction dotted lines: transverse

"For $k > 1(h^{-1}Mpc)^{-1}$, it is interesting to note that increasing the mass power actually decreases the flux power along the line of sight, presumably by increasing the power suppression by nonlinear peculiar velocities." (McDonald, 2003)

Effect of increasing \overline{T} or γ on P_{F3d}

Effect of increasing \bar{z} or \bar{F} on P_{F3d}

Predicted $P_{F1d}(k_{\parallel})$ (McDonald et al., 2005)

$$\Delta^2_{F1d}(k_\perp) \equiv k P_{F1d}(k_\parallel)/\pi$$
 $P_{F1d}(k_\parallel) \sim \int_0^\infty k_\perp dk_\perp P_{F3d}(k_\perp,k_\parallel)$

Effect of increasing P_L or \overline{F} on $P_{F1d}(k, z = 2.12)$

"Increasing $\Delta_L^2(k_p, z_p)$ enhances the power on large scales put actually suppresses the power on small scales"

"(Increasing) \overline{F} produces a relatively flat, large change, which is commonly assumed to be degenerate with Δ_L , although we see that the shapes are not the same, nor are the relative effects at different redshifts:" (McDonald et al., 2005)

Effect of increasing P_L or \overline{F} on $P_{F1d}(k, z = 3.17)$

∃ → (∃ →

Effect of increasing P_L or \overline{F} on $P_{F1d}(k, z = 4)$

A B F A B F

Observed 1d flux power spectrum

Deduced $P_L(k)$ (McDonald et al 2005)

Deduced mean transmission

Deduced $P_L(k)$ (Seljak, Slosar, McDo 0604335)

Add measurement of $\overline{F}(z)$ from high-resolution spectre.

Ly α with $\overline{F}(z)$ measurement WMAP3, running *n* WMAP3 + galaxies + SN, running *n* Combined

Deduced $P_L(k)$ (Palanque-Delabrouille et al 1410.7244)

$$k_{
ho} = 0.009 (km/sec)^{-1}$$

 $z_{
ho} = 3$

Jim Rich (IRFU)

Need to put CMB and Ly α inhomogenities on same comoving distance (r) or wavenumber (k) scale.

• CMB: $r = \Delta \theta \times D_M(z \sim 1000, \Omega_{\rm CDM} h^2, \Omega_k h^2, h)$

• Ly
$$lpha$$
: $r = \Delta z/H(z, \Omega_{\mathrm{M}}h^2, h)$

Need $(\Omega_{\rm M}h^2 \sim \Omega_{\rm CDM}h^2, \Omega_kh^2, h)$ to compare CMB and Ly α . $\Omega_{\rm CDM}h^2$ determined by CMB peak heights. Further input or hypotheses needed for (h, Ω_kh^2)

Limits on m_{ν}

- Seljac et al. (2005) $m_{\nu} < 0.42 \text{ eV}$ $P_L(k_p)$ from McDonald et al (2005) CMB from WMAP 1yr
- Seljac, Slosar & McDonald (2006) $m_{\nu} < 0.17 \text{ eV}$ $P_L(k_p)$ from McDonald et al (2005) $\bar{F}(z)$ measurement with high-resolution spectra CMB from WMAP 3yr

• Palanque-Delabrouille et al. (2015) $m_{\nu} < 0.15 \text{ eV}$ New (better) simulations. fit directly for $(m_{\nu}, \sigma_8) + (\Omega_{\rm CDM}, h, n_s)$ CMB from Planck 1yr

All assume *n_s* not running.

Different fit parameters for Ly α fit, different simulations, and different CMB data makes comparison difficult.