

Towards a holistic framework for global assessments of nuclear models

Georg Schnabel

Café SPhN, 20.11.2017

What is it about?

Situation

Models (computationally expensive) Experimental data (possibly a lot)

Research question

How can we use statistical methods and methods of machine learning in combination with modern computer infrastructure to improve our knowledge about nuclear models and experimental data?

Parameter estimation, <u>uncertainty quantification</u>, uncertainty propagation

G. Schnabel "Estimating model bias over the complete nuclide chart with sparse Gaussian processes at the example of INCL/ABLA and double-differential neutron spectra", submitted to EPJ-N

G. Schnabel "Fitting and Analysis Technique for Inconsistent Nuclear Data" Proc. of M&C 2017

G. Schnabel, and H. Leeb. "A Modified Generalized Least Squares Method for Large Scale Nuclear Data Evaluation" NIMA Jan 2017

G. Schnabel "Adaptive Monte Carlo for Nuclear Data Evaluation" Proc. of ND 2016

G. Schnabel, and H. Leeb. "Differential Cross Sections and the Impact of Model Defects in Nuclear Data Evaluation" Proc. of Wonder 2015.

"Toy" scenario

Data: EXFOR database

			Database = Soft	Ver	sion of 2017-04-03 Version of 2017-04-10		800
				N	ews	×	
201 201 201 201	6/12 New.Web-ZVVI 6/11 Plotting without 6/11 Plotting cross s 6/11 Recalculation o [History]	ew plots: affine t grouping by r ection coded w of angular distri	transformation aaction-codes (- ith SF8=DAM (C butions to inven	ts (PS + calc CS div se kir	/EPS) [hew-to], distortion pictu- ulating CS ratios between diff, ided by atomic mass of target) rematics (when converting EXP	re using 2D-calibration (how-to) datasets on the fly) [example] [example] #Adv.plot using C5 DR-+R33] [example]	
The EXFOR	library contains an	extensive com	pliation of experi	iment	tal nuclear reaction data. Neutr	on reactions have been compiled	
systematica	ly since the discove	ry of the neutr	on, while charge	ed pa	ticle and photon reactions have	a been covered less extensively.	
	The library	contains data	from 21574 exp	perim	ents (see statistics and recent	updates).	
	EXFOR	Reference Pa	per: Nucl. Data S	heets	120(2014)272 EXFOR Mirror-	sites 👁	
						· Search:	Go
	Evan	plos of request	terr a la la la la la la la la		Go to: [upload your data]		
	Cross section d(E)	/updates/ 1	fore examples		Options		
					Exclude superseded data	Plotting, see also. [video-guide]	
Request	Submit	Reset	Help		No reaction combinations (ratios)	
Target					Exclude evaluated data		
Reaction					Enhanced search of Products Retrieve listing only		
Quantity					Disable Prompt-Help		
Product					Sort by: 💿 reaction 🔷 publication	6	
	Energy from	to	ev _		View: basic extended		
Author(s)					Ranges (Z,A)		
Publication year					* Reaction Sub-Fields		
Last modified					Feedback and User's Inp	ut	
					Clone Request:		
Accession #					CINDA ENDE		
Accession #	Extended						
Accession #	Extended Keywords Expert						

Database as of: 2017-04-03

Number of ENTRY	21 574	experimental works
Number of SUBENT	150 976	data tables
Number of Datasets	167 857	data tables of reactions
Number of Datapoints	14 739 297	total number of data points

Model: INCL/ABLA

Features:

- Stochastic output
- Computational expensive
- Many parameters
- Large output

1:

2:

3:

4:

5:

9287: 109742 (40-ZR-0(P,X)0-NN-1,,DA/DE) 1600 01170

- - -

Automatization

S. V. Gleyzer et al, Development of Machine Learning Tools in ROOT, J. Phys.: Conf. Ser. 762 012043, 2016

D

Ζr

n

008 150 147.00 0.053

DDX 1 0 0.04361501 0.004144504

91

40 -0.09384990 0.0053

Cea

Example of ML approach

Terry Therneau, Beth Atkinson and Brian Ripley (2017). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-11. https://CRAN.R-project.org/package=rpart

Bayesian statistics

$$P(H \mid O) = \frac{P(O \mid H)P(H)}{P(O)}$$

- H hypothesis
- **O** observation
- **P(H)** probability of hypothesis to be true
- **P(O)** probability of observation to occur
- **P(O|H)** probability of observation O to occur if hypothesis H is true
- P(H|O) probability of hypothesis after we observed O

Consistent with Aristotelian logic Consistent with principles of common sense

Ces

Inappropriate assumptions

In practice

Negative cross sections in linearized evaluation methods

Uncertainty reductions beyond experimental limits

Model predictions in disagreement with experiment data

Reasons

Inappropriate prior for model parameters

Imperfect model / Not completely confident in the model

Inaccurate likelihood specification for the data

Solutions

Prior rescaling, likelihood broadening, model defects, removing suspicious experimental data sets

Bayesian network

Deterministic codes

Stochastic codes

Inconsistent data

G. Schnabel, **Fitting and Analysis Technique for Inconsistent Nuclear Data** Proc. Int. Conf. on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, April 2017

Marginal likelihood

$$\log \rho(\vec{\sigma}_{\exp} \mid \vec{p}_0, S, M) = -\frac{N}{2} \log(2\pi) - \frac{1}{2} \log|M| - \frac{1}{2} (\vec{\sigma}_{\exp} - S\vec{p}_0)^T M^{-1} (\vec{\sigma}_{\exp} - S\vec{p}_0)$$

Entropy χ^2 term
 χ^2 term

$$M = SA_0S^T + B_{\exp}(\lambda_1, \lambda_2, \dots)$$

Questions

Is it computationally feasible?

Can we efficiently maximize this expression?

DE LA RECHERCHE À L'INDUSTRI

Imperfect model

Cea

(In)finite Covariance Matrix

<u>Covariance matrices</u> can represent a variety of things such as normalization uncertainties, linear trends, splines, Fourier series, polynomial expansions, white noise, etc.

$$y(x) = kx + d, \quad k \sim \mathcal{N}(0, \delta_k^2), \ d \sim \mathcal{N}(0, \delta_d^2)$$

Observations $(\vec{y}_{exp}, \vec{x}_{exp})$

$$\vec{p} = \begin{pmatrix} k \\ d \end{pmatrix} = AS^T \left(SAS^T + B \right)^{-1} \vec{y}_{exp}$$
$$\vec{y}_{pred} = S_{pred} \vec{p} = \left(\vec{x}_{pred}, \vec{1} \right) \begin{pmatrix} k \\ d \end{pmatrix}$$

$$B = \begin{pmatrix} \varepsilon_1^2 & 0 & 0 \\ 0 & \varepsilon_2^2 & 0 \\ 0 & 0 & \ddots \end{pmatrix}$$

$$\kappa(x_1, x_2) := Cov[y(x_1), y(x_2)] = \delta_k^2 x_1 x_2 + \delta_d^2$$

 $K_{\text{pred,exp}} = \kappa(\vec{x}_{\text{pred}}, \vec{x}_{\text{exp}}) \quad K_{\text{exp,exp}} = \kappa(\vec{x}_{\text{exp}}, \vec{x}_{\text{exp}})$

$$\vec{y}_{\text{pred}} = K_{\text{pred,exp}} K_{\text{exp,exp}}^{-1} \vec{y}_{\text{exp}}$$

Gaussian processes

Powerful concept

Directly parametrize covariance matrix and work implicitly with an infinite number of parameters/basis functions!

$$\kappa(\boldsymbol{x}_1, \boldsymbol{x}_2) = \delta^2 \exp\left(-rac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2}{2\lambda^2}
ight)$$

Gaussian processes

Powerful concept

Directly parametrize covariance matrix and work implicitly with an infinite number of parameters/basis functions!

$$\kappa(\boldsymbol{x}_1, \boldsymbol{x}_2) = \delta^2 \exp\left(-rac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^2}{2\lambda^2}
ight)$$

Posterior uncertainty

Comparison to neural networks

artificial neural networks

Both approaches ...

- ... are methods for classification and regression
- ... are universal function approximators

Neural networks ...

- ... scale better to large data sets
- ... are able to capture non-local features
- ... are difficult to interpret

<u>GP processes</u> ...

- ... are statistical methods from the ground up (uncertainties)
- ... facilitate the incorporation of prior assumptions
- ... interface well with existing nuclear data evaluation methods

Model bias estimation

22

(p,X)n above 100 MeV

Isotope	En	E_{\min}	$E_{\rm max}$	θ_{\min}	$\theta_{\rm max}$	NumPts
С	800	1.2	700	15	150	189
С	1500	1.2	1250	15	150	245
С	3000	1.2	2500	15	150	128
Na23	800	3.5	266	30	150	84
Al27	800	1.2	700	15	150	119
Al27	1000	2.5	280	15	150	223
Al27	1200	2.0	1189	10	160	404
Al27	1500	1.2	1250	15	150	129
Al27	1600	2.5	280	15	150	226
Al27	3000	1.2	2500	15	150	132
Fe	800	1.2	771	10	160	505
Fe	1200	2.0	1171	10	160	417
Fe	1500	1.2	1250	15	150	129
\mathbf{Fe}	1600	2.0	1572	10	160	460
Fe	3000	1.2	2500	15	150	133
Cu	1000	2.5	280	15	150	227
Cu	1600	2.5	280	15	150	231
Zr	1000	2.5	280	15	150	229
Zr	1200	2.0	1189	10	160	423
Zr	1600	2.5	280	15	150	229
In	800	1.2	700	15	150	116
In	1500	1.2	1250	15	150	128
In	3000	1.2	2500	15	150	133
W	800	3.1	333	30	150	110
W	1000	2.5	280	15	150	231
W	1200	2.0	1189	10	160	413
W	1600	2.5	280	15	150	231
Pb	318	5.4	356	7	7	53
\mathbf{Pb}	800	1.2	771	10	160	624
Pb	1000	2.5	280	15	150	231
\mathbf{Pb}	1200	2.0	1189	10	160	563
Pb	1500	1.2	1250	15	150	249
\mathbf{Pb}	1600	2.0	1591	10	160	691
$^{\rm Pb}$	3000	1.2	2500	15	150	131
Pb208	2000	0.4	402	30	150	170
Th232	1200	2.0	1189	10	160	351

Input space: A, Z, En, E, θ

Covariance brewing

Combination rules for covariance functions

$$\kappa_{1+2}(x_1, x_2) = \kappa_1(x_1, x_2) + \kappa_2(x_1, x_2)$$

 $\kappa_{1\times 2}(x_1, x_2) = \kappa_1(x_1, x_2) \times \kappa_2(x_1, x_2)$

Squared exponential covariance functions

$$\kappa_1(x_1, x_2) = {\delta_1}^2 \exp\left(\frac{1}{2\lambda_1^2}(x_1 - x_2)^2)\right)$$

$$\kappa_2(x_1, x_2) = {\delta_2}^2 \exp\left(\frac{1}{2\lambda_2^2}(x_1 - x_2)^2)\right)$$

Transition kernel

$$\tau_1(x_1, x_2) = \sigma(x_1)\sigma(x_2)$$

$$\tau_2(x_1, x_2) = (1 - \sigma(x_1)(1 - \sigma(x_2)))$$

$$\sigma(x) = \frac{1}{1 + \exp(-k(x - x_0))}$$
WATER + MALT + HOPS + YEAST = E

 $\kappa_{\text{comp}}(x_1, x_2) = \tau_1(x_1, x_2) \times \kappa_1(x_1, x_2) + \tau_2(x_1, x_2) \times \kappa_2(x_1, x_2)$

Prior visualization

$$\kappa_{\rm comp}(x_1, x_2) = \tau_1(x_1, x_2) \times \kappa_1(x_1, x_2) + \tau_2(x_1, x_2) \times \kappa_2(x_1, x_2)$$

Real case

INCL vs experiment data

Final goal: Inclusive DDX data over the complete nuclide chart projectile + target -> ejectile + X (~100 000 data points above 100 MeV, INCL gives predictions for ~40 000)

Inclusive DDX for **p + target -> X + n**

<u>9287 data points</u>, 11 targets, incident energies ranging from 300 to 3000 MeV)

5 dimensional space (A, Z, EN, ANG, E)

$$\kappa_{1}: \ \delta_{1}, \ \lambda_{11}, \dots, \lambda_{15}$$

$$\kappa_{2}: \ \delta_{2}, \ \lambda_{21}, \dots, \lambda_{25}$$

$$T: \ k, x_{0}, \Phi$$

$$M = P_{\text{stat}} + K_{\text{def}}(\lambda_{1}, \lambda_{2}, \dots) + B_{\text{exp}}$$

$$\log \rho(\mathcal{D} \mid \vec{p}_{0}, \vec{\sigma}_{\text{exp}}, M) = -\frac{N}{2} \log(2\pi) - \frac{1}{2} \log|M| - \frac{1}{2} (\vec{\sigma}_{\text{exp}} - S\vec{p}_{0})^{T} M^{-1} (\vec{\sigma}_{\text{exp}} - S\vec{p}_{0})$$

$$\overline{\kappa_{\text{comp}}(x_{1}, x_{2})} = \tau_{1}(x_{1}, x_{2}) \times \kappa_{1}(x_{1}, x_{2}) + \tau_{2}(x_{1}, x_{2}) \times \kappa_{2}(x_{1}, x_{2})$$

Introduce sparsity

Assume latent variables (pseudo-inputs)

$$\vec{y}_{\rm obs} = \overbrace{K_{\rm obs,psi}K_{\rm psi,psi}^{-1}}^{S} \vec{y}_{\rm psi} \qquad \vec{y}_{\rm psi} \sim \mathcal{N}(\vec{0}, K_{\rm psi,psi})$$

$$K_{\text{sparse}} = SK_{\text{psi,psi}}S^T = K_{\text{obs,psi}}K_{\text{psi,psi}}^{-1}K_{\text{psi,obs}}$$

Diagonal correction (essential for continuous optimization)

 $K_{\rm sparse} = diag[K_{\rm obs,obs} - K_{\rm obs,psi}K_{\rm psi,psi}^{-1}K_{\rm psi,obs}] + K_{\rm obs,psi}K_{\rm psi,psi}^{-1}K_{\rm psi,obs}$

E. Snelson and Z. Ghahramani, "Sparse Gaussian processes using pseudo-inputs", Advances in Neural Information Processing Systems 18, Cambridge, Massachussets, 2006

J. Quinonero-Candela and C.E. Rasmussen, "A Unifying View of Sparse Approximate Gaussian Process Regression", Journal of Machine Learning 6 (2005), 1939-1959

Cea

Joint optimization

Efficient computation of objective function:

 $O(m^2n)$ instead of $O(n^3)$ with **m** pseudo-inputs and **n** observations

 $\log \rho(\mathcal{D} \,|\, \vec{p}_0, \vec{\sigma}_{\exp}, M) = -\frac{N}{2} \log(2\pi) - \frac{1}{2} \log|M| - \frac{1}{2} (\vec{\sigma}_{\exp} - S\vec{p}_0)^T M^{-1} (\vec{\sigma}_{\exp} - S\vec{p}_0)$

<u>Scenario</u>

300 pseudo-input points (1500 parameters)

15 parameters in covariance function (a.k.a hyperparameters)

9287 experiment data points

<u>Timings</u>

Objective function: 1.3 sec (4 cores: 0.5 sec)

Gradient wrt hyperpars & pseudo-inputs: 50 sec (4 cores: 17 sec)

Optimization on cluster

3500 iterations with L-BFGS-B algorithm in 10 hours

using 25 cores (inefficiency: distributed memory)

X² / n = 1.03

Pseudo-Inputs & Hyperpars

	δ	$\lambda_{_{\sf EN}}$	λ_{A}	λ_z	$\lambda_{_{ANG}}$	$\lambda_{_{E}}$
K ₁	0.5	99	103	41	68	5
K ₂	0.3	272	115	49	64	42

τ: k = 0.3, $x_0 = 2.7$

GP prediction

GP prediction

Cea

Interpolation between angles

Cea Extrar

Extrapolation to other isotopes

Discussion of extrapolation

Fig. 2. Model bias of INCL in the (p,X)n double differential spectra for 800 MeV incident protons and different isotopes as predicted by GP regression. A missing mass number behind the isotope symbol indicates natural composition. The uncertainty band of the prediction and the error bars of the experiment data denote the 2σ confidence interval. Carbon and indium were taken into account in the GP regression but not cadmium and oxygen. The experiment data is colored according to the associated access number in the EXFOR database. This shows that all displayed data come from just three experiments.

ACCNUM --- C0170 --- E1760 --- E1762

Cross sections & isospin

DE LA RECHERCHE À L'INDUSTRIE

 $M = SA_0(\delta_1, \delta_2, \dots)S^T + K_{def}(\lambda_1, \lambda_2, \dots) + B_{exp}$

Pulling the strings

From deterministic to stochastic

Marginal Likelihood for deterministic linear model

$$\log \rho(\vec{\sigma}_{\exp} | \vec{p}_0, S, M) = -\frac{N}{2} \log(2\pi) - \frac{1}{2} \log|M| - \frac{1}{2} (\vec{\sigma}_{\exp} - S\vec{p}_0)^T M^{-1} (\vec{\sigma}_{\exp} - S\vec{p}_0)$$

Marginal Likelihood for stochastic linear model

$$\rho(\vec{\sigma}_{\mathrm{exp}} \,|\, \vec{p}_0, M) = \int \rho(\vec{\sigma}_{\mathrm{exp}} \,|\, \vec{p}_0, S, M) \rho(S) \, dS$$

<u>Challenge</u>

Likely, no analytic solution of integral

Size of N x M matrix ${\boldsymbol{S}}$ with

N ... number of experimental data points M ... number of model parameters

equals number of integration variables

For inclusive neutron DDX: 200.000 integration variables

Work ahead and outlook

<u>Methodological</u>

Complete framework for stochastic linear models

Investigate the propagation of model bias through simulations

Conceive a Monte Carlo algorithm for non-linearity

Practical

Include other reaction data from EXFOR (e.g. isotope production, cumulative xs)

Use the approach on other model parameters (e.g. potentials)

Propagate found uncertainties through a transport code

Common sense inference

CC-IN2P3