Critical Remarks

on the Determination of The Proton Charge Radius

Egle Tomasi-Gustafsson
CEA, IRFU, DPhN and Université Paris-Saclay, France in collaboration with
G.I. Gakh, M.I. Konchatnji, N.P. Merenkov NSC-KFTI Kharkov

Café DPhN, 15 Janvier 2018

The SIZE of the proton

The Aew Hork Eimes

The proton

- Hadrons are 96% of visible matter
- Proton is the the most common particle in nature

- Its fundamental properties as
- Mass
- Spin
- Size
are still object of controversy

The MASS of the proton

L'énergie du champ de Higgs

$\mathrm{Mp}=938,2720 \mathrm{MeV} / \mathrm{c}^{2}$

Masses

u-quark $=1.5-4 \mathrm{MeV} / \mathrm{c}^{2}$
d-quark $=4-8 \mathrm{MeV} / \mathrm{c}^{2}$

The MASS of the proton

dynamically created by the strong interaction
$\mathrm{Mp}=938,2720 \mathrm{MeV} / \mathrm{c}^{2}$

Antiproton-Proton collisions

ATOMIC PHYSICS

The proton radius puzzle

A Antognini ${ }^{1,2}$, F D Amaro ${ }^{3}$, F Biraben ${ }^{4}$, J M R Cardoso ${ }^{3}$, D S Covita ${ }^{5}$, A Dax ${ }^{6}$, S Dhawan ${ }^{6}$, L M P Fernandes ${ }^{3}$, A Giesen ${ }^{7}$, T Graf ${ }^{8}$, T W Hänsch ${ }^{1,9}$, P Indelicato ${ }^{4}$, L Julien ${ }^{4}$, C-Y Kao ${ }^{10}$, P Knowles ${ }^{11}$, F Kottmann ${ }^{2}$, E-O Le Bigot ${ }^{4}$, Y-W Liu ${ }^{10}$, J A M Lopes ${ }^{3}$, L Ludhova ${ }^{11}$, C M B Monteiro ${ }^{3}$, F Mulhauser ${ }^{11}$, T Nebel ${ }^{1}$, F Nez^{4}, P Rabinowitz ${ }^{12}$, J M F dos Santos ${ }^{3}$, L A Schaller ${ }^{11}$, K Schuhmann ${ }^{7}$, C Schwob ${ }^{4}$, D Taqqu ${ }^{13}$, J F C A Veloso ${ }^{5}$ and R Pohl ${ }^{1}$

Abstract. By means of pulsed laser spectroscopy applied to muonic hydrogen ($\mu^{-} p$) we have measured the $2 S_{1 / 2}^{F=1}-2 P_{3 / 2}^{F}{ }^{2}$ transition frequency to be $49881.88(76) \mathrm{GHz}$ [1]. By comparing this measurement with its theoretical prediction $[2,3,4,5,6,7]$ based on bound-state QED we have determined a proton radius value of $r_{\mathrm{p}}=0.84184(67) \mathrm{fm}$. This new value differs by 5.0 standard deviations from the CODATA value of $0.8768(69) \mathrm{fm}$ [8], and 3 standard deviation from the e-p scattering results of $0.897(18) \mathrm{fm}$ [9]. The observed discrepancy may arise from a computational mistake of the energy levels in $\mu \mathrm{p}$ or H , or a fundamental problem in bound-state QED, an unknown effect related to the proton or the muon, or an experimental error.

Lamb shift and hyperfine splitting (1)

Negative μ beams at PSI are stopped in H_{2} gas target at 1 hPa and $20^{\circ} \mathrm{C}$
A) Formation of μp atoms in highly

excited states. 1\% populates the 2 S state ($\tau=1 \mu \mathrm{~s}$).
B) Laser excitation of 2S-2P transition
C) $2 S$ and $2 P$ energy levels. v_{s} and v_{p} : measured transitions

$$
\begin{aligned}
\frac{1}{4} h v_{\mathrm{s}}+\frac{3}{4} h v_{\mathrm{t}} & =\Delta E_{\mathrm{L}}+8.8123(2) \mathrm{meV} \\
h \mathrm{v}_{\mathrm{s}}-h \mathrm{v}_{\mathrm{t}} & =\Delta E_{\mathrm{HFS}}-3.2480(2) \mathrm{meV}
\end{aligned}
$$

Lamb shift and hyperfine splitting (1)

Negative μ beams at PSI are stopped ${ }^{\text {n }}$ in H_{2} gas target at 1 hPa and $20^{\circ} \mathrm{C}$
A) Formation of μp atoms in highly excited states. 1\% populates the 2 S state ($\tau=1 \mu \mathrm{~s}$).
B) Laser excitation of 2S-2P transition
C) $2 S$ and $2 P$ energy levels. v_{s} and v_{p} : measured transitions

An electron in S state has some probability to be inside the proton. The electric field (charge distribution) is modified by the proton size. The v_{s} and v_{p} transitions are affected by the proton size (few \%)

Lamb shift and hyperfine splitting

$\Delta E_{\text {finite size }}=\frac{2 \pi Z \alpha}{3} r_{\mathrm{E}}^{2}|\Psi(0)|^{2} \quad$ Atomic wave function at the origin

$|\Psi(0)|^{2} \approx m_{r}^{3}, m_{r}($ up system $) \cong 186 m_{e}$
H radius : $60000 \times \mathrm{p}$ radius
$\mu \mathrm{H}$ Bohr radius is ≈ 200 times smaller: larger sensitivity!

$$
\begin{aligned}
\frac{1}{4} h v_{\mathrm{s}}+\frac{3}{4} h v_{\mathrm{t}} & =\Delta E_{\mathrm{L}}+8.8123(2) \mathrm{meV} \\
h \mathrm{v}_{\mathrm{s}}-h \mathrm{v}_{\mathrm{t}} & =\Delta E_{\mathrm{HFS}}-3.2480(2) \mathrm{meV}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E_{\mathrm{L}}^{\exp }=202.3706(23) \mathrm{meV} \\
& \Delta E_{\mathrm{HFS}}^{\exp }=22.8089(51) \mathrm{meV}
\end{aligned}
$$

$\Delta E_{\mathrm{L}}^{\mathrm{th}}=206.0336(15)-5.2275(10) r_{\mathrm{E}}^{2}+\Delta E_{\mathrm{TPE}} \quad \Delta E_{\mathrm{TPE}}=0.0332(20) \mathrm{meV}$

$$
\begin{aligned}
r_{\mathrm{E}} & =0.84087(26)^{\exp }(29)^{\mathrm{th}} \mathrm{fm} \\
& =0.84087(39) \mathrm{fm}
\end{aligned}
$$

The proton radius puzzle

A Antognini ${ }^{1,2}$, F D Amaro ${ }^{3}$, F Biraben ${ }^{4}$, J M R Cardoso ${ }^{3}$, D S Covita ${ }^{5}$, A Dax ${ }^{6}$, S Dhawan ${ }^{6}$, L M P Fernandes ${ }^{3}$, A Giesen ${ }^{7}$, T Graf ${ }^{8}$, T W Hänsch ${ }^{1,9}$, P Indelicato ${ }^{4}$, L Julien ${ }^{4}$, C-Y Kao ${ }^{10}$, P Knowles ${ }^{11}$, F Kottmann ${ }^{2}$, E-O Le Bigot ${ }^{4}$, Y-W Liu ${ }^{10}$,

Abstract. B measured the ? this measurem we have detern standard devia from the e-p sc computational QED, an unkn
ulhauser ${ }^{11}$,

i^{3}, 13 ,
rogen $\left(\mu^{-} p\right)$ we have [z [1]. By comparing on bound-state QED N value differs by 5.0 3 standard deviation 1cy may arise from a oblem in bound-state ental error.

PHYSICS
The proton
Science 06 Oct 2017:
Vol. 358, 6359, pp. 39
DOI: 10.1126/
science.aao3969 radius revisited
Hydrogen spectroscopy brings a surprise in the search for a solution to a long-standing puzzle

$$
R p=0.8335(95) \mathrm{fm}
$$

Muoric hydrogen
spectroscopy

Beyer et al hydrogen spectroscopy

The $\mathbf{2 S}-\mathbf{4 P}$ transition is excited by one photon at a wavelength of 486 nm (Balmer- β). Its excitation is monitored by observing decay of the 4P state via primarily 97-nm Lyman- $\boldsymbol{\gamma}$ radiation.

new Rydberg constant, deuterium...

The SIZE of the proton

The Aetu Hork Eimes

Hadron physics: e-p scattering

ep-elastic scattering : Rosenbluth separation

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \frac{1}{(1+\tau)}\left(G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\bar{\varepsilon}} G_{M}^{2}\left(Q^{2}\right)\right) 1950
$$

0

Linearity of the reduced cross section

$\rightarrow \tan ^{2} \theta_{e}$ dependence
\rightarrow Holds for 1γ exchange only

Root mean square radius
In non-relativistic approach (and also in relativistic but in Breit frame)

$$
F(q)=\frac{\int_{\Omega} d^{3} \vec{x} e^{i \vec{q} \cdot \vec{x}} \rho(\vec{x})}{\int_{\Omega} d^{3} \vec{x} \rho(\vec{x})}
$$ FFs are Fourier transform of the density

density $\rho(r)$	Form factor $F\left(q^{2}\right)$	r.m.s. $<r_{c}^{2}>$	comments
δ	1	0	pointlike
$e^{-a r}$	$\frac{a^{4}}{\left(q^{2}+a^{2}\right)^{2}}$	$\frac{12}{a^{2}}$	dipole
$\frac{e^{-a r}}{r}$	$\frac{a^{2}}{q^{2}+a^{2}}$	$\frac{6}{a^{2}}$	monopole
$\frac{e^{-a r^{2}}}{r^{2}}$	$\frac{e^{-q^{2} /\left(4 a^{2}\right)}}{\rho_{0}}$for $x \leq R$ 0 for $r \geq R$	$\frac{3}{2 a}$	gaussian

Root mean square radius

$$
F(q)=\frac{\int_{\Omega} d^{3} \vec{x} e^{i \vec{q} \cdot \vec{x}} \rho(\vec{x})}{\int_{\Omega} d^{3} \vec{x} \rho(\vec{x})} .
$$

$$
<r_{c}^{2}>=\frac{\int_{0}^{\infty} x^{4} \rho(x) d x}{\int_{0}^{\infty} x^{2} \rho(x) d x}
$$

Expanding in Taylor series:

$$
F(q) \sim 1-\frac{1}{6} q^{2}<r_{c}^{2}>+O\left(q^{2}\right)
$$

$$
\left\langle r_{E / M}^{2}\right\rangle=-\left.\frac{6 \hbar^{2}}{G_{E / M}(0)} \frac{d G_{E / M}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}
$$

RMS is the limit of the form factor derivative for $Q^{2} \rightarrow 0$

\wp°

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
J. C. Bernauer, ${ }^{1, *}$ P. Achenbach, ${ }^{1}$ C. Ayerbe Gayoso, ${ }^{1}$ R. Böhm, ${ }^{1}$ D. Bosnar, ${ }^{2}$ L. Debenjak, ${ }^{3}$ M. O. Distler, ${ }^{1, \dagger}$ L. Doria, ${ }^{1}$ A. Esser, ${ }^{1}$ H. Fonvieille, ${ }^{4}$ J. M. Friedrich, ${ }^{5}$ J. Friedrich, ${ }^{1}$ M. Gómez Rodríguez de la Paz, ${ }^{1}$ M. Makek, ${ }^{2}$ H. Merkel, ${ }^{1}$ D. G. Middleton, ${ }^{1}$ U. Müller, ${ }^{1}$ L. Nungesser, ${ }^{1}$ J. Pochodzalla, ${ }^{1}$ M. Potokar, ${ }^{3}$ S. Sánchez Majos, ${ }^{1}$ B. S. Schlimme, ${ }^{1}$ S. Sirca, ${ }^{6,3}$ Th. Walcher, ${ }^{1}$ and M. Weinriefer ${ }^{1}$

Mainz, A1 collaboration (1400 points)

$\mathrm{Q}^{2}>0.004 \mathrm{GeV}^{2}$

- Radiative corrections
- Two photon exchange - Coulomb corrections

What about extrapolation to $Q^{2} \rightarrow 0$?
G.I. Gakh, A. Dbeyssi, E.T-G, D. Marchand,V.V. Bytev,

$$
\begin{aligned}
& \left\langle r_{E}^{2}\right\rangle^{1 / 2}=0.879(5)_{\text {stat }}(4)_{\text {syst }}(2)_{\text {model }}(4)_{\text {group }} \mathrm{fm}, \\
& \left\langle r_{M}^{2}\right\rangle^{1 / 2}=0.777(13)_{\text {stat }}(9)_{\text {syst }}(5)_{\text {model }}(2)_{\text {group }} \mathrm{fm} .
\end{aligned}
$$

 Phys.Part.Nucl.Lett. 10 (2013) 393, Phys.Rev. C84 (2011) 015212

Mainz ep elastic scattering

GEp

$$
\left\langle r_{E / M}^{2}\right\rangle=-\left.\frac{6 \hbar^{2}}{G_{E / M}(0)} \frac{\mathrm{d} G_{E / M}\left(Q^{2}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

GMp

Mainz ep elastic scattering

$$
\left|\left\langle r_{E / M}^{2}\right\rangle=-\frac{6 \hbar^{2}}{G_{E / M}(0)} \frac{\mathrm{d} G_{E / M}\left(Q^{2}\right)}{\mathrm{d} Q^{2}}\right|_{Q^{2}=0}
$$

1) Rosenbluth extraction

2) Direct extraction (assuming a function for FFs)

Spline

$$
\begin{aligned}
& \left\langle r_{E}^{2}\right\rangle^{\frac{1}{2}}=0.875(5)_{\text {stat. }}(4)_{\text {syst. }}(2)_{\text {model }} \mathrm{fm}, \\
& \left\langle r_{M}^{2}\right\rangle^{\frac{1}{2}}=0.775(12)_{\text {stat. }} .(9)_{\text {syst. }}(4)_{\text {model }} \mathrm{fm}
\end{aligned}
$$

Polynomial

$$
\begin{aligned}
\left\langle r_{E}^{2}\right\rangle^{\frac{1}{2}} & =0.883(5)_{\text {stat. }}(5)_{\text {syst. }}(3)_{\text {model }} \mathrm{fm}, \\
\left\langle r_{M}^{2}\right\rangle^{\frac{1}{2}} & =0.778\left({ }_{-15}^{+14}\right)_{\text {stat. }}(10)_{\text {syst. }}(6)_{\text {model }} \mathrm{fm} .
\end{aligned}
$$

Planned ep experiments

P=Áa

PNPI@MAMI: e and p detection
Combined recoiled proton@forward tracker detector

Proton-Electron Elastic Scattering

Polarization effects in elastic proton-electron scattering G. I. Gakh, A. Dbeyssi, D. Marchand, E. Tomasi-Gustafsson, and V. V. Bytev Phys. Rev. C 84, 015212 - Published 28 July 2011

Письма в ЭЧАЯ. 2013. Т. 10, № 5(182). С. 642-649
 PROTON-ELECTRON ELASTIC SCATTERING AND THE PROTON CHARGE RADIUS

G.I. Gakh, A. Dbeyssi,E. Tomasi-Gustafsson, D. Marchand, V.V. Bytev

Radiative corrections to elastic proton-electron scattering measured in coincidence
G. I. Gakh, M. I. Konchatnij, N. P. Merenkov, and E. Tomasi-Gustafsson Phys. Rev. C 95, 055207 - Published 30 May 2017

Proton-Electron Elastic Scattering

Inverse kinematics

Three possible applications:

1. Beam polarimeters for high energy polarized proton beams, Novosibirsk (1997)
2. Polarized (anti)protons (ASSIA, PAX at FAIR)
F. Rathman (1993), C. J. Horowitz and H. O. Meyer (1994),
A.I.~Milstein, S. G. Salnikov and V. M. Strakhovenko(2008),
T. Walcher, H. Arenhoevel (2006-2009) erratum;
S. O'Brien, N. H. Buttimore (2006)...
3. Proton Radius

Proton-Electron Elastic Scattering

- Inverse kinematics :

- Specific kinematics:
- very small scattering angles
- very small transferred momenta
- 'Equivalent total energy s' $E=\frac{M}{m} \epsilon \sim 2000 \epsilon$.
A.I Akhiezer and M.P. Rekalo,

Hadron Electrodynamics, Naukova Dumka, Kiev (1977)

Proton-electron elastic scattering: The differential cross section

$$
\frac{d \sigma}{d \Omega_{e}}=\frac{1}{32 \pi^{2}} \frac{1}{m p} \frac{\vec{k}_{2}^{3}}{-k^{2}} \frac{|\mathcal{M}|^{2}}{E+m}
$$

The electron mass can not be neglected

- Interesting structure in the GeV region

Steep rise at small energy

The cross section at $\mathrm{E}=100 \mathrm{MeV}$

- Cross section is huge
- Only Electric FF contributes!

$$
\frac{d \sigma}{d Q^{2}}=\frac{\pi \alpha^{2}}{2 m^{2} \vec{p}^{2}} \frac{\mathcal{D}}{Q^{4}}
$$

$$
\begin{aligned}
\mathcal{D}= & -Q^{2}\left(-Q^{2}+2 m^{2}\right) G_{M}^{2}+2\left[G_{E}^{2}+\tau G_{M}^{2}\right] \\
& {\left[-Q^{2} M^{2}+\frac{1}{1+\tau}\left(2 m E-\frac{Q^{2}}{2}\right)^{2}\right], }
\end{aligned}
$$

$$
\tau=\frac{Q^{2}}{4 M^{2}}
$$

Proton-Electron Kinematics ($\mathrm{E}=100 \mathrm{MeV}$)

k^{2} proportional to $m^{2}!!$

Low Q² Form Factor Parametrizations

Radial expansion

$$
\frac{G_{E, M}\left(q^{2}\right)}{G_{E, M}(0)}=1+\frac{1}{6} q^{2} r_{E, M}^{2}+O\left(q^{4}\right),
$$

$$
G_{E}=1+3.496 q^{2}, \quad G_{M}=2.793+8.65 q^{2} . \quad<r^{2}>=0.814
$$

Expansion to $4^{\text {th }}$ order:
Dipole fit $\quad G_{E}\left(q^{2}\right)=G, G_{M}\left(q^{2}\right)=\mu_{p} G, G=\left(1-1.41 q^{2}\right)^{-2}$,

$$
G_{E}=1+2.82 q^{2}+5.96 q^{4}, G_{M}=2.793+7.88 q^{2}+16.65 q^{4}
$$

Low Q ${ }^{2}$

$$
G_{E}\left(q^{2}\right)=\left(1-1.517 q^{2}\right)^{-2}, G_{M}\left(q^{2}\right)=\mu_{p}\left(1-1.37 q^{2}\right)^{-2}
$$

$$
G_{E}=1+3.034 q^{2}+6.91 q^{4}, G_{M}=2.793+7.65 q^{2}+15.72 q^{4} .
$$

Sum of monopoles

$$
F_{1}\left(q^{2}\right)=\sum_{1}^{3} \frac{n_{i}}{d_{i}-q^{2}}, F_{2}\left(q^{2}\right)=\sum_{1}^{3} \frac{m_{i}}{g_{i}-q^{2}},
$$

$$
\left\langle\mathrm{r}^{2}\right\rangle=0.657
$$

$$
<\mathrm{r}^{2}>=0.706
$$

$G_{E}=1+3.017 q^{2}+7.22 q^{4}, \quad G_{M}=2.793+8.239 q^{2}+20.31 q^{4}<\mathbf{r}^{2}>=0.702$

Dispersion analysis of the nucleon form factors including meson continua
M. A. Belushkin* and H.-W. Hammer ${ }^{\dagger}$

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

Helmholtz-Institut für Strahlen- und Ke

Superconvergent relations pQCD asymptotics Broad resonance $2 \pi, \mathrm{KK}, \rho \pi$ continuum

(Rec)

Ulf-G. Meißner ${ }^{\ddagger}$

Dispersion analysis of the nucleon form factors including meson continua
M. A. Belushkin* and H.-W. Hammer ${ }^{\dagger}$

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

Helmholtz-Institut für Strahlen- und Ke
Ulf-G. Meißner ${ }^{\ddagger}$

Superconvergent

 relations pQCD asymptotics Broad resonance $2 \pi, \mathrm{KK}, \rho \pi$ continuumInstitut für Kernphysi
(Re

Rec

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin* and H.-W. Hammer ${ }^{\dagger}$
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany
\section*{Ulf-G. Meißner ${ }^{\ddagger}$}
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany and Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 4 September 2006; published 6 March 2007)

	SC approach	Explicit pQCD app.	Ref. [23]	Recent determ.
$r_{E}^{p}(\mathrm{fm})$	$0.844(0.840 \ldots 0.852)$	$0.830(0.822 \ldots 0.835)$	0.848	$0.886(15)[72-74]$
$r_{M}^{p}(\mathrm{fm})$	$0.854(0.849 \ldots 0.859)$	$0.850(0.843 \ldots 0.852)$	0.857	$0.855(35)[73,75]$
$\left(r_{E}^{n}\right)^{2}\left(\mathrm{fm}^{2}\right)$	$-0.117(-0.11 \ldots-0.128)$	$-0.119(-0.108 \ldots-0.13)$	-0.12	$-0.115(4)[52]$
$r_{M}^{n}(\mathrm{fm})$	$0.862(0.854 \ldots 0.871)$	$0.863(0.859 \ldots 0.871)$	0.879	$0.873(11)[76]$

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin ${ }^{*}$ and H.-W. Hammer ${ }^{\dagger}$
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany
Ulf-G. Meißner ${ }^{\ddagger}$
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany and Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 4 September 2006; published 6 March 2007)

ArXiv 1406.2962v2[Hep-ph]

Reduction of the proton radius discrepancy by 3σ

I. T. Lorenz ${ }^{1, *}$ and Ulf-G. Meißner ${ }^{1,2, 円}$
${ }^{1}$ Helmholtz-Institut fiur Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
${ }^{2}$ Institute for Advanced Simulation, Institut fiir Kernphysik and Jillich Center for Hadron Physics, Forschungszentrum Jiilich, D-52425 Jillich, Germany

We show that in previous analyses of electron-proton scattering, the uncertainties in the statistical procedure to extract the proton charge radius are underestimated. Using a fit function based on a conformal mapping, we can describe the scattering data with high precision and extract a radius value in agreement with the one obtained from muonic hydrogen.

Why I do not trust the fits

Slide from Savely Karshenboim

Why I do not trust the fits

 Slide from Savely Karshenboim

Conclusions

Discrepancy between the determination of the proton radius

- CODATA (ep scattering \& H) and muonic hydrogen
- ep elastic scattering and $\mu \mathrm{H}$
- Recent and previous Hydrogen Lamb shift experiments
- Tension between analysis of ep-scattering: extrapolation to $Q^{2}=0$!!!

The problem is on derivatives, not on observables!

- Our contribution:
- Very low transferred momenta can be reached by proton-electron elastic scattering (inverse kinematics)
- Fully relativistic description of proton-electron scattering: kinematics, differential cross section, polarization phenomena and radiative corrections

The unpolarized cross section (I)

- The matrix element

$$
\mathcal{M}=\frac{e^{2}}{k^{2}} j_{\mu} J_{\mu}
$$

- The leptonic tensor

$$
j_{\mu}=\bar{u}\left(k_{2}\right) \gamma_{\mu} u\left(k_{1}\right),
$$

- The hadronic tensor

$$
\begin{aligned}
J_{\mu} & =\bar{u}\left(p_{2}\right)\left[F_{1}\left(k^{2}\right) \gamma_{\mu}-\frac{1}{2 M} F_{2}\left(k^{2}\right) \sigma_{\mu \nu} k_{\nu}\right] u\left(p_{1}\right) \\
& =\bar{u}\left(p_{2}\right)\left[G_{M}\left(k^{2}\right) \gamma_{\mu}-F_{2}\left(k^{2}\right) P_{\mu}\right] u\left(p_{1}\right) .
\end{aligned}
$$

$$
P_{\mu}=\left(p_{1}+p_{2}\right)_{\mu} /(2 M) .
$$

$$
\begin{aligned}
& G_{M}\left(k^{2}\right)=F_{1}\left(k^{2}\right)+F_{2}\left(k^{2}\right) \\
& G_{E}\left(k^{2}\right)=F_{1}\left(k^{2}\right)-\tau F_{2}\left(k^{2}\right)
\end{aligned}
$$

The proton kinematics (E=100 MeV)

Proton-Electron Kinematics

$E(e)-\cos \theta(e)$

$\cos \theta(p)-\cos \theta(e)$

Hadron Electromagnetic Form Factors

Proton-Electron elastic scattering

$$
\left(-k^{2}\right)_{\max }=\frac{4 m^{2}\left(E^{2}-M^{2}\right)}{M^{2}+2 m E+m^{2}}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{dk}^{2}}\left[\mathrm{mb} / \mathrm{GeV}^{2}\right]
$$

k^{2} proportional to $m^{2}!!$
Extraction of electromagnetic form factors for $k^{2} \rightarrow 0$

Applications I

Polarimetry of high energy (anti)proton beams

Polarization phenomena

1) Polarization transfer coefficients

$$
p+\vec{e} \rightarrow \vec{p}+e
$$

2) Spin correlation coefficients

$$
\vec{p}+\vec{e} \rightarrow p+e
$$

3) Depolarization coefficients

$$
\vec{p}+e \rightarrow \vec{p}+e
$$

Depolarization coefficients

- Initial and final proton spins
- The polarized cross section

$$
\frac{d \sigma}{d k^{2}}\left(\eta_{1}, \eta_{2}\right)=\left(\frac{d \sigma}{d k^{2}}\right)_{u n}\left[1+D_{t t} S_{1 t} S_{2 t}+D_{n n} S_{1 n} S_{2 n}+D_{\ell \ell} S_{1 \ell} S_{2 \ell}+D_{t \ell} S_{1 t} S_{2 \ell}+D_{\ell t} S_{1 \ell} S_{2 t}\right]
$$

- The coefficients

$$
\begin{aligned}
\mathcal{D} D\left(\eta_{1}, \eta_{2}\right)= & 2(1+\tau)^{-1}\left\{k \cdot \eta_{1} k \cdot \eta_{2} G_{M}\left(k^{2}\right)\left[k^{2}\left(G_{M}\left(k^{2}\right)-G_{E}\left(k^{2}\right)\right)+2 m^{2}(1+\tau) G_{M}\left(k^{2}\right)\right]\right. \\
& +k^{2}(1+\tau) G_{M}^{2}\left(k^{2}\right)\left(2 k_{1} \cdot \eta_{2} k_{2} \cdot \eta_{1}-m^{2} \eta_{1} \cdot \eta_{2}\right) \\
& +4 G_{M}\left(k^{2}\right)\left(k \cdot \eta_{1} k_{1} \cdot \eta_{2}-k \cdot \eta_{2} k_{1} \cdot \eta_{1}\right)\left[M^{2} \tau\left(G_{E}\left(k^{2}\right)-G_{M}\left(k^{2}\right)\right)\right. \\
& \left.+m E\left(G_{E}\left(k^{2}\right)+\tau G_{M}\left(k^{2}\right)\right)\right] \\
& \left.-\eta_{1} \cdot \eta_{2}\left(G_{E}^{2}\left(k^{2}\right)+\tau G_{M}^{2}\left(k^{2}\right)\right)\left[k^{2}\left(M^{2}-2 m E\right)+4 m^{2} E^{2}\right]\right\} .
\end{aligned}
$$

Polarization

- Polarized lepton tensor

$$
L_{\mu \nu}^{(p)}=2 i m \epsilon_{\mu \nu \alpha \beta} k_{\alpha} S_{\beta},
$$

- Polarized hadronic tensor

$$
\begin{aligned}
W_{\mu \nu}\left(\eta_{j}\right)= & -2 i G_{M}\left(k^{2}\right)\left[M G_{M}\left(k^{2}\right) \epsilon_{\mu \nu \alpha \beta} k_{\alpha} \eta_{j \beta}+\right. \\
& \left.+F_{2}\left(k^{2}\right)\left(P_{\mu} \epsilon_{\nu \alpha \beta \gamma}-P_{\nu} \epsilon_{\mu \alpha \beta \gamma}\right) p_{1 \alpha} p_{2 \beta} \eta_{j \gamma}\right]
\end{aligned}
$$

The transverse beam polarization induces effects smaller by M/E

Polarization transfer coefficients

- Initial electron and final proton spin

$$
S \equiv(0, \vec{\xi}), \eta_{2} \equiv\left(\frac{1}{M} \vec{p}_{2} \cdot \vec{S}_{2}, \vec{S}_{2}+\frac{\vec{p}_{2}\left(\vec{p}_{2} \cdot \vec{S}_{2}\right)}{M\left(E_{2}+M\right)}\right)
$$

- The polarized cross section

$$
\frac{d \sigma}{d k^{2}}\left(\vec{\xi}, \vec{S}_{2}\right)=\left(\frac{d \sigma}{d k^{2}}\right)_{u n}\left[1+T_{\ell \ell} \xi_{e} S_{2 \ell}+T_{n n} \xi_{n} S_{2 n}+T_{t t} \xi_{t} S_{2 t}+T_{t t} \xi_{\ell} S_{2 t}+T_{t \in} \xi_{t} S_{2 \ell}\right],
$$

- The coefficients
$\mathcal{D} T\left(S, \eta_{2}\right)=4 m M G_{M}\left(k^{2}\right)\left[G_{E}\left(k^{2}\right)\left(k \cdot S k \cdot \eta_{2}-k^{2} S \cdot \eta_{2}\right)-k^{2} F_{2}\left(k^{2}\right) P \cdot S P \cdot \eta_{2}\right]$

Polarization transfer coefficients $t^{t^{0}} \square p+\vec{e} \rightarrow \vec{p}+e$
$\theta_{\mathrm{e}}=30 \mathrm{mrad}$
$\theta_{\mathrm{e}}=10 \mathrm{mrad}$
$\theta_{\mathrm{e}}=0$
$\theta_{\mathrm{e}}=50 \mathrm{mrad}$
$E[\mathrm{GeV}]$

Polarization correlation coefficients

- Initial electron and proton spins

$$
S \equiv(0, \vec{\xi}), \eta_{1}=\left(\frac{\vec{p} \cdot \vec{S}_{1}}{M}, \vec{S}_{1}+\frac{\vec{p}\left(\vec{p} \cdot \vec{S}_{1}\right)}{M(E+M)}\right)
$$

- The polarized cross section

$$
\frac{d \sigma}{d k^{2}}\left(\vec{\xi}, \vec{S}_{1}\right)=\left(\frac{d \sigma}{d k^{2}}\right)_{u n}\left[1+C_{\ell \ell} \xi_{\ell} S_{1 \ell}+C_{t t} \xi_{t} S_{1 t}+C_{n n} \xi_{n} S_{1 n}+C_{\ell t} \xi_{\ell} S_{1 t}+C_{t \ell} \xi_{t} S_{1 \ell}\right]
$$

- The coefficients
$\mathcal{D} C\left(S, \eta_{1}\right)=8 m M G_{M}\left(k^{2}\right)\left[\left(k \cdot S k \cdot \eta_{1}-k^{2} S \cdot \eta_{1}\right) G_{E}\left(k^{2}\right)+\tau k \cdot \eta_{1}\left(k \cdot S+2 p_{1} \cdot S\right) F_{2}\left(k^{2}\right)\right]$,

Spin correlation coefficients

$\theta_{\mathrm{e}}=30 \mathrm{mrad}$
$\theta_{\mathrm{e}}=10 \mathrm{mrad}$
$\theta_{\mathrm{e}}=0$
$\theta_{\mathrm{e}}=50 \mathrm{mrad}$

Polarization by Spin Flip?

Ongoing experiments:
Spin Filtering with polarized targets Spin Filtering with antiprotons at AD (CERN)

Figure of Merit

$$
\mathcal{F}^{2}\left(\theta_{p}\right)=\epsilon\left(\theta_{p}\right) A_{i j}^{2}\left(\theta_{p}\right), \quad \epsilon\left(\theta_{p}\right)=N_{f}\left(\theta_{p}\right) / N_{i}
$$

$$
\left(\frac{\Delta P\left(\theta_{p}\right)}{P}\right)^{2}=\frac{2}{N_{i}\left(\theta_{p}\right) \mathcal{F}^{2}\left(\theta_{p}\right) P^{2}}=\frac{2}{L t_{m}(d \sigma / d \Omega) d \Omega A_{i j}^{2}\left(\theta_{p}\right) P^{2}},
$$

$\vec{p}+\vec{e} \rightarrow p+e$
$\theta_{\mathrm{e}}=30 \mathrm{mrad}$
$\theta_{\mathrm{e}}=10 \mathrm{mrad}$
$\theta_{\mathrm{e}}=0$
$\theta_{\mathrm{e}}=50 \mathrm{mrad}$

Figure of Merit

$$
\mathcal{F}^{2}\left(\theta_{p}\right)=\epsilon\left(\theta_{p}\right) A_{i j}^{2}\left(\theta_{p}\right), \quad \epsilon\left(\theta_{p}\right)=N_{f}\left(\theta_{p}\right) / N_{i}
$$

$$
\left(\frac{\Delta P\left(\theta_{p}\right)}{P}\right)^{2}=\frac{2}{N_{i}\left(\theta_{p}\right) \mathcal{F}^{2}\left(\theta_{p}\right) P^{2}}=\frac{2}{L t_{m}(d \sigma / d \Omega) d \Omega A_{i j}^{2}\left(\theta_{p}\right) P^{2}},
$$

$\vec{p}+\vec{e} \rightarrow p+e$
$\theta_{\mathrm{e}}=30 \mathrm{mrad}$
$\theta_{\mathrm{e}}=10 \mathrm{mrad}$
$\theta_{\mathrm{e}}=0$
$\theta_{\mathrm{e}}=50 \mathrm{mrad}$

Polarimetry

Polarized beam

 on polarized target$$
F^{2}=\int \frac{d \sigma}{d k^{2}} A_{i j}^{2}\left(k^{2}\right) \mathrm{d} k^{2}
$$

F^{2} Max at $E \sim 10 \mathrm{GeV}$
$L=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
N beam $=6 \times 10^{17} p s^{-1}$
N target $=2 \times 10^{14}$ atomes $/ \mathrm{cm}^{2}$

$\Delta P=1 \%$ in $t=3 \mathrm{~m}$

Radiative corrections to elastic proton-electron scattering measured in coincidence
G. I. Gakh, M. I. Konchatnij, N. P. Merenkov, and E. Tomasi-Gustafsson Phys. Rev. C 95, 055207 - Published 30 May 2017

Soft Radiative Corrections (α^{3}) Hard Radiative Corrections

Soft Radiative Corrections $\left(\alpha^{3}\right)$

$$
d \sigma^{(R C)}=\left(1+\delta_{1}+\delta_{2}+\delta^{(s)}+\delta^{(\mathrm{vac})}\right) d \sigma^{(B)}=\left(1+\delta_{0}+\bar{\delta}+\delta^{(\mathrm{vac})}\right) d \sigma^{(B)}
$$

$$
\delta_{0}=\frac{2 \alpha}{\pi} \ln \frac{\bar{\omega}}{m}\left[\frac{\epsilon_{2}}{k_{2}} \ln \left(\frac{\epsilon_{2}+k_{2}}{m}\right)-1\right]
$$

$$
\bar{\delta}=\frac{\alpha}{\pi}\left\{-1-2 \ln 2+\frac{\epsilon_{2}}{k_{2}}\left[\operatorname { l n } (\frac { \epsilon _ { 2 } + k _ { 2 } } { m }) \left(1+\ln \left(\frac{\epsilon_{2}+k_{2}}{m}\right)+2 \ln \left(\frac{m}{k_{2}}\right)+\frac{m+3 \epsilon_{2}}{2 \epsilon_{2}}-\right.\right.\right.
$$

$$
\left.-\ln \left(\frac{\epsilon_{2}+m}{k_{2}}\right)-\frac{1}{2} \ln \left(\frac{Q^{2}}{m^{2}}\right)\right)+4 m \frac{M^{2} q^{2}}{\epsilon_{2} \mathcal{D}} \ln \left(\frac{\epsilon_{2}+k_{2}}{m}\right)\left(G_{E}^{2}-2 \tau G_{M}^{2}\right)-
$$

$$
\left.\left.-\frac{\pi^{2}}{6}+L i_{2}\left(\frac{\epsilon_{2}-k_{2}}{\epsilon_{2}+k_{2}}\right)+L i_{2}\left(\frac{\epsilon_{2}+k_{2}+m}{2\left(\epsilon_{2}+m\right)}\right)-L i_{2}\left(\frac{\epsilon_{2}-k_{2}+m}{2\left(\epsilon_{2}+m\right)}\right)\right]\right\}
$$

$$
\delta^{(\mathrm{vac})}=\frac{2 \alpha}{3 \pi}\left\{-\frac{5}{3}+4 \frac{m^{2}}{Q^{2}}+\left(1-2 \frac{m^{2}}{Q^{2}}\right) \sqrt{1+4 \frac{m^{2}}{Q^{2}}} \ln \frac{\sqrt{1+4 \frac{m^{2}}{Q^{2}}}+1}{\sqrt{1+4 \frac{m^{2}}{Q^{2}}}-1}\right\}
$$

Cross section and FFs

Born cross section with dipole FFs

$$
R^{r}=1-\frac{d \sigma^{r}}{d \sigma^{s d}}, \quad R^{m}=1-\frac{d \sigma^{m}}{d \sigma^{s d}}, \quad R^{z}=1-\frac{d \sigma^{z}}{d \sigma^{s d}},
$$

Hard Radiative Corrections (α^{3})

Kinematically allowed region -for proton $\left(E_{2}\right)$ and

- electron $\left(\varepsilon_{2}\right)$ energy

Maximum energy of the hard photon Emitted in the whole solid angle

$$
\bar{y}=\left[\left(m-\epsilon_{2}\right)\left(E-\epsilon_{2}-\omega\right)+\right.
$$

$$
\sqrt{\epsilon_{2}^{2}-m^{2}} \sqrt{\left.\left(E+m-\epsilon_{2}-\omega\right)^{2}-M^{2}\right]} / \omega \text {. }
$$

Results for Hard Photon Corrections $\left(\alpha^{3}\right)$

Results for Radiative Corrections (α^{3})

----soft hard

Sensitivity of RC to FFs

$$
P^{i}=\frac{1+\delta_{\mathrm{tot}}^{i}}{1+\delta_{\mathrm{tot}}}-1, \quad i=r, m
$$

$\delta_{\text {tot }}: R C$ for dipole parametrization

Application

Precise measurement of the proton radius

The SPIN of the proton

$\mathrm{S}=1 / 2$
$\Delta \Sigma+\Delta \mathrm{G}+\mathrm{L}$

Quarks

gluons
 orbital momentum

Measured: ~ $1 / 4$

And if ... a proof of quark substructure?

RC : what we learned

- The sensitivity of the cross section to FFs grows with proton beam energy
- The hard photon correction depends on the uncertainty in the energy of the scattered particles
- Strong cancellation between the positive hard correction and the negative virtual and soft: at $\mathrm{E}=100 \mathrm{GeV} \delta s \sim \delta h \sim 20$ $\%$, but the sum $\delta \sim 6 \%$
- Taking into account the proton structure does not change essentially the estimation at so small Q^{2}
- Two photon exchange is $\sim 0.1 \%$
- Model independent radiative corrections for pe elastic scattering have been calculated for a cross section measured at permille accuracy.
- Model dependent corrections are small and can not affect the cross section

