

Critical Remarks on the Determination of The Proton Charge Radius

Egle Tomasi-Gustafsson CEA, IRFU, DPhN and Université Paris-Saclay, France in collaboration with G.I. Gakh, M.I. Konchatnji, N.P. Merenkov NSC-KFTI Kharkov

Café DPhN, 15 Janvier 2018

The SIZE of the proton

Cea

The proton

- Hadrons are 96% of visible matter
- Proton is the the most common particle in nature
- Its fundamental properties as
 - Mass
 - Spin
 - Size

are still object of controversy

The MASS of the proton

Mp=938,2720 MeV/c²

Masses u-quark=1.5-4 MeV/c² d-quark=4-8 MeV/c²

The MASS of the proton

dynamically created by the strong interaction

Mp=938,2720 MeV/c²

International Nuclear Physics Conference 2010 (INPC2010)

Journal of Physics: Conference Series 312 (2011) 032002

doi:10.1088/1742-6596/312/3/032002

The proton radius puzzle

A Antognini^{1,2}, F D Amaro³, F Biraben⁴, J M R Cardoso³, D S Covita⁵, A Dax⁶, S Dhawan⁶, L M P Fernandes³, A Giesen⁷, T Graf⁸, T W Hänsch^{1,9}, P Indelicato⁴, L Julien⁴, C-Y Kao¹⁰, P Knowles¹¹, F Kottmann², E-O Le Bigot⁴, Y-W Liu¹⁰, J A M Lopes³, L Ludhova¹¹, C M B Monteiro³, F Mulhauser¹¹, T Nebel¹, F Nez⁴, P Rabinowitz¹², J M F dos Santos³, L A Schaller¹¹, K Schuhmann⁷, C Schwob⁴, D Taqqu¹³, J F C A Veloso⁵ and R Pohl¹

Abstract. By means of pulsed laser spectroscopy applied to muonic hydrogen $(\mu^- p)$ we have measured the $2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$ transition frequency to be 49881.88(76) GHz [1]. By comparing this measurement with its theoretical prediction [2, 3, 4, 5, 6, 7] based on bound-state QED we have determined a proton radius value of $r_{\rm p} = 0.84184(67)$ fm. This new value differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm [8], and 3 standard deviation from the e-p scattering results of 0.897(18) fm [9]. The observed discrepancy may arise from a computational mistake of the energy levels in μ p or H, or a fundamental problem in bound-state QED, an unknown effect related to the proton or the muon, or an experimental error.

Lamb shift and hyperfine splitting (1)

Lamb shift and hyperfine splitting (1)

An electron in S state has some probability to be inside the proton. The electric field (charge distribution) is modified by the proton size. The v_s and v_ptransitions are affected by the proton size (few %)

Lamb shift and hyperfine splitting

$$\Delta E_{\text{finite size}} = \frac{2\pi Z\alpha}{3} r_{\text{E}}^{2} |\Psi(0)|^{2} \qquad \text{Atomic wave function at the origin}$$

$$|\Psi(0)|^{2} \approx m_{\text{r}}^{3}, m_{\text{r}}(\mu p \text{ system}) \cong 186 m_{\text{e}}$$
H radius : 60000 × p radius
 µH Bohr radius is ≈ 200 times smaller: larger sensitivity!
$$\frac{1}{4} hv_{\text{s}} + \frac{3}{4} hv_{\text{t}} = \Delta E_{\text{L}} + 8.8123(2) \text{meV}$$

$$hv_{\text{s}} - hv_{\text{t}} = \Delta E_{\text{HFS}} - 3.2480(2) \text{meV}$$

$$\Delta E_{\text{HFS}}^{\exp} = 22.8089(51) \text{ meV}$$

$$\Delta E_{\rm L}^{\rm th} = 206.0336(15) - 5.2275(10)r_{\rm E}^2 + \Delta E_{\rm TPE}$$

$$\Delta E_{\rm TPE} = 0.0332(20) \text{ meV}$$

$$r_{\rm E} = 0.84087(26)^{\rm exp}(29)^{\rm th}$$
 fm
= 0.84087(39) fm

Journal of Physics: Conference Series 312 (2011) 032002

doi:10.1088/1742-6596/312/3/032002

IOP Publishing

The proton radius puzzle

A Antognini^{1,2}, F D Amaro³, F Biraben⁴, J M R Cardoso³, D S Covita⁵, A Dax⁶, S Dhawan⁶, L M P Fernandes³, A Giesen⁷, T Graf⁸, T W Hänsch^{1,9}, P Indelicato⁴, L Julien⁴, C-Y Kao¹⁰, P Knowles¹¹, F Kottmann², E-O Le Bigot⁴, Y-W Liu¹⁰, ulhauser¹¹, $\mathbf{s}^{3},$ our value delayed / prompt events [10⁻⁴ CODATA-06 13e-p scattering H₂O calib. Abstract. B rogen $(\mu^- p)$ we have measured the 1 Iz [1]. By comparing on bound-state QED this measurem we have detern v value differs by 5.0 standard devia 3 standard deviation 2 ıcy may arise from a from the e-p so computational <u>oblem in bound-state</u> QED, an unkn nental error. 49.8 49.85 49.9 49,95 49.75

laser frequency [THz]

SPhN, 15-I-2018

Cea

Egle Tomasi-Gustafsson

12

The SIZE of the proton

Cea

Hadron physics: e-p scattering

ep-elastic scattering : Rosenbluth separation

Root mean square radius

In *non-relativistic approach* (and also in relativistic but in *Breit frame*) FFs are Fourier transform of the density

density	Form factor	r.m.s.	comments
$\rho(r)$	$F(q^2)$	$< r_{c}^{2} >$	
δ	1	0	pointlike
e^{-ar}	$\frac{a^4}{(q^2+a^2)^2}$	$\frac{12}{a^2}$	dipole
$\frac{e^{-ar}}{r}$	$\frac{a^2}{q^2 + a^2}$	$\frac{6}{a^2}$	monopole
$\frac{e^{-ar^2}}{r^2}$	$e^{-q^2/(4a^2)}$	$\frac{1}{2a}$	gaussian
$\rho_0 \text{for} x \le R$	$\frac{3(\sin X - X\cos X)}{X^3}$	$\frac{3}{5}R^2$	square well
0 for $r \ge R$	X = qR		

 $\frac{\int_{\Omega} d^3 \vec{x} e^{i\vec{q}\cdot\vec{x}}\rho(\vec{x})}{\int d^3 \vec{x} \rho(\vec{x})}$

 $\mathbf{F}(q)$

Root mean square radius

$$F(q) = \frac{\int_{\Omega} d^3 \vec{x} e^{i\vec{q}\cdot\vec{x}} \rho(\vec{x})}{\int_{\Omega} d^3 \vec{x} \rho(\vec{x})}.$$

$$< r_c^2 >= \frac{\int_0^\infty x^4 \rho(x) dx}{\int_0^\infty x^2 \rho(x) dx}.$$

Expanding in Taylor series:

$$F(q) \sim 1 - \frac{1}{6}q^2 < r_c^2 > +O(q^2),$$

$$\langle r_{E/M}^2 \rangle = -\frac{6\hbar^2}{G_{E/M}(0)} \frac{dG_{E/M}(Q^2)}{dQ^2} \Big|_{Q^2=0}.$$

RMS is the limit of the **form factor derivative** for $Q^2 \rightarrow 0$

G

High-Precision Determination of the Electric and Magnetic Form Factors of the Proton

J. C. Bernauer,^{1,*} P. Achenbach,¹ C. Ayerbe Gayoso,¹ R. Böhm,¹ D. Bosnar,² L. Debenjak,³ M. O. Distler,^{1,†} L. Doria,¹ A. Esser,¹ H. Fonvieille,⁴ J. M. Friedrich,⁵ J. Friedrich,¹ M. Gómez Rodríguez de la Paz,¹ M. Makek,² H. Merkel,¹ D. G. Middleton,¹ U. Müller,¹ L. Nungesser,¹ J. Pochodzalla,¹ M. Potokar,³ S. Sánchez Majos,¹ B. S. Schlimme,¹ S. Širca,^{6,3} Th. Walcher,¹ and M. Weinriefer¹

Mainz, A1 collaboration (1400 points)

Coulomb corrections

What about extrapolation to Q²→ 0?

 $\langle r_E^2 \rangle^{1/2} = 0.879(5)_{\text{stat}}(4)_{\text{syst}}(2)_{\text{model}}(4)_{\text{group}}$ fm, $\langle r_M^2 \rangle^{1/2} = 0.777(13)_{\text{stat}}(9)_{\text{syst}}(5)_{\text{model}}(2)_{\text{group}}$ fm.

 $Q^2 > 0.004 \text{ GeV}^2$

G.I. Gakh, A. Dbeyssi, E.T-G, D. Marchand, V.V. Bytev, Phys.Part.Nucl.Lett. 10 (2013) 393, Phys.Rev. C84 (2011) 015212

Mainz ep elastic scattering

Mainz ep elastic scattering

$$\left\langle r_{E/M}^{2}\right\rangle = -\frac{6\hbar^{2}}{G_{E/M}\left(0\right)} \left.\frac{\mathrm{d}G_{E/M}\left(Q^{2}\right)}{\mathrm{d}Q^{2}}\right|_{Q^{2}=0}$$

1) Rosenbluth extraction

2) Direct extraction(assuming a function for FFs)

Spline $\langle r_E^2 \rangle^{\frac{1}{2}} = 0.875(5)_{\text{stat.}}(4)_{\text{syst.}}(2)_{\text{model}} \text{ fm},$ $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.775(12)_{\text{stat.}}(9)_{\text{syst.}}(4)_{\text{model}} \text{ fm}$

Polynomial

$$\langle r_E^2 \rangle^{\frac{1}{2}} = 0.883(5)_{\text{stat.}}(5)_{\text{syst.}}(3)_{\text{model}} \text{ fm},$$

 $\langle r_M^2 \rangle^{\frac{1}{2}} = 0.778(^{+14}_{-15})_{\text{stat.}}(10)_{\text{syst.}}(6)_{\text{model}} \text{ fm}.$

Planned ep experiments

Proton-Electron Elastic Scattering

Polarization effects in elastic proton-electron scattering

G. I. Gakh, A. Dbeyssi, D. Marchand, E. Tomasi-Gustafsson, and V. V. Bytev Phys. Rev. C **84**, 015212 – Published 28 July 2011

Письма в ЭЧАЯ. 2013. Т. 10, № 5(182). С. 642–649 **PROTON–ELECTRON ELASTIC SCATTERING AND THE PROTON CHARGE RADIUS**

G.I. Gakh, A. Dbeyssi, E. Tomasi-Gustafsson, D. Marchand, V.V. Bytev

Radiative corrections to elastic proton-electron scattering measured in coincidence

G. I. Gakh, M. I. Konchatnij, N. P. Merenkov, and E. Tomasi-Gustafsson Phys. Rev. C **95**, 055207 – Published 30 May 2017

Proton-Electron Elastic Scattering

Inverse kinematics Three possible applications:

1. Beam polarimeters for high energy polarized proton beams, Novosibirsk (1997)

2. Polarized (anti)protons (ASSIA, PAX at FAIR) F. Rathman (1993), C. J. Horowitz and H. O. Meyer (1994), A.I.~Milstein, S. G. Salnikov and V. M. Strakhovenko(2008), T. Walcher, H. Arenhoevel (2006-2009) erratum; S. O'Brien, N. H. Buttimore (2006)...

3. Proton Radius

Proton-Electron Elastic Scattering

- Inverse kinematics : $p(p_1)$ projectile heavier than the target \rightarrow take into account the electron mass
- Specific kinematics:
 - very small scattering angles
 - very small transferred momenta
- 'Equivalent total energy s'

$$E = \frac{M}{m} \epsilon \sim 2000 \ \epsilon$$

e(k)

A.I Akhiezer and M.P. Rekalo, Hadron Electrodynamics, Naukova Dumka, Kiev (1977)

Cez

p(p

(k)

e⁻(k₂

Proton-electron elastic scattering: The differential cross section

Steep rise at small energy

Cez

The cross section at E=100 MeV

Cea

Proton-Electron Kinematics (E=100 MeV)

Cea

SPhN, 15-I-2018

Cez

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin^{*} and H.-W. Hammer[†]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

SPhN, 15-I-2018

Cea

Egle Tomasi-Gustafsson

29

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin^{*} and H.-W. Hammer[†]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin^{*} and H.-W. Hammer[†]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

Ulf-G. Meißner[‡]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany and Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 4 September 2006; published 6 March 2007)

	SC approach	Explicit pQCD app.	Ref. [23]	Recent determ.
r_E^p (fm)	0.844 (0.840 0.852)	0.830 (0.8220.835)	0.848	0.886(15) [72–74]
r_M^p (fm)	0.854 (0.8490.859)	0.850 (0.8430.852)	0.857	0.855(35) [73,75]
$(r_E^n)^2 ({\rm fm}^2)$	$-0.117 (-0.11 \dots -0.128)$	$-0.119(-0.108\ldots -0.13)$	-0.12	-0.115(4) [52]
r_M^n (fm)	0.862 (0.8540.871)	0.863 (0.8590.871)	0.879	0.873(11) [76]

Dispersion analysis of the nucleon form factors including meson continua

M. A. Belushkin^{*} and H.-W. Hammer[†]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany

Ulf-G. Meißner[‡]

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, Nußallee 14-16, D-53115 Bonn, Germany and Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 4 September 2006; published 6 March 2007)

ArXiv 1406.2962v2[Hep-ph]

Reduction of the proton radius discrepancy by 3 σ

I. T. Lorenz^{1,*} and Ulf-G. Meißner^{1,2,†}

¹Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D–53115 Bonn, Germany
²Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D–52425 Jülich, Germany

We show that in previous analyses of electron-proton scattering, the uncertainties in the statistical procedure to extract the proton charge radius are underestimated. Using a fit function based on a conformal mapping, we can describe the scattering data with high precision and extract a radius value in agreement with the one obtained from muonic hydrogen.

Why I do not trust the fits Slide from Savely Karshenboim

Why I do not trust the fits Slide from Savely Karshenboim

Conclusions

- Discrepancy between the determination of the proton radius:
 - CODATA (ep scattering & H) and muonic hydrogen
 - ep elastic scattering and μH
 - Recent and previous Hydrogen Lamb shift experiments
 - Tension between analysis of ep-scattering: extrapolation to Q²=0 !!!

The problem is on derivatives, not on observables !

- Our contribution:
 - Very low transferred momenta can be reached by proton-electron elastic scattering (inverse kinematics)
 - Fully relativistic description of proton-electron scattering : kinematics, differential cross section, polarization phenomena and radiative corrections

The unpolarized cross section (I)

The matrix element
$$\mathcal{M} = \frac{e^2}{k^2} j_\mu J_\mu,$$

• The leptonic tensor $j_{\mu} = \bar{u}(k_2)\gamma_{\mu}u(k_1)$,

• The hadronic tensor

$$J_{\mu} = \bar{u}(p_2) \left[F_1(k^2) \gamma_{\mu} - \frac{1}{2M} F_2(k^2) \sigma_{\mu\nu} k_{\nu} \right] u(p_1)$$

= $\bar{u}(p_2) \left[G_M(k^2) \gamma_{\mu} - F_2(k^2) P_{\mu} \right] u(p_1).$

$$P_{\mu} = (p_1 + p_2)_{\mu} / (2M).$$

 $G_M(k^2) = F_1(k^2) + F_2(k^2)$ $G_E(k^2) = F_1(k^2) - \tau F_2(k^2)$

Cez

The proton kinematics (E=100 MeV)

Proton-Electron Kinematics

Hadron Electromagnetic Form Factors

Proton-Electron elastic scattering

Extraction of electromagnetic form factors for $k^2 \rightarrow 0$

Cea

Applications I

Polarimetry of high energy (anti)proton beams

Polarization phenomena

1) Polarization transfer coefficients

$$p + \overrightarrow{e} \rightarrow \overrightarrow{p} + e$$

2) Spin correlation coefficients

$$\vec{p} + \vec{e} \rightarrow p + e$$

3) Depolarization coefficients

 $\vec{p} + e \rightarrow \vec{p} + e$

Depolarization coefficients

• Initial and final proton spins

• The polarized cross section

$$\frac{d\sigma}{dk^2}(\eta_1,\eta_2) = \left(\frac{d\sigma}{dk^2}\right)_{un} \left[1 + D_{tt}S_{1t}S_{2t} + D_{nn}S_{1n}S_{2n} + D_{\ell\ell}S_{1\ell}S_{2\ell} + D_{t\ell}S_{1t}S_{2\ell} + D_{\ell t}S_{1\ell}S_{2\ell}\right]$$

• The coefficients

$$\begin{aligned} \mathcal{D}D(\eta_1,\eta_2) &= 2(1+\tau)^{-1} \Big\{ k \cdot \eta_1 k \cdot \eta_2 G_M(k^2) \left[k^2 \left(G_M(k^2) - G_E(k^2) \right) + 2m^2(1+\tau) G_M(k^2) \right] \\ &+ k^2(1+\tau) G_M^2(k^2) (2k_1 \cdot \eta_2 k_2 \cdot \eta_1 - m^2 \eta_1 \cdot \eta_2) \\ &+ 4G_M(k^2) (k \cdot \eta_1 k_1 \cdot \eta_2 - k \cdot \eta_2 k_1 \cdot \eta_1) \left[M^2 \tau \left(G_E(k^2) - G_M(k^2) \right) \right] \\ &+ mE \left(G_E(k^2) + \tau G_M(k^2) \right) \Big] \\ &- \eta_1 \cdot \eta_2 \left(G_E^2(k^2) + \tau G_M^2(k^2) \right) \left[k^2 (M^2 - 2mE) + 4m^2 E^2 \right] \Big\}. \end{aligned}$$

Polarization

• Polarized lepton tensor

$$L^{(p)}_{\mu\nu} = 2im\epsilon_{\mu\nu\alpha\beta}k_{\alpha}S_{\beta},$$

• Polarized hadronic tensor

$$W_{\mu\nu}(\eta_j) = -2iG_M(k^2) \left[MG_M(k^2)\epsilon_{\mu\nu\alpha\beta}k_\alpha\eta_{j\beta} + F_2(k^2)(P_\mu\epsilon_{\nu\alpha\beta\gamma} - P_\nu\epsilon_{\mu\alpha\beta\gamma})p_{1\alpha}p_{2\beta}\eta_{j\gamma} \right]$$

The transverse beam polarization induces effects smaller by M/E

Polarization transfer coefficients

• Initial electron and final proton spin

$$S \equiv (0, \vec{\xi}), \ \eta_2 \equiv \left(\frac{1}{M}\vec{p}_2 \cdot \vec{S}_2, \vec{S}_2 + \frac{\vec{p}_2(\vec{p}_2 \cdot \vec{S}_2)}{M(E_2 + M)}\right)$$

• The polarized cross section

$$\frac{d\sigma}{dk^2}(\vec{\xi},\vec{S}_2) = \left(\frac{d\sigma}{dk^2}\right)_{un} \left[1 + T_{\ell\ell}\xi_\ell S_{2\ell} + T_{nn}\xi_n S_{2n} + T_{tt}\xi_t S_{2t} + T_{\ell t}\xi_\ell S_{2t} + T_{t\ell}\xi_t S_{2\ell}\right],$$

 $\mathcal{D}T(S,\eta_2) = 4mMG_M(k^2) \left[G_E(k^2)(k \cdot Sk \cdot \eta_2 - k^2 S \cdot \eta_2) - k^2 F_2(k^2) P \cdot SP \cdot \eta_2 \right]$

Polarization correlation coefficients

• Initial electron and proton spins

$$S \equiv (0, \vec{\xi}), \ \eta_1 = \left(\frac{\vec{p} \cdot \vec{S}_1}{M}, \vec{S}_1 + \frac{\vec{p}(\vec{p} \cdot \vec{S}_1)}{M(E+M)}\right)$$

• The polarized cross section

$$\frac{d\sigma}{dk^2}(\vec{\xi},\vec{S}_1) = \left(\frac{d\sigma}{dk^2}\right)_{un} \left[1 + C_{\ell\ell}\xi_\ell S_{1\ell} + C_{tt}\xi_t S_{1t} + C_{nn}\xi_n S_{1n} + C_{\ell t}\xi_\ell S_{1t} + C_{t\ell}\xi_t S_{1\ell}\right],$$

 $\mathcal{D}C(S,\eta_1) = 8mMG_M(k^2) \left[(k \cdot Sk \cdot \eta_1 - k^2 S \cdot \eta_1) G_E(k^2) + \tau k \cdot \eta_1 (k \cdot S + 2p_1 \cdot S) F_2(k^2) \right].$

Spin correlation coefficients

Polarization by Spin Flip?

Ongoing experiments:

Spin Filtering with polarized targets Spin Filtering with antiprotons at AD (CERN)

Cez

Figure of Merit

 $\mathcal{F}^2(\theta_p) = \epsilon(\theta_p) A_{ij}^2(\theta_p), \quad \epsilon(\theta_p) = N_f(\theta_p)/N_i$

Cea

Figure of Merit

 $\mathcal{F}^2(\theta_p) = \epsilon(\theta_p) A_{ij}^2(\theta_p), \quad \epsilon(\theta_p) = N_f(\theta_p)/N_i$

Cea

Polarimetry

Radiative corrections to elastic proton-electron scattering measured in coincidence

G. I. Gakh, M. I. Konchatnij, N. P. Merenkov, and E. Tomasi-Gustafsson Phys. Rev. C **95**, 055207 – Published 30 May 2017

Soft Radiative Corrections (α^3) Hard Radiative Corrections

Soft Radiative Corrections (α^3)

$$d\sigma^{(RC)} = (1 + \delta_1 + \delta_2 + \delta^{(s)} + \delta^{(\operatorname{vac})})d\sigma^{(B)} = (1 + \delta_0 + \bar{\delta} + \delta^{(\operatorname{vac})})d\sigma^{(B)},$$

$$\begin{split} \delta_0 &= \frac{2\alpha}{\pi} \ln \frac{\bar{\omega}}{m} \left[\frac{\epsilon_2}{k_2} \ln \left(\frac{\epsilon_2 + k_2}{m} \right) - 1 \right], \\ \bar{\delta} &= \frac{\alpha}{\pi} \left\{ -1 - 2\ln 2 + \frac{\epsilon_2}{k_2} \left[\ln \left(\frac{\epsilon_2 + k_2}{m} \right) \left(1 + \ln \left(\frac{\epsilon_2 + k_2}{m} \right) + 2\ln \left(\frac{m}{k_2} \right) + \frac{m + 3\epsilon_2}{2\epsilon_2} - \right. \right. \\ &\left. - \ln \left(\frac{\epsilon_2 + m}{k_2} \right) - \frac{1}{2} \ln \left(\frac{Q^2}{m^2} \right) \right) + 4m \frac{M^2 q^2}{\epsilon_2 \mathcal{D}} \ln \left(\frac{\epsilon_2 + k_2}{m} \right) \left[\left(G_E^2 - 2\tau G_M^2 \right) - \right. \\ &\left. - \frac{\pi^2}{6} + Li_2 \left(\frac{\epsilon_2 - k_2}{\epsilon_2 + k_2} \right) + Li_2 \left(\frac{\epsilon_2 + k_2 + m}{2(\epsilon_2 + m)} \right) - Li_2 \left(\frac{\epsilon_2 - k_2 + m}{2(\epsilon_2 + m)} \right) \right] \right\}. \end{split}$$

$$\delta^{(\text{vac})} = \frac{2\alpha}{3\pi} \left\{ -\frac{5}{3} + 4\frac{m^2}{Q^2} + (1 - 2\frac{m^2}{Q^2})\sqrt{1 + 4\frac{m^2}{Q^2}} \ln \frac{\sqrt{1 + 4\frac{m^2}{Q^2}} + 1}{\sqrt{1 + 4\frac{m^2}{Q^2}} - 1} \right\}.$$

Cross section and FFs

Hard Radiative Corrections (α^3)

Cea

Results for Hard Photon Corrections (α^3)

cea

Results for Radiative Corrections (α^3)

cea

Sensitivity of RC to FFs

$$P^{i} = \frac{1 + \delta^{i}_{\text{tot}}}{1 + \delta_{\text{tot}}} - 1, \quad i = r, m,$$

 δ_{tot} : *RC* for dipole parametrization

Egle Tomasi-Gustafsson

Application

Precise measurement of the proton radius

The SPIN of the proton

Cea

RC: what we learned

- The *sensitivity* of the cross section to FFs *grows with* proton beam energy
- The hard photon correction depends on the uncertainty in the energy of the scattered particles
- Strong cancellation between the positive hard correction and the *negative virtual and soft*: at E=100 GeV $\delta s \sim \delta h \sim 20$ %, but the sum $\delta \sim 6\%$
- Taking into account the proton structure does not change essentially the estimation at so small Q^2
- Two photon exchange is ~0.1%
- Model independent radiative corrections for pe elastic scattering have been calculated for a cross section measured at permille accuracy.
- Model dependent corrections are small and can not affect the cross section

