Bogoliubov Many-Body Perturbation Theory for Open-Shell Nuclei

Pierre Arthuis IRFU, CEA, Université Paris - Saclay

with T. Duguet (CEA Saclay), J.-P. Ebran (CEA DAM), H. Hergert (MSU), R. Roth (TU Darmstadt) & A. Tichai (ESNT, CEA Saclay)

> Café du DPhN CEA Saclay - February 12th 2018

On Nuclear Structure Theory

Different methods to treat the whole nuclear chart:

Courtesy of V. Soma, T. Duguet

"Exact" ab initio methods

- Since the 80's
- GFMC, NCSM, FY

Ab initio approaches for closed-shell nuclei

- Since the 2000's
- DSCGF, CC, IMSRG

Non-perturbative ab initio approaches for open-shell nuclei

- Since the 2010's
- GSCGF, BCC, MR-IMSRG

Courtesy of V. Soma, T. Duguet

Ab initio shell model

- Since 2014
- Effective interaction via CC or IMSRG

Symmetry breaking helps incorporating non-dynamical correlations:

- Superfluid character: U(1) (particle number)
- Deformations: *SU*(2) (angular momentum)

But nuclei carry good quantum numbers (e.g. number of particles)

 \Rightarrow Symmetries must eventually be restored

Quantum many-body methods

Expansion methods around unperturbed product state

Quantum many-body methods

New methods recently proposed and implemented

- GSCGF, BCC [Somà et al. 2011, Signoracci et al. 2014]
- Sym.-res. BCC & sym.-res. BMBPT [Duguet 2015, Duguet & Signoracci 2017, Qiu et al. 2017]

BMBPT for Open-Shell Nuclei

Quantum many-body methods

MBPT reimplemented using SRG-evolved H [Tichai et al. 2016]

➡ MBPT competes with non-perturbative methods

BMBPT for Open-Shell Nuclei

The BMBPT project

Exact diagrammatic expansion with symmetry breaking *and* restoration [Duguet and Signoracci, J. Phys. G 44, 2017]

P. Arthuis - IRFU, CEA, UPSaclay

• Quasiparticle creation and annihilation operators

$$eta_k = \sum_p U^*_{pk} \, c_p + V^*_{pk} \, c^\dagger_p$$
 $eta^\dagger_k = \sum_p U_{pk} \, c^\dagger_p + V_{pk} \, c_p$

- Bogoliubov vacuum $|\Phi
 angle$, $eta_k |\Phi
 angle = 0 \, orall k$
- Grand potential operator $\Omega \equiv H \lambda A$ in quasiparticle basis

$$\Omega = \Omega^{00} + \frac{1}{1!} \sum_{k_1 k_2} \Omega^{11}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta_{k_2} + \frac{1}{2!} \sum_{k_1 k_2} \left\{ \Omega^{20}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} + \Omega^{02}_{k_1 k_2} \beta_{k_2} \beta_{k_1} \right\} + \dots$$

- Perturbative expansion of ground-state energy $\left(\Omega=\Omega_0+\Omega_1\right)$

$$\begin{split} \mathbf{E}_{0} &= \langle \Phi | \Big\{ \mathbf{\Omega}(\mathbf{0}) - \int_{0}^{\infty} d\tau_{1} \mathsf{T} \left[\mathbf{\Omega}_{1} \left(\tau_{1} \right) \mathbf{\Omega}(\mathbf{0}) \right] \\ &+ \frac{1}{2!} \int_{0}^{\infty} d\tau_{1} d\tau_{2} \mathsf{T} \left[\mathbf{\Omega}_{1} \left(\tau_{1} \right) \mathbf{\Omega}_{1} \left(\tau_{2} \right) \mathbf{\Omega}(\mathbf{0}) \right] + ... \Big\} | \Phi \rangle_{c} \end{split}$$

Propagators

$$G_{k_1k_2}^{+-(0)}(au_1, au_2) \equiv rac{\langle \Phi | \mathsf{T}[eta_{k_1}^{\dagger}(au_1)eta_{k_2}(au_2)] | \Phi
angle}{\langle \Phi | \Phi
angle} = -G_{k_2k_1}^{-+(0)}(au_2, au_1)$$

• Apply Wick theorem... Obtain lots of terms

Is there a more convenient way to proceed?

Yes: Express everything in terms of diagrams

Building blocks of the diagrammatic

• Normal-ordered form of Ω with respect to Φ

- Main diagrammatic rules
 - ◊ Wick theorem
 - ◊ No external legs
 - No oriented loop between vertices
 - ◊ No self-contraction
 - $\diamond~$ Propagators go out of the Ω vertex at time 0

P. Arthuis - IRFU, CEA, UPSaclay

BMBPT for Open-Shell Nuclei

Low-order diagrams

• First- and second-order diagrams [Duguet and Signoracci, J. Phys. G 44, 2017]

Derivation of a third-order diagram

Feynman (time-dependent) and Goldstone (time-integrated) expressions:

P. Arthuis - IRFU, CEA, UPSaclay

- All diagrams derived and numerically implemented up to order 3 [PA, Tichai, Ebran, Duguet]
- Ab initio approach \rightarrow Go to highest possible order
 - ◊ At least up to order 4 to check convergence patterns
 - ◊ Derivation time-consuming
 - ◊ Derivation error-prone

Develop automatic tool

- ◊ To generate all possible connected diagrams at order n
- ◊ To extract associated time-integrated expressions
- To be both quick and safe

Our goal

An automatic and systematic way of producing diagrams

Our tool

Adjacency matrices in graph theory

Our challenge

From BMBPT diagrammatic rules to constraints on matrices

Each Feynman diagram to be represented by an adjacency matrix

• *a_{ij}* indicate the number of edges going from node *i* to node *j*

- Carry detailed information for directed graphs
- ◊ Symmetry properties and connectivity properties directly readable
- Only two propagators, readable as one once reading direction is fixed
 - ◊ Perfectly adapted for diagonal BMBPT
 - $\diamond~$ Extension needed for off-diagonal diagrams with anomalous propagator

Each vertex belongs to $\Omega^{[2]}$ or $\Omega^{[4]}$

For each vertex *i*, $\sum_{i} (a_{ij} + a_{ji})$ is 2 or 4

No self-contraction (not the case for off-diagonal theory)

Every diagonal element is zero

Every propagator coming out of the vertex at time 0 goes upward

First column of the matrix is zero

No oriented loop between vertices

Can restrict to upper triangular matrices

Generate BMBPT diagrams

- Generate all upper triangular matrices for BMBPT diagrams at order n
 - ◊ Fill the matrices "vertex-wise"
 - $\diamond~$ Check the degree of each vertex before moving on

/0	0	0/		/0	a_{12}	a_{13}		/0	a_{12}	a_{13}
0	0	0	\rightarrow	0	0	0	\rightarrow	0	0	a ₂₃
/0	0	0/		/0	0	0/		0/	0	0/

- Discard matrices leading to topologically identical diagrams
- Read the matrix and translate it into drawing instructions

```
\beginfmfgreph*){60,60}
\fmftofp(2)\fmfbottom{v0}
\fmftofp(2)\fmfbottom{v0}
\fmftofpantom}{v1,v2}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v1}
\fmfvfd.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmfvfd.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmffroze
\fmffprop_pm,right=0.6}{v0,v2}
\fmf{prop_pm}{v1,v2}
\fmf{prop_pm}{v1,v2}
\fmffprop_m,right=0.6}{v1,v2}
\fmffprop_m,right=0.6}{v1,v2}
\fmf{prop_pm}{v1,v2}
\fmf{prop_pm}{v1,v2}\\fmf{prop_pm}{v1,v2}
\fmf{prop_pm}{v1,v2}\\fmf{prop_pm}{v1,v2}
\fmf{prop_pm}{v1,v2}\\fmf{prop_pm}{v1,v2}
\fmf{prop_pm}{v1,v2}
```


Run the code at order 4 with 2N and 3N interactions, obtain...

...and 388 others!

- Number of diagrams with 2N interactions (using an HFB vacuum)
 - \diamond 8 (1) diagrams at order 3
 - ◇ 59 (10) diagrams at order 4
 - ◊ 568 (82) diagrams at order 5
 - ◇ 6 805 (938) diagrams at order 6
- Number of diagrams with 2N and 3N interactions (using an HFB vacuum)
 - ◊ 23 (8) diagrams at order 3
 - ◊ 396 (177) diagrams at order 4
 - ◊ 10 716 (5 055) diagrams at order 5
 - $\diamond~$ 100 000+ diagrams at order 6?
- Obtained in only a few minutes...

Automated expression derivation

All BMBPT diagrams produced automatically at a given order

- ➡ Need to derive automatically the diagrams' expressions
- Feynman diagrams recast different time-orderings
 - Less diagrams to set up
 - **X** But time-integrated (Goldstone) expressions are to be coded
- Goldstone diagrams capture each time ordering separately
 - Time-integrated expressions obtained directly from diagrammatic rules
 - X Many more diagrams to consider

Challenge: Extract Goldstone expressions from Feynman diagrams

- ◊ Capture all time ordering at once
- $\diamond~$ Challenging because of structure of corresponding time integrals
- Undone task to our knowledge (even for standard diagrammatic)

- Determine the time-structure diagram (TSD) associated to BMBPT one
 - ◊ Propagators carry time-ordering relations
 - $\diamond~\Omega$ vertex at time 0 is a lower limit for time
 - ◊ One TSD recast several Feynman, even more Goldstone

• Extraction of the time-integrated expression depends on TSD

- ◊ If tree, apply the Goldstone-like algorithm based on subdiagrams
- $\diamond\,$ If non-tree, decompose the diagram in a sum of tree TSDs
- \checkmark Algorithms implemented and used at all orders

- 1 Determine all its descendants using the TSD diagram
- 2 Form a subgraph using the vertex and its descendants
- 3 For all propagators entering the subgraph, add the associated qpe

$$\frac{-(-1)^3}{(3!)^2} \sum_{k_i} \frac{\Omega^{40}_{k_1 k_2 k_3 k_4} \Omega^{40}_{k_5 k_6 k_7 k_8} \Omega^{04}_{k_5 k_1 k_2 k_3} \Omega^{04}_{k_6 k_7 k_8 k_4}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_5})(E_{k_4} + E_{k_6} + E_{k_7} + E_{k_8})}$$

- 1 Determine all its descendants using the TSD diagram
- 2 Form a subgraph using the vertex and its descendants
- 3 For all propagators entering the subgraph, add the associated qpe

$$\frac{-(-1)^3}{(3!)^2} \sum_{k_i} \frac{\Omega^{40}_{k_1k_2k_3k_4}\Omega^{40}_{k_5k_6k_7k_8}\Omega^{04}_{k_5k_1k_2k_3}\Omega^{04}_{k_6k_7k_8k_4}}{(E_{k_1}+E_{k_2}+E_{k_3}+E_{k_4})(E_{k_1}+E_{k_2}+E_{k_3}+E_{k_5})(E_{k_4}+E_{k_6}+E_{k_7}+E_{k_8})}$$

- 1 Determine all its descendants using the TSD diagram
- 2 Form a subgraph using the vertex and its descendants
- 3 For all propagators entering the subgraph, add the associated qpe

$$\frac{-(-1)^3}{(3!)^2} \sum_{k_i} \frac{\Omega_{k_1 k_2 k_3 k_4}^{40} \Omega_{k_5 k_6 k_7 k_8}^{40} \Omega_{k_5 k_1 k_2 k_3}^{04} \Omega_{k_6 k_7 k_8 k_4}^{04}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_5})(E_{k_4} + E_{k_6} + E_{k_7} + E_{k_8})}$$

- 1 Determine all its descendants using the TSD diagram
- **2** Form a subgraph using the vertex and its descendants
- **③** For all propagators entering the subgraph, add the associated qpe

$$\frac{-(-1)^3}{(3!)^2} \sum_{k_i} \frac{\Omega^{40}_{k_1 k_2 k_3 k_4} \Omega^{40}_{k_5 k_6 k_7 k_8} \Omega^{04}_{k_5 k_1 k_2 k_3} \Omega^{04}_{k_6 k_7 k_8 k_4}}{(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_4})(E_{k_1} + E_{k_2} + E_{k_3} + E_{k_5})(E_{k_4} + E_{k_6} + E_{k_7} + E_{k_8})}$$

Isotopic chains calculations at second order

• Test BMBPT(2) calculations on O (below), Ca, Ni and Sn chains

using NN and 3N SRG-evolved chiral interaction

- Third-order calculations under way / fourth order in near future
- Systematic calculations to come

- BMBPT diagrams now generated automatically
 - ✓ Fast and error-safe
 - ✓ No intrinsic upper limit on the order
- BMBPT analytical expressions automatically derived to all order as well
 - ✓ Feynman and Goldstone expressions for all diagrams
 - ✔ Order 4 to be implemented in BMBPT code in near future
- Project still moving on
 - ◊ Code to be published
 - Open to collaborations regarding other diagrammatic methods
- Progress done in numerical implementation in the mean time

- Extend the scope of the automated diagram generator
 - ◊ Gorkov SCGF
 - ◊ Off-diagonal BMBPT
- Extend the scope of diagonal BMBPT
 - Excited states and new observables
 - ◊ Developments used in parallel in future BCC implementation
- Move towards symmetry-restored BMBPT
 - ◊ Extensive work on the theory
 - ◊ Automated diagram generation and derivation
 - $\diamond~$ Implementation in the BMBPT numerical code
- Move towards fully automated calculations?

BMBPT Project

P. Arthuis T. Duguet J.-P. Ebran A. Tichai

On broader aspects

M. Drissi J. Ripoche

