



THE FRENCH AEROSPACE LAB

## Test du Principe d'Equivalence dans l'espace : les premiers résultats de la mission MICROSCOPE

Emilie HARDY (ONERA) au nom de Pierre TOUBOUL (PI) et de l'équipe MICROSCOPE



#### Le Principe d'Equivalence

L'universalité de la chute libre, pilier de la Relativité Générale La trajectoire d'un corps en chute libre est indépendante de sa structure et de sa composition.



Recherche de théories alternatives permettant l'Unification
→ apparition d'une violation du Principe d'Equivalence

$$S(A, B) = \frac{\frac{m_{gA}}{m_{IA}} - \frac{m_{gB}}{m_{IB}}}{\frac{1}{2} \left(\frac{m_{gA}}{m_{IA}} + \frac{m_{gB}}{m_{IB}}\right)}$$



#### **Tester le Principe d'Equivalence**

Tir Laser Terre-Lune JPL / Caltech (Pasadena) J.G. Williams et al, CQG, 29 (2012)

 $\delta_{Terre-Lune} = (-0.8 \pm 1.3) \times 10^{-13}$ 

Pendule de torsion Université Washington (Seatle) - Groupe EotWash S. Schlamminger et al, PRL 100, 041101 (2008)



- 2

Ti test

 $\delta_{Be-Ti} = (0.3 \pm 1.8) \times 10^{-13}$ 

Objectif de l'expérience spatiale MICROSCOPE : test du Principe d'Equivalence avec une précision de 10<sup>-15</sup>



mirror

Re tes



## La mission MICROSCOPE

#### Microsatellite MYRIADE du CNES

- Lancement le 25 avril 2016
- Masse : 300 kg (charge utile 35kg)
- Orbite circulaire héliosynchrone : 710 km, e < 5.10<sup>-3</sup>
  - 2 accéléromètres différentiels électrostatiques

Une « chute libre » dans l'espace 2 masses de compositions différentes maintenues concentriques

- Environnement : très faiblement perturbé, satellite à compensation de traînée
- Durée de la mesure : non limitée par la durée de la chute libre (120 orbites)
  - Signal à détecter de phase et de fréquence connues



ONERA

HE FRENCH AEROSPACE L



#### Fréquence du signal de violation du Principe d'Equivalence modulée :

- mode inertiel :  $f_{EP} = f_{orb} = 1/T_{orbite}$
- mode spinné (à  $3.1 \times 10^{-3} Hz$ ) :  $f_{EP} = f_{orb} + f_{spin}$

![](_page_4_Picture_4.jpeg)

THE FRENCH AEROSPACE LA

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_2.jpeg)

SUEP : titane / platine SUREF : platine / platine

![](_page_5_Picture_4.jpeg)

**Comparaison** des accélérations appliquées aux deux masses d'épreuve pour les maintenir sur la même trajectoire à 710km

© CNES / Virtual-IT 2017

![](_page_5_Picture_7.jpeg)

ional mesur

![](_page_6_Picture_0.jpeg)

#### 2 instruments identiques à bord comprenant chacun 2 masses concentriques :

SUEP : titane / platine SUREF : platine / platine

<u>Chaque masse cylindrique :</u> Entourée d'un ensemble d'électrodes ayant 2 fonctions

1) Mesure de la position (linéaire et angulaire) vs électrodes : détecteur capacitif

![](_page_6_Picture_6.jpeg)

![](_page_6_Picture_7.jpeg)

FEEU MQV1 – SUREF

FEEU MV2 - SUEP

Noise of detectors : 10µV Hz<sup>-1/2</sup> Reference voltages : 0.2µVHz<sup>-1/2</sup> & 0.3ppm/°C 24 bits sigma-delta ADC

> ONÉRA THE FRENCH AEROSPACE LAB

![](_page_7_Picture_0.jpeg)

#### 2 instruments identiques à bord comprenant chacun 2 masses concentriques:

SUEP : titane / platine SUREF : platine / platine

<u>Chaque masse cylindrique:</u> Entourée d'un ensemble d'électrodes ayant 2 fonctions

1) Mesure des positions et angles des ME vs électrodes: détecteur capacitif

![](_page_7_Picture_6.jpeg)

2) A partir de ces mesures, génération de forces électrostatiques pour maintenir les masses immobiles : asservissement des tensions d'électrodes

![](_page_7_Picture_8.jpeg)

2 stacked ICU : digital control laws, data conditioning 40 bits DSP architecture 32 bits outputs at 4Hz (Acc) + 1Hz (pos, angl, Temp, ...) 1.03 kHz test-mass servo-loop

![](_page_7_Picture_11.jpeg)

### Principe de l'accéléromètre électrostatique

**Capacitive Detection** V<sub>d</sub>sin(ω<sub>d</sub>t) Cf CI e-v V<sub>n</sub>+  $\Delta C = \frac{2\varepsilon S}{v}$ V<sub>a</sub>sin(ω<sub>a</sub>t) Proof-mass Gold wire C2e+y 24bits ADC Bridge Synchronous sense amplifier demodulator Capacitance bridge -V, amplifier 1.03kHz  $a_v = G / m V_v$  4Hz 1.03kHz **FIR** S/C OBC **PID controller** 1.03kHz 16bits DAC **Voltage amplifiers**  $F_{el} = F_{el,1} - F_{el,2} = \frac{1}{2} \left[ \frac{\partial C_2}{\partial v} \left( V_y - V_p - V_d sin(\omega_d t) \right)^2 \right] - \frac{1}{2} \left[ \frac{\partial C_1}{\partial v} \left( V_y + V_p + V_d sin(\omega_d t) \right)^2 \right] \approx G.V_y \Rightarrow m\Gamma \approx G.V_y$ 

9 - E. Hardy, Test du Principe d'Equivalence dans l'espace : les premiers résultats de la mission MICROSCOPE - 15/01/2018

THE FRENCH AEROSPACE LAB

ONERA

![](_page_9_Picture_0.jpeg)

PtRh ou Ti

PtRh

ONERA

EPENCH AEPOSPACE

#### 2 instruments identiques à bord comprenant chacun 2 masses concentriques:

SUEP : titane / platine SUREF : platine / platine

<u>Chaque masse cylindrique:</u> Entourée d'un ensemble d'électrodes ayant 2 fonctions

1) Mesure des positions et angles des ME vs électrodes: détecteur capacitif

 A partir de ces mesures, génération de forces électrostatiques pour maintenir les masses immobiles : asservissement des tensions d'électrodes

Ces tensions fournissent l'accélération à mesurer

T-SAGE : Un accéléromètre ultrasensible

![](_page_9_Picture_9.jpeg)

## Comment les mesures sont-elles collectées ?

#### Centre de Contrôle (CC): CNES

Echanges avec le satellite : données brutes + programmation

![](_page_10_Picture_4.jpeg)

![](_page_11_Picture_0.jpeg)

#### Comment les mesures sont-elles collectées ?

![](_page_11_Picture_2.jpeg)

#### Centre de Contrôle (CC): CNES

Echanges avec le satellite : données brutes + programmation

Centre d'Expertise de la Compensation de Traînée (CECT): CNES

Interface CNES/ONERA : données N0a, N0b, N0c + scenario de mission

![](_page_11_Picture_7.jpeg)

# NNCROSCOPE

#### Comment les mesures sont-elles collectées ?

- Centre de Contrôle (CC): CNES
  - Echanges avec le satellite : données brutes + programmation
  - Centre d'Expertise de la Compensation de Traînée (CECT): CNES
    - Interface CNES/ONERA : données N0a, N0b, N0c + scenario de mission

#### Centre de Mission Scientifique MICROSCOPE (CMSM): ONERA

- Traitement opérationnel des données de l'instrument
- Traitement scientifique + mise à jour du scenario de mission

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_11.jpeg)

# NNCROSCOPE

#### Comment les mesures sont-elles collectées ?

#### Centre de Contrôle (CC): CNES

Echanges avec le satellite : données brutes + programmation

Centre d'Expertise de la Compensation de Traînée (CECT): CNES Interface CNES/ONERA : données N0a, N0b, N0c + scenario de mission

#### Centre de Mission Scientifique MICROSCOPE (CMSM): ONERA

- Traitement opérationnel des données de l'instrument
- Traitement scientifique + mise à jour du scenario de mission

Le satellite a parcouru 9000 orbites, dont 2000 orbites dédiées à la science (1 orbite = 01H40)

![](_page_13_Picture_10.jpeg)

## La mesure - session 218 (SUEP)

120 orbites = 8,25 jours → 2 Giga octets de données à traiter

![](_page_14_Figure_2.jpeg)

Le signal recherché pourrait être 240 000 fois plus petit..

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

## La mesure - session 218 (SUEP)

#### Densité spectrale d'amplitude de $\Gamma_{mes,dx}/g(O_{sat})$ sur 120 orbites

![](_page_15_Figure_2.jpeg)

Contenu du signal à f<sub>FP</sub> : - éventuel signal de violation du Principe d'Equivalence - erreur systématique erreur stochastique

![](_page_15_Picture_4.jpeg)

![](_page_16_Picture_0.jpeg)

## Modélisation de la mesure

 Mesure idéale de l'accéléromètre : accélération électrostatique appliquée à la masse d'épreuve k pour la maintenir centrée

 $\overrightarrow{\Gamma_{App,k}} = \frac{M_{g,sat}}{M_{I,sat}} \overrightarrow{g}(O_{sat}) + \overrightarrow{\Gamma_{ng,sat}} \qquad \text{mouvement du satellite} \\ - \frac{m_{g,k}}{m_{I,k}} \overrightarrow{g}(O_k) \qquad \text{gravité} \\ + [In], \overrightarrow{O_{sat}O_k} + \overrightarrow{O_{sat}O_k} \qquad \text{effet d'inertie d'entraînement} \\ + 2[\Omega], \overrightarrow{O_{sat}O_k} \qquad \text{effet Coriolis} \\ - \overrightarrow{\Gamma_{ng,sat}} \qquad \text{forces parasites} \\ \bullet \qquad \text{Mesure réelle de l'accéléromètre} \\ \overrightarrow{\Gamma_{mes,k}} = \overrightarrow{K_{0,k}} + [M_k]\overrightarrow{\Gamma_{App,k}} + K_{2,k}\overrightarrow{\Gamma^2_{App,k}} + [Coupl_k]\overrightarrow{\Omega} + \overrightarrow{\Gamma_{n,k}} \end{aligned}$ 

- K<sub>0</sub> : biais
- [M] : matrice de sensibilité (facteurs d'échelle, défauts d'alignement, couplages)
- K<sub>2</sub> : terme quadratique
- [Coupl<sub>k</sub>] : couplage angulaire vers linéaire
  - Γ<sub>n</sub> : bruit

![](_page_16_Picture_10.jpeg)

### Modélisation de la mesure

Mesure en mode différentiel (demi-différence) → pour le test du Principe d'Equivalence

 $\overrightarrow{\Gamma_{mes,d}} = \frac{1}{2} \left( \overrightarrow{\Gamma_{mes,1}} - \overrightarrow{\Gamma_{mes,2}} \right)$  $=\overrightarrow{K_{0,d}}$  $+[M_c]\{([T]-[In])\vec{\Delta}$  $-2[\Omega]\vec{\Delta} - \vec{\Delta}$  $+\delta_{EP}\vec{g}(O_{sat})\}$  $+2[M_d]\overline{\Gamma_{app,c}}$  $+\overline{\Gamma_{quad,d}}$  $+2[Coupl_d]\vec{\Omega}$  $+\overline{\Gamma_{n,d}}$ 

compensation de traînée

biais différentiel gradients de gravité et d'inertie effet Corriolis, mvt des masses violation du PE :  $\delta_{EP} = \frac{m_{g,2}}{m_{L2}} - \frac{m_{g,1}}{m_{L1}}$ accélération commune accélération quadratique différentielle couplage différentiel angulaire vers linéaire bruit différentiel Mesure en mode commun (demi-somme) → commande le système de

![](_page_17_Picture_6.jpeg)

![](_page_18_Picture_0.jpeg)

#### Etalonnage en vol

- Objectif : évaluation des paramètres instrumentaux pour soustraire leur effet de la mesure
- excentrement Δ, paramètres de sensibilité différentiels, terme quadratique
   Principe : pour chaque paramètre à estimer, une session dédiée permet
   d'amplifier le terme contenant le paramètre

![](_page_18_Figure_4.jpeg)

ONERA

FRENCH AEROSPACE

![](_page_19_Picture_0.jpeg)

### Etalonnage en vol

| Paramètre                                  | Mouvement<br>spécifique                        | Amplificateur                                  | Fréq                 | Estimée                                     |
|--------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------|---------------------------------------------|
| Excentrement $\Delta_x$                    | Session EP                                     | Gradient de gravité fort à<br>2f <sub>EP</sub> | 2f <sub>EP</sub>     | 20,1 ± 0,1 µm                               |
| Excentrement $\Delta_z$                    | Session EP                                     | Gradient de gravité fort à<br>2f <sub>EP</sub> | 2f <sub>EP</sub>     | -5,6 ± 0,1 μm                               |
| Excentrement $\Delta_y$                    | Oscillation angulaire du satellite autour de Z | Gradient d'inertie                             | f <sub>cal/ang</sub> | -8,0 ± 0,2 μm                               |
| Facteur d'échelle<br>M <sub>dxx</sub>      | Oscillation linéaire du satellite le long de X | Commande drag-free = accélération commune      | f <sub>ćal/lin</sub> | 8,5·10 <sup>-3</sup> ± 1,5·10 <sup>-4</sup> |
| Mésalignement et couplage M <sub>dxy</sub> | Oscillation linéaire du satellite le long de Y | Commande drag-free = accélération commune      | f <sub>cal/lín</sub> | < 1,5⋅10 <sup>-4</sup> rad                  |
| Mésalignement et couplage M <sub>dxz</sub> | Oscillation linéaire du satellite le long de Z | Commande drag-free = accélération commune      | f <sub>cal/lin</sub> | < 1,5·10 <sup>-4</sup> rad                  |

![](_page_19_Picture_4.jpeg)

![](_page_20_Picture_0.jpeg)

## **Effets thermiques**

- Résidus de perturbation thermique
  - Sensibilité thermique élevée
  - Variation de température < 20 µK</li>

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_7.jpeg)

# Microscope

#### Bilan des erreurs systématiques

| Contribution sur l'axe X                                 | Amplitude ou<br>borne supérieure        | Méthode d'estimation                                       |  |
|----------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|--|
| Gradient de gravité à $f_{EP}$ (en phase avec $g_x$ )    | <10 <sup>-17</sup> m/s²                 | Modèle du champ de gravité terrestre et étalonnage en vol  |  |
| Gradient d'inertie à f <sub>EP</sub>                     | 1,4-10 <sup>-17</sup> m/s <sup>2</sup>  | Performances du système drag-<br>free et étalonnage en vol |  |
| Contrôle drag-free : $[M_d]\overline{\Gamma_{app,c}}$    | 1,7•10 <sup>-15</sup> m/s <sup>2</sup>  |                                                            |  |
| Non-linéarité                                            | 5-10 <sup>-17</sup> m/s <sup>2</sup>    |                                                            |  |
| Couplage angulaire vers linéaire                         | < 2.10 <sup>-15</sup> m/s <sup>2</sup>  | Couplage observé pendant la phase de recette               |  |
| Contribution thermique                                   | < 67.10 <sup>-15</sup> m/s <sup>2</sup> | Evaluation en vol de la sensibilité thermique              |  |
| Contribution magnétique                                  | <2,5.10 <sup>-16</sup> m/s <sup>2</sup> | Calcul aux éléments finis                                  |  |
| Contribution totale à $\overrightarrow{\Gamma_{mes,dx}}$ | < 71.10 <sup>-15</sup> m/s <sup>2</sup> |                                                            |  |
| Contribution totale à δ                                  | < 9·10 <sup>-15</sup>                   |                                                            |  |

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_0.jpeg)

## Signal aléatoire

- Bruit intrinsèque de l'accéléromètre dans son environnement
- A f<sub>EP</sub> : 5,6-10<sup>-11</sup> m/s<sup>2</sup>/ $\sqrt{Hz}$  pour SUEP, 1,8-10<sup>-11</sup> m/s<sup>2</sup>/ $\sqrt{Hz}$  pour SUREF
- Réductible si on utilise plus de 120 orbites

![](_page_22_Figure_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_23_Picture_0.jpeg)

#### Le bruit de la mesure

**120 orbites** 

![](_page_23_Figure_3.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_24_Picture_0.jpeg)

## Signal aléatoire

- Bruit intrinsèque de l'accéléromètre dans son environnement
- A f<sub>EP</sub> : 5,6-10<sup>-11</sup> m/s<sup>2</sup>/ $\sqrt{Hz}$  pour SUEP, 1,8-10<sup>-11</sup> m/s<sup>2</sup>/ $\sqrt{Hz}$  pour SUREF
- Réductible si on utilise plus de 120 orbites

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_25_Picture_0.jpeg)

#### Trous de mesure

#### Pour la gestion des données manquantes (trous, données invalides) :

Augmentation importante du bruit

- Remplacement des données manquantes par une valeur interpolée
   → algorithme *inpainting* (sparsity)
- Estimation de la DSP du bruit afin de pondérer la mesure → KARMA (Kalman Auto-Regressive Model Analysis)
- Estimation des données manquantes par leur espérence conditionnelle pour maximiser la vraissemblance : MECM (Modified-Expectation-Conditional-Maximization)

![](_page_25_Figure_7.jpeg)

Q Baghi et al, Phys. Rev. D 91, 062003 (2015)

![](_page_25_Picture_9.jpeg)

## Estimation du paramètre de violation du PE

1)  $NOc \rightarrow N1a$ : data formating – mesure par senseur 2)  $N1a \rightarrow N2a$ : mesure commune / différentielle (+  $\vec{g}$ , [T])  $\rightarrow 1$ 

$$\Gamma_{mes,d} = \frac{1}{2} \left( \Gamma_{mes,1} - \Gamma_{mes,2} \right)$$

- 3) Détection des points invalides, masquage, rebouchage
- 4) N2a → N2b : correction de l'effet des paramètres instrumentaux estimés pendant l'étalonnage en orbite
- 5) N équations temporelles -> N équations fréquentielles
- 6) Filtrage sur une bande étroite autour de f<sub>EP</sub> et 2f<sub>EP</sub>
- 7) Inversion par moindres carrés pour l'estimation simultanée de  $\delta_{EP},\,\Delta_X$  et  $\Delta_z$

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

## Estimation du paramètre de violation du PE

Sur une session SUEP de 120 orbites :  $\delta(Ti, Pt) = [-1 \pm 9 (stat) \pm 9 (syst)] \times 10^{-15} \text{ à} 1\sigma$ Sur une session SUREF de 62 orbites :  $\delta(Pt, Pt) = [4 \pm 4 (stat)] \times 10^{-15} \text{ à} 1\sigma$ 

#### $\Rightarrow$ A ce jour, pas de violation à 19 $\times$ 10<sup>-15</sup>

PRL 119, 231101 (2017) PHYSICAL REVIEW LETTERS

week ending 8 DECEMBER 2017

#### S

#### **MICROSCOPE** Mission: First Results of a Space Test of the Equivalence Principle

Pierre Touboul,<sup>1,\*</sup> Gilles Métris,<sup>2,†</sup> Manuel Rodrigues,<sup>1,‡</sup> Yves André,<sup>3</sup> Quentin Baghi,<sup>2</sup> Joël Bergé,<sup>1</sup> Damien Boulanger,<sup>1</sup>
Stefanie Bremer,<sup>4</sup> Patrice Carle,<sup>1</sup> Ratana Chhun,<sup>1</sup> Bruno Christophe,<sup>1</sup> Valerio Cipolla,<sup>3</sup> Thibault Damour,<sup>5</sup> Pascale Danto,<sup>3</sup> Hansjoerg Dittus,<sup>6</sup> Pierre Fayet,<sup>7</sup> Bernard Foulon,<sup>1</sup> Claude Gageant,<sup>1</sup> Pierre-Yves Guidotti,<sup>3</sup> Daniel Hagedorn,<sup>8</sup> Emilie Hardy,<sup>1</sup> Phuong-Anh Huynh,<sup>1</sup> Henri Inchauspe,<sup>1</sup> Patrick Kayser,<sup>1</sup> Stéphanie Lala,<sup>1</sup> Claus Lämmerzahl,<sup>4</sup>
Vincent Lebat,<sup>1</sup> Pierre Leseur,<sup>1</sup> Françoise Liorzou,<sup>1</sup> Meike List,<sup>4</sup> Frank Löffler,<sup>8</sup> Isabelle Panet,<sup>9</sup> Benjamin Pouilloux,<sup>3</sup> Pascal Prieur,<sup>3</sup> Alexandre Rebray,<sup>1</sup> Serge Reynaud,<sup>10</sup> Benny Rievers,<sup>4</sup> Alain Robert,<sup>3</sup> Hanns Selig,<sup>4</sup> Laura Serron,<sup>2</sup> Timothy Sumner,<sup>11</sup> Nicolas Tanguy,<sup>1</sup> and Pieter Visser<sup>12</sup>

![](_page_27_Picture_9.jpeg)

## Déjà deux articles sur l'impact des résultats

#### arXiv:1712.00483v1 [gr-qc] 1 Dec 2017. Bergé et al

![](_page_28_Figure_2.jpeg)

#### arXiv:1712.00856v1 [hep-ph] 3 Dec 2017. Fayet.

We derive new limits from the first results of the MICROSCOPE experiment testing the Equivalence Principle in space. A long-range force coupled to  $[\epsilon_Q Q + \epsilon_{B-L}(B-L)]e$  or  $[\epsilon_Q Q + \epsilon_L L]e$  should verify  $|\epsilon_{B-L}|$  or  $|\epsilon_L| < .9 \ 10^{-24}$ , and a force coupled to  $[\epsilon_Q Q + \epsilon_B B]e$ ,  $|\epsilon_B| < 6 \ 10^{-24}$ .

We also discuss, within supersymmetric theories, how such extremely small gauge couplings g", typically  $\lesssim 10^{-24}$ , may be related to a correspondingly large  $\xi$ " D" term associated with a huge initial vacuum energy density,  $\propto 1/g$ "<sup>2</sup>. The corresponding hierarchy between energy scales, by a factor  $\propto 1/\sqrt{g}$ "  $\gtrsim 10^{12}$ , involves a very large scale  $\sim 10^{16}$  GeV, that may be associated with inflation, or supersymmetry breaking with a very heavy gravitino, leading to possible values of  $\delta$  within the experimentally accessible range.

ONERA

THE FRENCH AEROSPACE LA

![](_page_29_Picture_0.jpeg)

#### Conclusion

Un satellite et un instrument en symbiose, avec des performances exceptionnelles jamais obtenues en orbite terrestre

Pas de violation à la précision de  $1.9 \times 10^{-14}$ 

- Sur seulement 10% des données scientifiques collectées
- Gain d'un facteur 10 sur les expériences réalisées à ce jour
- MICROSCOPE devient la référence mondiale du test du PE

A la fin de la mission on aura 15 fois plus d'orbites pour faire encore mieux et se rapprocher de l'objectif (résultats finaux en 2019)

À 10<sup>-15</sup> y aura-t-il violation? Tout est possible !

![](_page_29_Picture_10.jpeg)

![](_page_30_Picture_0.jpeg)

#### http://microscope.onera.fr

![](_page_30_Picture_2.jpeg)

#### CHARGE UTILE T-SAGE

![](_page_30_Picture_4.jpeg)

**OPERATION SAT – CNES ONERA** 

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_7.jpeg)

DPHY

![](_page_30_Picture_9.jpeg)